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Abstract. A new proof is given of the positive energy theorem of classical
general relativity. Also, a new proof is given that there are no asymptotically
Euclidean gravitational instantons. (These theorems have been proved pre-
viously, by a different method, by Schoen and Yau.) The relevance of these
results to the stability of Minkowski space is discussed.

I. Introduction

In most classical field theories that play a role in physics, the total energy is the
integral of a positive definite energy density T00. This positivity of the energy is
usually responsible for ensuring the stability of the ground state.

In gravity, the situation is very different. Even in the weak field case, there is no
satisfactory way to define the energy density of the gravitational field. An energy
momentum pseudotensor can be defined [1], but it is not a true tensor and is not
positive definite. The positivity of the energy in general relativity and the stability
of Minkowski space as the ground state are therefore far from obvious.

Although there is no satisfactory way to define the local energy density when
gravity is present, one can define the total energy of a gravitating system [2]. The
total energy (and momentum and angular momentum) of a gravitating system can
be defined in terms of the asymptotic behavior, at large distances, of the
gravitational field. However, it is far from obvious that the total energy so defined
is always positive.

It is an old conjecture that this total energy is in fact always strictly positive,
except for flat Minkowski space, which has zero energy. This matter has been
studied by a variety of means.

The energy of a class of gravitational waves was studied by Weber and Wheeler
[3]. Positivity of the energy for gravitating systems of special classes was
demonstrated by Araki, by Brill, and by Arnowitt, Deser, and Misner [4]. The
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paper by Brill gives references to earlier unpublished work by Bondi, Bonnor,
Weber, and Wheeler.

Brill and Deser [5] showed that among spaces that are topologically
Minkowskian, Minkowski space is the unique stationary point of the energy they
also showed that it is locally a minimum. Brill et al. [6] gave the variational
argument in a canonical form.

The positive energy problem with spherically symmetric initial data was
discussed by Leibovitz and Israel, and by Misner [7]. Geroch [8] gave a simple
argument for spaces with Minkowski topology admitting a maximal hypersurface
and also reviewed the status of the problem. O'Murchadha and York [9] analyzed
time symmetric initial data and spaces with maximal hypersurfaces. Jang [10]
proved that spaces with a flat initial hypersurface have positive energy. Leite [11]
proved the positive energy theorem for spaces whose initial value surface can be
isometrically embedded in R4.

Choquet-Bruhat and Cantor, Fischer, Marsden, and O'Murchadha [12]
proved the existence, under appropriate conditions, of maximal hypersurfaces.
Choquet-Bruhat and Marsden [13] proved positive energy for any space which is
in a sufficiently small neighborhood (in the sense of functional analysis) of
Minkowski space.

Deser and Teitelboim [14] and Grisaru [15] pointed out that, formally, in
supergravity theory the total energy operator is a sum of squares and therefore
positive. Deser and Teitelboim showed that global supersymmetry charges can
really be defined in supergravity. Grisaru suggested that it might be possible to
give a rigorous, purely classical proof of the classical positive energy theorem by
taking the limit as h -»0 of the supergravity argument.

Finally, Schoen and Yau [16] used a geometrical method to prove the positive
energy theorem for the key case of a space with a maximal spacelike slice. Using an
auxiliary equation introduced by Jang [17] who also made considerable progress
in generalizing the approach of [8], Schoen and Yau have generalized their proof
to a general proof of the positive energy theorem [18], thus finally resolving this
long-standing problem. They have also applied their method [19] to prove the
positive action conjecture [20].

In this paper, new and simple proofs of the positive energy theorem, and of
another theorem which is also relevant to the stability of Minkowski space, will be
presented.

Related to the question of whether the energy is always positive is the question
of whether Minkowski space is stable against semiclassical decay processes. In the
last few years it has been learned [21] that the decay of unstable vacuum states in
quantum field theory can be systematically studied on the basis of "bounce"
solutions of the classical Euclidean equations of motion. Might Minkowski space
itself be unstable against a semiclassical decay process in general relativity ?

In Sect. II of this paper a simple proof is given that such a semiclassical decay
of Minkowski space does not occur, at least in pure gravity. In Sect. Ill a new
proof is presented of the positive energy theorem, which states that in classical
general relativity, Minkowski space is the unique space of lowest energy. This is a
more far-reaching indication of the stability of Minkowski space than the absence
of a semiclassical decay mechanism, because it shows that irrespective of the
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mechanism, there is no state to which it is energetically possible for Minkowski
space to decay. The proofs presented here were found in the course of an attempt
to take the limit as ft—»0 of the formal argument by Deser and Teitelboim and by
Grisaru that in supergravity the total energy is'a sum of squares.

II. Semiclassical Stability of Minkowski Space

Before considering the positive energy theorem, I will first prove a related but
simpler theorem, whose proof involves fewer technicalities. This theorem has been
proved in a different way by Schoen and Yau [19].

If the positive energy theorem were false and a state of negative energy existed
in general relativity, Minkowski space would presumably be unstable and would
decay into the negative energy state. How would this decay take place? Since
Minkowski space is known to be stable against small fluctuations (the energy of
linearized gravitational waves is positive!), the hypothetical decay of Minkowski
space would presumably occur via barrier penetration, or quantum mechanical
tunneling through a barrier.

Actually, it has been shown [22] by Perry and by Gross, Perry and Yaffe that
at non-zero temperature quantum gravity is unstable against such a process. Also,
it will be shown in a separate paper [23] that the ground state of the Kaluza-Klein
unified theory of gravitation and electromagnetism is unstable and decays by
barrier penetration. So it is not idle to ask whether ordinary Minkowski space
could have a semiclassical instability.

In the last few years it has been understood [21] how to analyze in field theory
the decay by barrier penetration of an unstable ground state. One looks for
instanton-like "bounce" solutions of the classical Euclidean field equations in
which at large distances the fields approach their values in the unstable vacuum
state. Instability of that vacuum state shows up in the form of negative action
modes for small fluctuations around the instanton inclusion of these modes in a
functional determinant gives an imaginary part to the energy of the false vacuum.

