Qutline for today

» Information
» Inference variational autoencoders
» mutual information and the information bottleneck
» generalization vs. representation bounds
» information plane illustration of: training, data size, weights,

depth

» Dropout: regularization, test error, and sparsification
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Mutual Information (MI) and entropy pt. 1

Recall the the Kullback-Leibler (KL) Divergence between
distributions p(x) and g(x):

Dra(p()lla() = 3 plx '°g< 3)
_ —Zp )log(q(x)) + > _ p(x) log(p(x))

=: (P7 Q) — H(P)
which is also in terms of the entropy H(-) of the distributions.

Let p(x,y) be the joint distribution and p(x) and p(y) the
marginal probabilities; for instance p(x f p(x, y)dy, then:

I(X;Y) = Diu(p(x,y)l|p(x)p ZP x,y)log (p(>(<) ())>

> o) og ,S(L))) — H(x) = H(X]Y)
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Mutual Information (MI) and entropy pt. 1

A few properties:

» /(X;Y) >0, and equals 0 if and only if X and Y are
independent, that is p(x,y) = p(x)p(y)-

» As [(X;Y) >0, it follows from I(X; Y) := H(X) — H(X|Y)
that H(X) > H(X|Y).

» The “data processing inequality” states thatif X = Y — Zis
a Markov chain, then /(X;Y) > I(X; Z) with equality if and
only if I(X;Y)=1(X;Z).

HCX) HC)

HO,Y)
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Autoencoder lllustration
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The parameters, (0, ¢), of the autoencoder are then learned:

-1
L(0,¢) = Z (xus fo (86 (1))
n=1
'https://lilianweng.github.io/1il-1log/2018/08/12/
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Inference Variational Autoencoders (Zhao et al. 17'?)

[ o
input space x input space x

ELBO InfoVAE (A = 500)
Figure 1: Verification of Proposition |I|where the dataset only contains two examples {—1,1}. Top: density of the dis-
tributions ¢y (z|x) when 2 = 1 (red) and © = —1 (green) compared with the true prior p(z) (purple). Bottom: The
“reconstruction” py(x|z) when z is sampled from g4 (z|z = 1) (green) and gy (z|z = —1) (red). Also plotted is py(x|z)
when z is sampled from the true prior p(z) (purple). When the dataset consists of only two data points, ELBO (left) will
push the density in latent space Z away from 0, while InfoVAE (right) does not suffer from this problem.

The Linfovae is given by

—ADk1(95(2)l1Po(2)) = Eqy.) Dri(as(x12)|lpo(x[2)) + alg, (x; 2)

where I4(x; z) is the mutual information between x and z under
the joint distribution g4(x,z). VAE Lg go is recovered for a = 0
and A = 1. B-VAE loss is recovered for « =1 — .

https://arxiv.org/pdf/1706.02262 . pdf
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Information Bottleneck for DNN (Tishby et al. 15'3)

data ~—
X
Fig. 1. An example of a feedforward DNN with 772 hidden layers,

an input layer X and an output layer Y . The desired output, Y, is
observed only during the training phase through a finite sample of the joint
distribution, p(X, ¥Y). and is used for learning the connectivity matrices
between consecutive layers. After training. the network receives an input
X, and successively processes it through the layers, which form a Markov
chain, to the predicted output Y. 7 (Y ;Y )/7(X ;Y ) quantifies how much
of the relevant information is captured by the network.

I(Y:X)> (Y h)> > (Y hm) > (YY)

The mutual information /(Y; Y) is maximized by maximizing
I(Y; h;) for each layer.
*https://arxiv.org/pdf/1503.02406 . pdf
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Information Bottleneck: compression (Tishby et al. 15%)

Consider the data, X and desired output Y. The minimal sufficient
statistic of X to represent Y is denoted by X and is the simplest
representation of X to describe Y.

Considering the map Y — X — X from the desired output to X
and then its simplest representation X we have /(Y; X) > I(Y; X)
with the gap minimized by minimizing I(X;)A(). The optimal X
follows from minimizing

1(X; X) + BEDkc (p(y[)Ilp(y|%)) =: 1(X; X) + BDig
We can then view the layers as learning representations in terms of
the information retained at a layer

/(h,'_l; h,‘) -+ ﬁ/(Y, hi_1: h,‘).

