Lecture 16

Kerr solution (continued)

[5.1] Kerr solution

2Mr 4Mar
2 [4 2 . 2
ds® = (1 5 )dt > Sin 0 dodt

2
+ % sin 0 (AX + 2Mr(r? + a2))d¢? + ¥ (%

Y =r2 4+ a cos? 0 A=r%_2Mr+ &

Boyer-Lindquist coordinates:

+ d92>

(t,r,0,9) O0<op<2r, 0<b<m



Remarks

» Carter & Robinson: the Kerr solution is the most general
solution (of Rz, = 0) which is stationary, axisymmetric and
asymptotically flat.

» Hawking & Wald: demanding a stationary solution with is a
BH implies axisymmetric.

» Asymptotic behaviour:asr - o0 ¥ — r2and A — r?

ds? = — (1 - %”) dr? — @ sin? do dt

+ (1 + @) (dr? + r?(d6? +sin® 0 d¢?)) + - - -

M = total mass, J = Ma= angular momentum

choosea > 0as ¢ — —pgivesa — —a

Remarks (continued)
» a=0— Schwarzschild metric.

In fact, in this case

Y=r?, A=r®-2Mr=r?F, F:1—¥

ds® = —Fdt® + F~1dr? + r?de? + Gd¢?
where

’
G=— sin? 0(r*F + 2Mr3) = r? sin® ¢
r



Remarks (continued)
» M=0— Minkowski metric, even if a # 0.
Inthis case: ¥ =r2+a%cos?f, A=r?>+2a°
ds® = —dt® + (r? 4 &%) sin® 6d¢?

re + g cos? f
r2 4 a

dr? + (r? + & cos® 0)d#?
This is Minkowski metric in spheroidal coordinates

x=(r?+a?)"2sinfcos¢, y=(r>+a?)"2sinbsing

Z =1rcosft

X2+y? | 22 _ 4

r= constant surfaces are ellipsoids mE T2

compare: in spherical coordinates r = constant surfaces are round spheres

Singularities

1 Y¥=r24+acs?0=0 <+= r=0 and 0=rm/2

curvarture singularity (ring singularity)

2 A=r’-2Mr+a& =0 < rn=M+tVM?2_-22
» M? < &2 : naked singularity at r =0 ,0 = /2
[Cosmic censorship conjecture: naked sigularities cannot form from gravitational collapse]

» M? > a2 : ry these are coordinate singularities,
in fact, these are event horizons

r. > r_ so we have an outer and an inner horizon whenr, > r_;onlyonewhenr,. =r_.
+ =2 + +



Kerr-Eddington coordinates

To understand singularities consider new coordinates

2Mr a
dT_dt+Tdr, d¢_d¢+zdr

Eliminating t and ¢ in favor of T and &,

ds? = —dT2 +dr° —2asin?0drd® + ¥ d§?

+(r? + &) sin? 0 dd? + %Mr(dT — asin?0dd +dr)?

Metric is not singular at A = 0 (but still singular at ¥ = 0).

Kerr-Eddington coordinates

Coordinate change obtained by studying radial null geodesics
(as for Schwarzschild).

Consider null radial geodesics along # = 0. Since L =10

2 2
df? = (%) dr? = (1 + %Mr) dr?

:l:dr:dt:FZTMrthdT

So, for example for incoming null geodesics

dr=-dT = T 4+ r = constant



Event horizons

Coordinate singularity A = 0, thatis r = M+ VM2 — g2
» ry are null hypersufaces
r = constant hypersufaces become null at r = r4..
Let n; = V4r be normal to r =constant hypersufaces.
Then

AY sin? 6

__ ab o
g(n,n) = g% 0aropr = 9" = detg

sog(n,n)=0o0onr=r..
Hypersufaces r = r.. are collections of null geodesics
(integral curves of n are null geodesics).

Event horizons

Null hypersufaces separate space-time points (events) which
are connected to /% by a TL path from those which are not.

We have a black hole:
that is, a region separated from r — oo (i°) by an event horizon.