To investigate by these means the stability of Minkowski space, one should
look for a Euclidean metric (signature + + + +) solution of the Einstein
equations which at large distances asymptotically approaches Euclidean space.
Here only the case of pure gravity, without matter fields, will be considered, so we
should study the source-free Einstein equations

Kμv=0 (1)

with the boundary condition that outside a compact region one can introduce
coordinates xl in which the metric gtj is asymptotically Euclidean,

gίj = δίj + aij, α0.->0 as |x|->oo. (2)

The energy of Minkowski space would get an imaginary contribution, indicating
an instability, if there existed a metric satisfying (1) and (2) and such that for small
fluctuations about this metric there were negative action modes. [A non-flat space
satisfying (1) and (2) would probably have interesting consequences even if
negative action modes did not exist.] However, it will now be shown that the only
space that satisfies (1) and (2) is flat Euclidean space.
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At very large distances, the quantity atj defined in (2) is extremely small; it
becomes asymptotically a solution of the linearized Einstein equations. In four
dimensions, every solution of the linearized Einstein equations that vanishes at
infinity vanishes asymptotically at least as fast as 1/r4 (with r = |x|) if the
coordinates xl are chosen to be, for instance, harmonic coordinates (asymptoti-
cally). This fact may require some explanation. In four dimensions a monopole
field (a solution of the massless spin zero equation Δ2φ = Q) vanishes at least as fast
as 1/r2. A dipole field is the derivative of a monopole field and vanishes at least as
1/r3. A quadrupole field such as the gravitational field is the derivative of a dipole
field, and vanishes at least as fast as 1/r4.

We therefore can assume for the metric the asymptotic behavior

(3)

so that the affine connection has asymptotic behavior

4~l/r5. (4)

I will now prove that an asymptotically Euclidean space with Rμv = 0 must be
flat by constructing coordinates in which the metric tensor is identically δir

The ordinary Cartesian coordinates of flat Euclidean space are harmonic
functions. This simply means that the ordinary coordinates ί, x, y, and z, regarded
as scalar functions, satisfy Laplace's equation. For instance,

d2 d2 d2 d2

and likewise for x, y, and z. Of course, Laplace's equation can be written in a
generally covariant form. If instead of the Cartesian coordinates ί, x, y, and z one
describes flat space by a general curvilinear coordinate system, the functions ί, x, y,
and z still satisfy the covariant form of Laplace's equation. This means, for
instance, that D2t = Q, where D2=gμvDμDv is the Laplacian defined in the
curvilinear coordinate system.

In our problem, we are given a space with #μv = 0 and a coordinate system x1

(defined at least outside a compact region) in which the metric satisfies condition
(3). We wish to prove that this space is flat Euclidean space in disguise and that the
x1 are simply curvilinear coordinates for flat space. To prove this we will construct
Cartesian coordinates φl in which the metric will be identically δ^.

If such coordinates φl exist they certainly satisfy Laplace's equation since we
have already noted that Cartesian coordinates satisfy this equation. Therefore

D2φ = Q, (6)

where φ may be any of the φl. We are thus lead to study the solutions of Eq. (6).
Laplace's equation has no nonzero solutions which vanish at infinity because

the operator — D2 is positive. If D2φ = Q then

D2φ) = Q. (7)

(The measure d4x \Γg will often be denoted just as dx.)
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Integrating by parts, and discarding the surface term because φ vanishes at
large distances, we find

\d*x)/gg^dμφdvφ = V. (8)

(Since any harmonic function that vanishes at infinity vanishes at least as 1/r2, we
may, in fact, discard the surface term.) Since the integrand is positive definite, this
implies that dμφ=Q everywhere, so φ is a constant; the constant vanishes because
φ vanishes at infinity.

Although D2φ = 0 has no nonzero solutions which vanish at infinity, there
certainly exist solutions if φ is not required to vanish at infinity. In fact, we will see
that, if a1 is any constant vector, there is always a unique solution φ of D2φ = Q
such that

φ = a-x + 0(l/r3} as |x|->oo. (9)

To prove that φ exists, consider first a convenient trial function φ1. The trial
function φi should be linear in a1 and should equal a-x identically for large
enough x. It would be adequate to define φί=a-x everywhere if this formula made
sense. It may not make sense because, depending on the topology of the manifold,
the coordinates xl may not be defined everywhere, but only outside a compact set.
To allow for this, φί may be defined as follows. Suppose that the xl are defined for
|x| >R0 and let JR be some number greater than R0. Then let φί=a xf(\x\) where /
is any smooth function which is identically one for |x| >R and identically zero for

We now write the desired harmonic function φ as φ = φ1+φ2, where φ2 must
satisfy

D2φ2=-D2φ,. (10)

Formally, this can be solved by

φ2(x)=-ίdyG(x,y)D2φί(y), (11)

where G(x, y) is the Green's function of the Laplacian operator with boundary
conditions that G(x, )>)-»0 as |x| -> oo. (This Green's function exists because we have
already seen that the Laplacian has no zero modes.) Equation (11) makes sense
and satisfies (10) provided that the integral converges.

To see that the integral does converge, note that with φί(y) = a y for b|>K
and the asymptotic behavior of the metric given by Eqs. (3) and (4), D2φ1(y) is of
order l/|j;|5 for large \y\. This ensures the convergence of the integral.

What is the asymptotic behavior of the function φ2(x) defined in (11)? Since in
an asymptotically flat four dimensional manifold G(x, y) ~ — l/(2π2|x|2) for large x,
independent of y, the large x behavior is

φ2(x)-l/(2π2 |x|2)Jrf^2Φιω + 0(l/|x|3) (12)

provided that the integral converges. Actually, the integral not only converges but
vanishes, since the integrand is a total divergence (and in view of the asymptotic
behavior of φί and of the metric, there is no surface term). So φ2(x) is of order
l/|x|3 for large |x|.
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The net effect of this is that

φ(x) = a xf(\x\)-ldyG(x9y)a.yf(\y\) (13)

is a harmonic function which satisfies the boundary condition φ(x) = a x + O(l/r3).
The next step is to prove that Kv = dvφ is covariantly constant, DμKv = 0. This

will be accomplished by proving that §dx(DμKv)
2 vanishes. Since the integrand is

nowhere negative, the integral can vanish only if the integrand vanishes identically.
In general

JdxφμlCv)
2 =ijώc(/y:v - DvKf + ̂ XDβKvDvKμ . (14)

In the case at hand the first term on the right-hand side vanishes because Kv = dvφ
is a gradient. After integrating twice by parts in the second term of Eq. (14), we find

f dx(DμKv)
2 = $dx(DμK

μ)2 - f dxKv[βμ, DJKμ

+ $dxdμ(KvDvK
μ - KμDvK

v)

= $dx(DμK
μ)2-$dxKvKμRμv

+ $dxdμ(KvDvK
μ - KμDvK

v) . (15)

On the right-hand side of (15), the first term vanishes because DμK
μ = D2φ = Q. The

second term vanishes because we are given that Rμv = 0. And the last term vanishes
because the integral converges rapidly enough that there is no surface contribution
[In view of Eqs. (3), (4), and (9) concerning the asymptotic behavior oΐφ and of the
metric, Kv = dvφ is of order one for large |x|, and the co variant derivative of K is at
most of order 1/r5.] So ^(DμKv)

2 = 0, and DμKv must vanish identically.
At this point we have constructed a covariantly constant vector field Kμ. But

because a constant vetcor a1 entered the construction, and four linearly inde-
pendent choices of a1 are possible, we actually have four linearly independent
vector fields K which are each covariantly constant. A four dimensional manifold
with four independent covariantly constant vector fields must be flat, so our space
is flat.

Actually this construction yields explicitly a Cartesian coordinate system. The
function φ of Eq. (13) is obviously of the form φ = alφi, with

Φi = x i f ( M ) - ί d y G ( x 9 y ) y i f ( \ y \ ) . (16)

The four functions φ. are the desired Cartesian coordinates. In fact, we have shown
that in any coordinate system DμDvφ=Q (since DμDvφ is the same as DμKv). If the
Φi are chosen as coordinates, we have

with φ — cιlφ , —r φ = cifc and —= φ = 0.

So

0=-r^,)afe. (18)
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Fig. 1. An asymptotically Euclidean initial value hypersurface

Since the choice of ak was arbitrary, the affine connection /]* vanishes everywhere.
Hence the metric tensor is a constant in terms of the coordinates φt. The constant
is otj since asymptotically [see Eq. (16)] φ. = χf. So the φt are indeed Cartesian
coordinates.

While the argument has been presented for four dimensions, it is valid in any
number of dimensions. Only the power counting depends on the number of
dimensions. The relevant modifications are that Eq. (3) becomes gtj =
and Eq. (9) becomes φ = a-x i-0(l/rn~l).

III. The Positive Energy Theorem

In this section, a new proof of the positive energy theorem will be described. The
problem which must be addressed is the following. One is given a space-time which
satisfies Einstein's equations

(19)

The only requirement on the energy momentum tensor Tμv is that the local energy
density Γ00 is positive (or zero) at each point in space-time and in each local
Lorentz frame.

It is assumed, moreover, that in this space- time there exists (Fig. 1) a space-like
hypersurface (which can be regarded as the initial value surface) that is asymptoti-
cally Euclidean. More specifically, we suppose that in the vicinity of this space-like
hypersurface the metric behaves at spatial infinity as

(20)

where ημv is the flat space metric (signature — h + + ). [The second condition in
(20) is needed so that the energy integral defined below should converge.] We will
make no assumption about the topology of the initial value surface.
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The total energy of this system is defined as a surface integral over the
asymptotic behavior of the gravitational field,

where the integral is evaluated over a bounding surface in the asymptotically flat
region of the initial value surface. The problem is to prove that this total energy E
is always positive or zero, and zero only for flat Minkowski space.

There certainly are spaces for which the flux integral (21) is negative and which
satisfy Einstein's equations at large distances. For instance, for the Schwarzschild
space

+Λ<,

the integral (21) is easily evaluated, and one finds E = M. Whether M is positive or
negative, the Schwarzschild space satisfies the vacuum Einstein equations every-
where except at the singular point r = 0. In the negative M case, every asymptoti-
cally flat spacelike surface passes through this singular point, where the equations
are not satisfied. A special case of the positive energy theorem is that the negative
M Schwarzschild solution cannot be matched onto an interior solution with Tμv

satisfying the positivity condition. (In contrast, in the positive M Schwarzschild
space there are asymptotically flat spacelike surfaces that do not pass through the
singularity, and of course it is also possible to match the positive M Schwarzschild
solution with an allowable interior solution that has no singularity.)

In the special case in which matter is absent and Tμv is zero everywhere, the
positive energy theorem states that the total energy of the pure gravitational field
is always positive (or zero for flat space). When matter is present, the positive
energy theorem states that the total energy of a gravitating system, including the
energy of the matter and also the energy of the field, is always positive, if the matter
contribution is positive (T00^0 everywhere and in each frame).

The energy defined as in (20) is always conserved because, since no signal can
travel faster than light, no physical process can change the asymptotic behavior at
spacelike infinity of the gravitational field. Semiclassical barrier penetration, the
process which was discussed in the last section, conserves the total energy, and
presumably this would also be true for any hypothetical alternative process by
which Minkowski space might decay. Therefore, the positive energy theorem,
according to which Minkowski space is the unique space of minimum energy,
ensures the stability of Minkowski space.