Kerr-Schild coordinates (T, x, y, Z)

dT:dt+2TMdr7 X+/y:(f+/a)sinﬁei¢, Z—=1r cosf

ds? = —dT2 + dx2 4+ dy? + dz?
2Mr 1 1 2
T (r2+az(r(XdX+de) — a(xdy — ydx)) + 72dz+dT)

» M = 0O clearly flat metric
» r = constant hypersurfaces are ellipsoids

X2 i y2 Z2

AL AT
212 2

» surfaces 0§ = constant are hyperboloids

X2 4 y2 72

2 sin20 a2 cos?f

1

asymptotic cones: (x2 + y2)1/2 =1 ztan6

Kerr-Schild coordinates (T, x, y, Z)

» singularityat r=0, 0 ==x/2:

r=0 — z=0, x°+4y?=2a°sin’0

this is a disk at z = 0, radius a.

Hence, the ring singularity is the boundary of this disk

2 2

X2 +y 2

= a



T = constant diagram

2
disk ot H=o
Coadiuno

myZe

C= wnstant

Remark: travel toward r = 0. For 6 = /2, hit singularity.
For 6 # w /2 does not encounrter singularity, and particle can go through interior of the ring (x2 + y2 < az)

What happens? there is no reason to constrain rto r > 0.
In fact, can extend to r < 0 to obtain another asymptotically flat region

(Hawking and Ellis: analytic continuation to obtain a maximal extension of the solution)

[5.2]  Killing vectors in Kerr



Killing vectors

» K=0: gK.K)=—-(1-24)  ¥>0

TL: for ¥ > 2Mr

N: for ¥ = 2Mr, thatisforr=F. = M+ VM2 — a2 cos2 6
(r = r1 are not Null hypersurfaces)

SL: for X < 2Mr

T ————
TL=N N-TL
K
) | I ) t =
Y=o (= f‘(\‘.__ Y=Y_ = = Y‘+

» L =0, is SL for all values of r

g(L,L):sin2€<r2+az+%zazrsin29) >0, Vr>0

Killing vectors
Proposition: There is a KV vector

M=K+ AL

for some constant A such that M is
TL forr>riandr <r_

N atr=ry
SL forr— <r<ry

QL
— JL— NP N— TL—

M

i | ) ! |
V=6 r= 7‘ Y- (g +

Moreover: the null hypersurfaces N (r = ry) are Killing
horizons for M with surface gravity

Ky — ——1—
T 22+ )



Killing vectors
Proof Consider the metric in coordinates

(v,r,0,9) incoming Kerr coordinates
where ) s
a r-+a
do =d —dr dv =dt dr
¢+ A + A

In these coordinates v = T + r is constant along incoming Null radial geodesics, where dT = dt + %dr
The metric in these coordinates is (eliminating t and ¢ in favor of ® and v)

ds2 o _A—az Sin29
B >

2asin
- 2802 1 2 - A)dvdo — 2asin® 0 dodr

+ % sin? 0((r? 4+ &)? — A& sin® 0) do? + ¥d§?

Note: the metric is independent of v and ® so 0, and J¢ are
Killing vectors.

dv? + 2dvdr

Killing vectors

Proof (continued)
In fact, in these coordinates

K — av 5 L — 8(])
Let M=K + AL. Then
9(M, M) = g(K,K) +2Xxg(K, L)+ X g(L, L)

We want g(M, M) = 0 on r = ry.: this is an equation which is a
quadratic in A. The discriminant D is of this quadratic is

D
4 =9(L, K)2 - 9(K,K)g(L,L) = 95¢ — w00

— ... = Asin?0

which vanishes at r = r4..



Killing vectors

Proof (continued)

Thenonr=ry: g(L K)?>=g(K,K)g(L,L) and

2
g(M. M)|—, = [g(L, L) ()\ + Z((’L(: LL))) ] 0

Therefore, the Killing vector

K,L a
M=K+ XL, )\:{::—[g( 7 )]
r=r4

(L, L) Y

is Null on V4.

Killing vectors

Proof (continued)
Now

g(M, My) = g(K,K) + 2\ g(K, L) + A3 g(L, L)

D +ve, A>0ier>r.orr<r_
:Asin20:{ *

4 —ve, A<Qie r.<r<ry

Hence (exercise) M. is
TLwhenr>riorr<r_
SLwhenr_ <r<ry.