Let us now turn to the proof of the positive energy theorem. The proof will
involve a consideration of solutions of the Dirac equation

0 (23)

on the initial value hypersurface. The need to consider spinors is perhaps
surprising. Spinors have been used in the past to prove various results in
differential geometry, including some that are at least roughly related to the
positive energy theorem [24]. Their use in this paper was suggested by con-
siderations involving supersymmetry, which will be discussed later.
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(ϋ)

α b
Fig. 2a and b. Parallel transport within a hypersurface of a Riemannian manifold may be defined
relative to the intrinsic geometry of the hypersurface, as shown in a, or relative to the geometry of the
full manifold, as shown in b. In the first case a tangent sector to the hypersurface remains tangent after
parallel transport from (i) to (ii); in the second case it does not

The Dirac operator that we will consider is not the four dimensional Dirac
operator but rather is a three dimensional Dirac operator defined on the initial

3

value surface. Thus, by "<#" is meant £ ylDt, where the sum runs only over the

three directions tangent to the initial value surface, and the spinor ε that satisfies
Eq. (23) is defined only on this surface. (The y matrices satisfy yμyv + yvyμ = 2ημv.)

To fully explain what Eq. (23) means, it is still necessary to define the covariant
derivative D that appears in the formula B=Σ7lDi There are two obvious

possibilities. One could define D as the covariant derivative with respect to the
intrinsic geometry of the three dimensional initial value surface. Or one can use the
usual covariant derivative Dμ of the full four dimensional geometry.

The difference between the two possibilities is illustrated in Fig. 2. Parallel
transport within a hypersurface of a Riemannian manifold can be defined using
the intrinsic geometry of the hypersurface, in which case a vector tangent to the
hypersurface will remain tangent (Fig. 2a), or using the full four dimensional
geometry, in which case a tangent vector may not remain tangent (Fig. 2b).

To prove the positive energy theorem, we will make the second choice, so the
covariant derivative in Eq. (23) is the covariant derivative of the four dimensional
space-time although we will always use it only to differentiate within the three
dimensional initial value surface.

The next step is to prove that the Dirac equation (23) has no solution ε that
vanishes at large distances. In fact, if z<0ε — 0, then

0 = ( (24)

where summations over Latin letters z and j run over the three directions tangent
to the initial value surface.

Now we recall that for spinors

(25)
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where the sum over Greek letters α and β ranges over all four directions in the
space-time, normal or tangent to the initial value surface, because Dt is the
covariant derivative of the four-manifold. So

0 = - Σ D'Df - £ Σ Σ C?', Λ [y" , f&iMfi (26)
ί i,j a,β

Now we use the Dirac algebra identity

[yμ, yv] [yα, /] = wvaβy5 - 4(gμ*gvβ - gμβgva)

+ #vα[/y]-^[/,f]) (27)

The term involving εμvaβ does not contribute in (26) because εμvaβRμvaβ = Q The
term -4(gμ*gvβ-gμβgvcί\ when inserted in (26), gives

iΣ% (28)
ij

and the last term in (27) gives (after some use of the algebraic symmetries of the
Riemann tensor)

-έΣΛo^Vβ, (29)
j,k

where the index "0" refers to a unit vector normal to the hypersurface.
But the expressions (28) and (29) are related to the energy-momentum tensor

by Einstein's equations! By Einstein's equations

#oo-i#oo# = 8πGΓ00. (30)

Since the "0" direction is orthonormal to the hypersurface, g00= — l. Also

KOO = KOIO and R = R^ = 2R%i + Riiij So altogether R00-^00R = ̂ R|j, and hence

Λ}j=16πGT00. (31)

Likewise

R0j-ϊg0jR = %πGT0j. (32)

But g0j = Q, because the j direction is tangent and the 0 direction is normal to the
initial value surface. Since R0j = Rk

Qkp we have

(33)

Combining these equations, we learn that any solution of ̂ β = 0 also satisfies

0. (34)

We can now verify the claim that no solution of Eίε = Q vanishes at infinity. In fact,
after multiplying by ε* and integrating over the three surface on which ε is defined,
we obtain
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We now integrate by parts. There is no surface term because on an asymptotically
flat three dimensional hypersurface any solution of the Dirac equation that
vanishes at infinity vanishes at least as fast as 1/r2. So

J/#ε* [T00 + £ T0 -yV] ε = 0 . (36)
L J J

The crucial point is now that the matrix T00 + £ T0jy°yj is a positive (semi-

definite) matrix. The positivity condition on the energy momentum tensor requires
T00 to be equal to or greater than the magnitude of the vector TQj of momentum
flux otherwise T00 would be negative in some local inertial frame. The (hermitian)
matrix £ T0jγ

Qyj has eigenvalues equal to plus or minus the magnitude of the
j

momentum flux, so the eigenvalues of T00 + ]Γ T0jγ°γj are positive or zero.
j

Since the second term in (36) is known to be non-negative, (36) can vanish only
if Dtε = 0. But if D £ = 0, and ε is not identically zero, ε does not vanish at infinity.
So no nonzero solution of £tε = Q can vanish at infinity.

We will prove the positive mass theorem by studying spinors that satisfy the
Dirac equation and do not vanish at infinity. We will see, in fact, that there always
exists a solution of ,0ε = 0 satisfying

e^reo + 0(Vr) (37)

for any constant ε0.
To prove that ε always exists, we proceed in a fashion similar to the argument

in Sect. II. We first write ε = ε1 + ε2 where εί is a trial function of the form ε1 =ε0

+ 0(l/r). Then we will define ε2 in terms of ε1? using the Green's function of the
Dirac operator.

A broad class of trial functions satisfying ε1=ε0 + 0(l/r) could be used to
prove that ε exists. However, because we will need more accurate information
about the asymptotic behavior of ε than is indicated in (37), we must choose ε1

more carefully.
We wish to choose εx(x) so that J0εί =0(l/r3); we wish to show that a spinor

εx(x) satisfying this condition and approaching the constant ε0 at infinity exists
and is uniquely determined up to terms of order 1/r2. In fact, let us write ε1(x) = ε0

+ (l/r)ε(θ, φ) -f 0(l/r2) where ε is a function only of the polar angles θ and φ (which
are well defined at large distances on an asymptotically Euclidean three surface)
and not of r. We wish to show that ε(θ,φ) can be chosen so that jpε^Oίl/r3),
and, moreover, we wish to show that this choice is unique.

The Dirac operator B can be written as /(δ. + JΠ) where δ. is the ordinary
derivative and Γt involves the spin connection. For the class of metrics we are
considering [Eq. (20)], the spin connection Γ is of order 1/r2. Since ε0 is a constant
(in asymptotically flat coordinates that we are using), J2ε0 = ylFf0 and is of order
1/r2. Let us write yiΓiεQ = (l/r2)A(θ, </>) + 0(l/r3); that is,

A(θ9φ)=ϋmr2γiΓi(r9θ9φ)sQ.

On the other hand,
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so in calculating terms of order 1/r2 we may replace $)((l/r)ε) by ^((l/r)ε), where

$= Σ yldi is the flat space Dirac operator.
i

We can therefore guarantee that ^(β0 + (l/r)2) = O(l/r3) if

f((l/r)mΦ))=-^A(θ,φ). (38)

To see that the solution exists and is unique, we write the free Dirac operator j^as

/— + -$τ, where $τ is the angular or transverse part of the free Dirac operator,
dr r

which acts on spinor functions defined on a sphere. In terms of j^Γ, the equation for
ε is

^ - ^e(θ,φ) + l/r20τs(θ,φ)}=- l/r2A(θ,φ) (39)

or [since (γr)2 = 1]

(1 — yr0τ)ε(θ, φ) = yrA(θ, φ). (40)

The solution of Eq. (40) exists, and is unique, provided that the operator (1 — yr$τ)
is invertible. It is invertible, because it has no zero eigenvalues. In fact, if there were
a zero eigenvalue α(θ, </>), satisfying (1 — yr$τ)u(θ,0) = 0, then (l/r)α(θ, φ) would be a
solution of the free Dirac equation, vanishing for large r as 1/r. But in three
dimensions every solution of the Dirac equation that vanishes at infinity vanishes
at least as fast as 1/r2.

Since (l — γr$τ) is invertible, ε satisfying (40) exists and is unique; the solution
can be written formally as

(41)

For future use, let us write the equation for ε in this form :

/-#) ε(θ, φ) = r2ffΓε0 + θί-}. (42)
r } \rj

Note that, acting on ε, $τ can be replaced by -^because ε is independent of r.

Let us now return from this technical interlude to the main thread of the
argument. We have found ε1 which approaches ε0 at infinity and with
Σtεί=0(l/r*). Now we wish to find a spinor ε(x) approaching ε0 at infinity and
with Bε = 0. As in Sect. II, we write ε = ε1 -f ε2 and attempt to satisfy B&2 = — #εl5

with ε2 vanishing at large distances. This can be formally solved by

, (43)
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where S(x,y) is the Green's function of the Dirac operator B, with boundary
conditions that S(x,y) vanishes for large x or y.1 The expression (43) makes sense
and defines a spinor ε2 that satisfies Bε2 = —Bε± provided that the integral over y
converges. This three dimensional integral does, in fact, converge, because the
Green's function S(x, y) vanishes for large y as 1/y2, and we have chosen ε so that
^00-1/y.

What is the asymptotic behavior of ε2(x) ? We are interested in verifying that
ε2(x) vanishes faster than 1/r for large r. In fact, on any asymptotically flat three

manifold, S(x, y) behaves for large x as 2 y x + 0(1 /r3) (where x is a unit vector

the x direction). So

e2(*)= " 4^2 ϊdyy xpεM + OWr3) (44)

provided that the integral converges. In fact, the integral may diverge, but only
logarithmically, since we have 12εi(y)~l/y*. If the integral in (44) is logarithmi-
cally divergent, ε2(x) behaves for large r not as 1/r2 but as (l/r2)lnr. In any case,
ε2(x) vanishes for large x faster than 1/r.

[In proving that ε2(x) vanishes faster than 1/r, we used the fact that S(x,y)
vanishes for large x as 1/r2. This is so because any solution of the free Dirac
equation which vanishes at infinity vanishes at least as fast as 1/r2. The latter fact
was used in establishing the uniqueness of the solution of (40). Actually, the fact
that ε2(x) vanishes faster than 1/r follows from our previous uniqueness argument,
for if ε2 vanished only as 1/r, then ε1 +ε2 would be a counterexample to the claim
that εx(x) is uniquely determined, up to terms vanishing faster than 1/r, by the
conditions we placed on it.]

We are now almost ready to prove the positive mass theorem. We may repeat
the entire analysis leading to Eq. (34), which used the fact that && = Q but did not
depend upon the boundary conditions satisfied by ε. So we have again

- X Dfl'ε + 4πG(T00 + £ T0.7 M ε = 0. (45)

We may once again multiply by ε*. We can again integrate over x. And we can
again integrate by parts. The only difference from the derivation of (36) is that
now, because ε does not vanish at infinity, we pick up a surface term. We therefore
obtain

j d3xdk(ε*Dkε] = $d3xD£*Df + J d3xε* /T00 + ̂  TQjy°yj\ ε. (46)

Since the right-hand side is positive, we have

(47)

1 We have shown that the Dirac operator has no zero eigenvalue. Using this fact, we presume that
standard methods can be used to yield existence of S(x, y) and local regularity of S(x, y) for x Φ y. The
existence of the Dirac Green's function would also follow from the existence of the Green's function of
the positive definite, hermitian operator (iΣί)2 that appears in Eq. (34), because the Green's function of
the Dirac operator is iB times the Green's function of this second order operator
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where

S = $d3xdk(ε*Dkε) = $d2Skε*Dkε . (48)

To evaluate the surface integral (48), it is enough to calculate Dkε up to and
including terms of order 1/r2. For this purpose it is sufficient to calculate ε up to
and including terms of order 1/r. We have seen [in connection with Eqs. (41) and
(42)] that to calculate ε up to and including terms of order 1/r it is sufficient to
know the terms of order 1/r in the metric tensor. Therefore, S depends only on this
leading large distance correction to the flat space metric. In fact, an explicit
formula will be presented below.