Killing vectors

Proof (continued)
To prove that A are Killing horizons for M., we need to prove
that it is normal to V3. on N

a

M=K+ L=0,+X:0¢, It= 5 5
rg + a

My, =9aM2=0 onr=ry
Mj:q:,:gq)aMi:O on r =r¢

)
Myir = graMi = —— (12 + & cos®0) on N

I'j:—|—32

Killing vectors

Proof (continued)
On the other hand, the normal ny to NV is:

Nyg=Wy0ar

SONtg=0unlessa=rand ny, = V.
Then My|,—,. is normal to Ay, and we have proved that N
are Killing horizons of the KV M,..
Exercise: compute the surface gravity: M3V ,Mp = x4 MP
end of proof

Remark: one can prove that in the region r_ < r < ry, there is
no TL Killing vector M = K + AL for any .



Killing vectors

=0 C=7. =1 Yovy =%

L SL
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/J 4 '
Keis null / (’,(%oso]mu Cony
izon. ] K'is null (static limit)

observers are forced to
rotate with the BH (but

r<r,
At r = r,, K becomes null ("static limit").

A stationary observer at constant (r, 8) sees an unchanging
space-time geometry. Hence its 4-velocity U must be a Killing
vector. The observer is static if also ¢= constant.

The angular velocity Q2 of the observer is

Q_d_¢_d¢/dT_U¢
~dt  dt/dr Ut

So an observer is stationary when

U= U+ U%, =UK+QL)

The observer is static iff Q = 0.
Now U must be TL (g(U, U) < 0) and this happens for Q2 s.t.

Qmin < Q < Qmax

g(U, U) = (U2 (g +2Q g1 + Q% ggg) < 0



r<r,

Then

» r > F,: can have static (Q = 0) observers (in fact Q,in < 0
and Qmax > 0)

» at r = r, one finds Q,,;, = 0 ("static limit": no static
observers for r < .)

» for r. < r < T, (inside the ergosphere) one has
Qmin,max > 0 and |Qmax — Qmin| sSmalleras r — ry.

» at r = ry there are no stationary observers

ergosphere: no observers can remain at rest.
Moreover, they are forced to rotate with the BH (€2 has the
same sign as J = Ma)

r<r,

» theoretical region
» events cannot influence exteriof of the BH

» maximal extension: non physical (even if theoretical
interesting)

» in particular, can extend to r < 0; one finds closed TL
curves; possible to pass through the ring between regions
r < 0 and r > 0 avoiding singularities.



Penrose diagram

Harder! Kerr solution is not spherically symmetric. Draw a
diagram for § = 7 /2 and another for § # = /2 (one has a
singularity at r = 0, the other doesn’t).
Procedure:

1 coordinate transformation to (u, v, 0, ¢) where

ré + g2

Adr

u=t-r,, Vv=t+r, dr, =

2 Define Kruskal-type coordinates &/* and V*

u:l::_efiiu7 V:I::e/-iiv

Penrose diagram

2 (continued) For + (these coordinates do not cover r < r_)

2n+r H+/H—_1
ds?2 = = ¢ - du+dVt + rPdQ?
mi r2 r—r_

Cover 4 regions

Q) A

C=v.
(Sinoyu lar in e (= niFamy
+Hhyye wavds) (c>vy)



Penrose diagram

2 (continued) For — (these coordinates cover 0 < r < ry)

K_ k_/Kkt—1
g2 _ - e (r r+r ) " du—dv+t + r2dQ?
— Iy

KJZ r2

Cover 4 regions

Rergion VII must be connected to another region, etc
Leads to an infinite sequence of space time!

Penrose diagram

3 Conformal transformation: new coordinates
U+t =tanltd* , VE = tanV*t

and include "infinity" as before



Penrose diagram

regions I, II, lll and IV
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Penrose diagram

Extending from Il throughr =r_ — V, VI
which contain a singularity at r = 0 if & = 7 /2 but no singularity if 6 # = /2

can pass through ring singularity to another asymptotically flat region as r — —oo

With respect to region | all this lies inside the BH



Final remark

Charged Black holes: Kerr-Newman

This is the most general solution of Einstein’s equations which
is stationary and axisymmetric, coupled to the electromagnetic
field.

» Gravitational collapse of a realistic star produces a Kerr BH
in a region of space time

» characterized uniquely by (M, J, Q) only (BH have no hair).

THE END