S is, moreover, obviously an invariant of the initial value three surface. The
only invariants that can be formed from the 1/r term in the metric tensor are the
total energy and the total momentum. Therefore, it must be possible to identify S
in terms of the energy and momentum of the system. This will now be
demonstrated.

For a general weak gravitational field, #μv = ?/μv + ̂ μv, one can introduce the
orthonormal basis e^δ^ + ̂ h^. Relative to this basis, the linearized form of the
spin connection matrices is

aβ

In an asymptotically flat space, the gravitational field is weak at large distances,
and we may use the linearized form (49) in evaluating S.

Since the calculations are somewhat intricate in general, let us first consider the
special case of an object "at rest", whose field is expected to be asymptotically of
the Schwarzschild form. This means that the terms of order 1/r are

/ 2GM *hij=—^-δij

Λ0ί = 0 (50)

2GM

Again, ί and j refer to the three directions tangent to the initial value surface and 0
to the normal direction. We wish to prove that M^O for any space of asymptotic
form (50) if the positivity condition on Tμv is satisfied everywhere.

It is straightforward to calculate from (49) that the asymptotic form of Γt is

^-i^[?,γ χ] + o(i/r3), (51)

where γ-x= £/xfc. The asymptotic form of the Dirac operator is

γ x. (52)

The equation -Dε = Q with the boundary condition ε-»ε0 at infinity is satisfied by

). (53)
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(This could also have been derived by a conformal transformation using the fact
that the Schwarzschild three geometry is conformally flat.)

We can now readily evaluate

S = $dSkε*Djf. (54)

If the integration surface is taken to be a large sphere, then [since Γr vanishes by
Eq. (51)], equation (54) is just

2 * 2 * 8 ( GM\
0 dr\ r ) °

So S is a positive constant times M, and positivity of S is positivity of the mass.
This proves that an object whose field is asymptotically Schwarzschild must have
positive total energy.

Let us now turn to the general case in which it is assumed only that
gμv = ημv + hμv, with hμv~l/r and dahμv~l/r2 at spacelike infinity. We will see that
the generalization of (55) is

S = 4πG (Eε*ε0 + £ Pkφ °/ε0\, (56)

where E is the total energy of the system and Pk are the components of the total
momentum. Regardless of the value of Pk, it is always possible to choose ε0 as an
eigenvector of the matrix y°γ P in order that £ Pkε$γ°γkεQ = — \P\ε Jε0, where |P| is

k

the magnitude of the momentum. With such a choice of ε0, S = 4πGε$ε0(E — |P|),
and positivity of S means that

(57)

This is, of course, the necessary and sufficient condition for the total energy to be
positive in every asymptotic Lorentz frame.

It remains to derive Eq. (56). We have

S = $dΩr2ε*Drε. (58)

We must evaluate the term of order 1/r2 in Drε, which is the only term that
contributes.

With ε = ε0 + ε(θ,φ)/r and Γ r~l/r2, we have

Drε = 7>0 - l/r2ε(θ, φ) + 0(l/r3) (59)

so

5 = J dΩr2ε*Γrε0 - J dΩε*ε(θ, φ) . (60)

Let us now simplify the second term in Eq. (60) to eliminate ε in favor of ε0.
(In what follows, surface integrals will often be rewritten as volume integrals of

a total divergence to make possible simplifications. The integrals will always
depend only on the large r behavior of quantities such as ε, which have in fact been
defined only asymptotically.)

Using Eq. (41), we have

ε(#, φ) = $dΩε*(yr/r)0ε + Jdί2r2ε*/yrε0 . (61)
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It is possible, but unfortunately somewhat tedious, to show that the first term on
the right side of (61) vanishes. We have

r/r#ε(θ, φ) = $d3xd/dxktε*(y k/r)fε]

= $d3xd/dxklε*(ykyl/r)d/dxl~ε~]

= $d3xd/dxkd/dxl[ε$(ykyl/r)ε]

+ J d3xd/dxk[_ε*yk(y x/r3}~ε'] . (62)

The first term in the last expression is

$d3xd/dxkd/dxllε*ykyl/rε] = Jd3xδ/δΛ/δxfc[ε*(l/r)q

= $dSkd/dxklε*(l/r}~ε~]

ε(θ». (63)

The last term in (62) is

Jd3xδ/ft>cfc[ε*/γ - x/r3]ε = f dΩr2[e Jy'γ x/r3]ε

(θ,φ) (64)

(because γ x = ryr and /γ x = r). So after all, since (63) and (64) cancel, the
first term on the right side of (61) indeed vanishes.

We may now use (61) to simplify Eq. (60), and we obtain the desired formula

S-ldS'εftΓt-γJΓfco, (65)

which expresses S in terms of the arbitrary spinor ε0 and the asymptotic behavior
of Γ only.

Making use of (49), it is straightforward to calculate that

ihβίlyk, 7β] , (66)

where a repeated Latin letter "Γ refers to a summation over the three spatial
directions, and a repeated Greek index "/Γ refers to a sum over all four space-time
dimensions.

It is possible to see that the terms in (66) with β Φ 0 do not contribute to the
surface integral which defines S. This follows from the identities

fafrj, j J = J d3xdjdkhu[yp y J = 0 , (67)

> 7,] + WybΊt, 7}Ί] = 0 , (68)

and from the symmetry of hμv, which ensures [y^l^^O. [The fact that (68)
vanishes is seen by cyclic redefinition of indices /c->z, z'->j, j->fe in the second
integral on the right-hand side the two terms then cancel because of the symmetry

of VI
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We may therefore set β = 0 in (66) to obtain a formula for S :

k

(djh0k - d0hjk + δjkd0hu - δJkdM -
Comparing with the standard formulas for the total energy and momentum of a
gravitating system

(70)

δ0hjk + δjkd0hti -

we arrive at the promised result

(71)

As was noted above, by choosing ε0 to be an eigenvector of the hermitian matrix
γ°γ P with eigenvalue - |P|, one immediately concludes

EZ\P\ (72)

because S is known to be positive or zero.
To complete the proof of the positive mass theorem, we wish to prove that

while the energy is positive or zero for every system, only flat, empty Minkowski
space has zero energy.

If £-0, then by (72) |P| = 0, and so by (71) S = 0 for any choice of ε0. From (46),
we see that for S to vanish, we must have Dίε = 0 throughout the initial value
surface. In particular, being covariantly constant, ε nowhere vanishes on this
surface. But from Z) ε = 0 follows [Di?D^ = 0 or

%,[yα>/]ε = 0. (73)

The existence of a single nonzero ε satisfying (73) does not imply the vanishing
of the Rίj<xβ But because an arbitrary ε0 entered the construction, and S vanishes
for any ε0, we have not just a single covariantly constant spinor, but a basis of
nonzero covariantly constant spinor fields. The existence of such a basis implies
that indeed

*w = 0 (74)

throughout the initial value hypersurface.
We have not yet proved that the space-time is flat because (74) has been shown

to hold only on the initial value surface, and moreover (74) refers not to the full
Rμvaβ but onty to tne components for which μ = i and v=j are tangent to this
surface. But now we may make use of the "many fingered nature of time" in
general relativity. Let us deform the initial value surface locally without changing
its form at infinity (Fig. 3). Since the behavior at infinity has not been changed, E
and P are unchanged and S is still zero. Hence R^β = 0 also on the new surface. In
order for Rijaβ to vanish on every space-like surface into which the initial value



398 E. Witten

Fig. 3. A small deformation of the initial value hypersurface

surface can be deformed, we must in fact have Rμv0ίβ — 0 everywhere. So the space is
flat.

The space is also empty because with Rμvocβ = ̂ , Einstein's equations
Rμv — ̂ gμvR = 8πGTμv immediately imply that Tμv = Q. This completes the proof
that only Minkowski space has zero energy.

It is actually possible to go further and use these methods to classify the
possible asymptotically flat spaces for which E = \P\ (but £ΦO). If E = |P|, then by
(71), 5 vanishes if ε0 is chosen so that y°γ Pε0 = — |P|ε0. This equation has a unique
solution for each possible chirality of ε0; the positive and negative chirality
solutions are complex conjugates of one another.

Choosing ε0 properly, we obtain unique covariantly constant spinors ε and ε*
of positive and negative chirality. From them we may construct a covariantly
constant vector nμ = 8yμε. It is a property of the Lorentz group that a vector
constructed in this way is always light-like, nμnμ = 0. The existence of a covariantly
constant light-like vector means that our system is propagating at the speed of
light, as expected for a system of E = \P\. The vector nμ points in the direction of
propagation of the system.

From the spinor ε we may also construct a covariantly constant antisymmetric
tensor Kμv = sτCσμvε (C is the charge conjugation matrix). Ehlers and Kundt [25]
have classified the spaces admitting such covariantly constant tensors. Any such
space is a so-called plane fronted (pp) wave. The line element can always be put in
the form dS2=dσdτ+H(x,y,τ)dτ2 — dx2 — dy2. The boundary condition of asymp-
totic flatness is that H must vanish for large |τ| and may grow for large x and y at
most like In|x2 + j;2|. [The logarithmic behavior looks dangerous, but can be
eliminated by a coordinate transformation σ' = σ + F(τ, x, y) where dF/dτ = H.~]

As shown by Ehlers and Kundt, the vacuum Einstein equations require
d2H d2H
-ΓΎ- + —r-Ty- = 0. There are no non-singular solutions that satisfy the boundary
dx2 dy2

condition just stated except H = H(τ) (H a function of τ only), but this is
Minkowski space in disguise [let £ + z = τ, ί — z = σ + F(τ) with F = H~\. So the only
asymptotically flat solution of the vacuum Einstein equations with E = \P\ is
Minkowski space.

d2H d2H . , . . , . .
In the presence oί matter, ——«- H——~- no longer vanishes; instead it is pro-

dx2 dy2

portional to the matter density. From formulas of Ehlers and Kundt it can be
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seen that there also are no nontrivial asymptotically flat solutions of the Einstein-
Maxwell equations with E = \P\. However, it is possible that such states may exist
in some other field theories. In fact, theories of the Kaluza-Klein type might be
good candidates.

Let us briefly consider some generalizations. Although stated above in a 3 -f 1
dimensional language, the proof in fact applies in any number of dimensions
provided that the topology of the initial value surface is such that spinors can be
defined on this surface. On a three dimensional surface spinors can always be
defined and they also can always be defined on any space-time in which an initial
value surface can be introduced [26]. In a world of more than three space
dimensions, it may be impossible for topological reasons to consistently define
spinors throughout the space. Therefore, the proof given here, which depends on
the use of spinors, does not fully generalize to the case of more than three space or
four space-time dimensions.

One may also consider the case of a space-time in which the initial value
surface connects between several different asymptotically flat worlds. (The most
famous example is the analytically continued Schwarzschild solution.) In this case
observers in each asymptotically flat world would, in general, observe a different
mass. One can prove that each of these masses is positive by introducing solutions
of the Dirac equation which are asymptotically constant in one world, and
asymptotically vanish in the other worlds.

IV. Connection with Supergravity

In this section a few speculative remarks will be made about the not altogether
clear relation between the previous argument and supergravity.

Formally, in supergravity theory the Hamiltonian is the sum of squares of the
hermitian supersymmetry charges Qα,

H=IΣQΪ (75)
n α

As noted by Deser and Teitelboim and by Grisaru, this formally proves the
positivity of the energy in supergravity. However, it is not clear, because of the
ultraviolet problems, that supergravity really makes sense as a quantum field
theory. And supergravity, like other theories with fermions (including ordinary
quantum electrodynamics), surely does not make sense as a classical field theory.
Consequently, the precise meaning of (75) is not obvious.

It was suggested by Grisaru that it might be possible to obtain a well-defined
statement from (75) by taking the classical limit, ft->0. The fermions, being
anticommuting fields whose square is of order h, vanish as ft-»0. The boson theory
becomes classical general relativity as ft-»0. Notice that the gα vanish as ft-»0
because they are proportional to the fermi fields. But the explicit factor of I/ft in
(75) ensures that the right-hand side of (75) does not vanish as ft-»0, since it is
equal to the energy H, which presumably does not vanish as ft->0. This suggests
that it might make sense to take the limit of (75) as ft-»0, and that one might obtain
in this way a proof in terms of well-defined classical objects of the positivity of the
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energy in classical general relativity. It seems likely that the argument in Sect. Ill
of this paper can be understood as the limit as h->0 of Eq. (75).

What is meant by the global supersymmetry charges β? In the absence of
gravity a global supersymmetry charge is

Q = Jd3xεαS0α, (76)

where εα is a r-number constant spinor. But in curved space time there are no
(covariantly) constant spinors. As discussed by Deser and Teitelboim, in super-
gravity the global supersymmetry changes are defined as in (76), but with εα being
asymptotically covariantly constant. This suggests that the classical object which
should be used in trying to construct a classical limit of Eq. (75) is the asymptoti-
cally constant spinor ε.

The choice of ε in (76) is arbitrary, as long as ε is constant at infinity. Because of
local supersymmetry, any choices of ε that are equal at infinity give the same
integral for Q. One would like to impose some condition on ε to facilitate its use in
proving positive energy. The choice of ε is similar to a choice of gauge in
supergravity. Since the condition £>^ = 0 is too strong (no solution exists) it is
natural to try the weaker condition ylDiε = Q. This condition on ε probably
corresponds in supergravity to a gauge condition yfy. = 0, since δ(γίψί) = ylδψi

= ylDiε. Requiring Dε = Q on the initial value surface leads to a unique choice of ε
and to the argument in Sect. III.

Readers conversant with supergravity may notice some analogies between
manipulations in Sect. Ill and manipulations in supergravity theory. For instance,
the manipulations leading from (26) to (34) are similar to those which enter in
proving the gauge invariance and consistency of supergravity. Also, the final
formula

S = ε*(E + y0γ P)ε0 = ε0/Pμε0

is reminiscent of supersymmetry and strongly suggests that S in the limit as fi-»0 of
Tr{εoαQε0}.

V. Discussion

As has been noted, the main importance of the positive energy theorem is that it is
related to the stability of Minkowski space as the ground state of general relativity.
The proof of the positive energy theorem in this paper suggests a connection
between the classical and semiclassical stability of general relativity and the
existence of supergravity. This may add to the attractiveness of supergravity. One
may even wonder whether in the absence of local supersymmetry, the stability of
general relativity could survive in a full quantum theory.

It is unfortunate that the proof of the positive energy theorem in Sect. Ill does
not fully generalize to more than four space-time dimensions (because spinors,
which were used extensively, do not always exist). In connection with theories of
the Kaluza-Klein type, one would like to know whether in more than 3 + 1
dimensions Minkowski space is stable, or whether it undergoes instead "spon-
taneous compactification" [27]. I believe that it is an important question to know
whether the positive energy theorem is true in any number of dimensions.
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The positive action conjecture in d dimensions is a special case of the positive
energy conjecture in d + 1 dimensions [20]. The argument of Sect. Ill proves the
positive action conjecture in any number of dimensions for manifolds on which
spinors can be defined. For a proof of this theorem in four dimensions that does
not depend on spinors, see [19].

The absence of asymptotically Euclidean solutions of Kμv = 0, for which a new
proof was given in Sect. II, is actually a special case of the positive action

conjecture. If .Rμv = 0, then the Hubert action — \dx\fgR obviously vanishes. And
the surface term in the action also vanishes; Einstein's equations force an
approach to flatness too rapid to permit surface contributions. So the action of an
asymptotically Euclidean solution of Rμv = 0 vanishes, and the space must be flat if
the positive action theorem holds. For manifolds on which spinors can be defined,
the result of Sect. II is thus a corollary of the result of Sect. III.
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Note added in proof. A technical error in the calculation, which cancels out in the final formulas, has
been pointed out by J. Nestor (preprint, Univ. of Alberta) and by M. Perry (private communication). In
squaring the Dirac operator Eq. (24) an extra term appears proportional to the second fundamental
form of the initial value surface. It arises as follows: If f is the unit normal to the initial value surface,
then our Dirac operator is (gaβ — tatβ)yaDβ. In squaring it, one obtains a term proportional to the
derivative of ία, which was omitted in Eq. (24).

In the integration by parts leading to Eq. (36), a similar term, proportional to the derivative of ία,
should appear it precisely cancels the term just mentioned. This extra term appears because of the
unusual covariant derivative for spinors and the fact that the integrand in (36) is a scalar in the three
dimensional sense but is not a four dimensional Lorentz scalar.

Neither of these delicacies occurs in the often considered case of time symmetric initial conditions.
I wish to thank M. Perry for discussions.