*https://arxiv.org/pdf/1503.02406.pdf
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Information Bottleneck: finite data (Tishby et al. 15™)

Consider the data X and its sufficient statistic X to have some
cardinality in terms of their representation, e.g. a measure of the
support of the data manifold, and let I be the empirical estimate
of the mutual information based on the finite sample distribution
p(x, y) from n samples, then the generalization bound is given by

(X, Y)<I(X;Y)+0 (W)

and R
R:=1(X;X) <I(X;X)+0O X
< /n
which illustrate the dependence on complexity is given in terms of
the sufficient statistic X complexity defined by Y rather than the

ambient dimension of X.
*https://arxiv.org/pdf/1503.02406.pdf
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Information Bottleneck: finite data (Tishby et al. 15'°)

Let Dy = /(X; Y|Y) and Ry = I(X; Y) be the information
bottleneck distortion and representation for the network. Then the
generalization gap is AG := Dy — Dyg(n) and the complexity gap
is AC := Ry — R(n).
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Fig. 2. A qualitative information plane. with a hypothesized path of the

layers in a typical DNN (green line) on the training data. The black line
is the optimal achievable IB limit. and the blue lines are sub-optimal IB
bifurcations. obtained by forcing the cardinality of X or remaining in the
same representation. The red line corresponds to the upper bound on the
owt-of-sample IB distortion (mutual information on Y ). when training from
a finite sample. While the training distortion may be very low (the green
points) the actual distortion can be as high as the red bound. This is the
reason why one would like to shift the green DNN layers closer to the
optimal curve to obtain lower complexity and better generalization. Another
interesting consequence is that getting closer to the optimal limit requires
stochastic mapping between the layers.

*https://arxiv.org/pdf/1503.02406 . pdf
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Information Bottleneck plane (Schwartz-Ziv et al. 17'7)

Decoder
P (Y |T)

Figure 1: The DNN layers form a Markov chain of successive internal representations of the input
layer X. Any representation of the input, 7', is defined through an encoder, (7| X),
and a decoder P(Y|T). and can be quantified by its information plane coordinates: [ x =
I(X;T)and Iy = I(7T;Y ). The Information Bottleneck bound characterizes the optimal
representations, which maximally compress the input X, for a given mutual information
on the desired output Y. After training, the network receives an input X, and successively
processes it through the layers, which form a Markov chain, to the predicted output Y.
I(Y;Y)/I(X;Y) quantifies how much of the relevant information is captured by the
network.

note, change of notation of hidden layers from h; to T;.

"https://arxiv.org/pdf/1703.00810.pdf
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Information Bottleneck plane (Schwartz-Ziv et al. 17'8)

Consider the 2d plane expressing the quantities /(X, T;) vs.

I(T;,Y) measuring how much layer j correlates the information
between a layer and the output as a function of the information
between the input and the same layer.
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Figure 2: Snapshots of layers (different colors) of 50 randomized networks during the SGD opti-
mization process in the information plane (in bits): left - with the initial weights: center
- at 400 epochs: right - after 9000 epochs. The reader is encouraged to view the full
videos of this optimization process in the information plane at hitps://goo.gl/rygyIT and
https://goo.gl/DOWuDD.

IX;Y)> (T Y)> > (T Y) > 1(Y;Y)

HX) > I(X; Ty) > - > I(X; Te) > 1(X; Y)

®https://arxiv.org/pdf/1703.00810. pdf
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Information Bottleneck plane (Schwartz-Ziv et al. 17'9)

1 3 57 91 1 3 5 7 91 1357911O
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Figure 3: The evolution of the layers with the training epochs in the information plane, for different
training samples. On the left - 5% of the data, middle - 45% of the data, and right - 85% of
the data. The colors indicate the number of training epochs with Stochastic Gradient De-
scent from 0 to 10000. The network architecture was fully connected layers, with widths:
input=12-10-8-6-4-2-1=output. The examples were generated by the spherical symmetric
rule described in the text. The green paths correspond to the SGD drift-diffusion phase
transition - grey line on Figure[d]

*https://arxiv.org/pdf/1703.00810.pdf
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Information Bottleneck plane (Schwartz-Ziv et al. 17'19)
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Figure 4: The layers’ Stochastic Gradients distributions during the optimization process. The
norm of the means and standard deviations of the weights gradients for each layer, as
function of the number of training epochs (in log-log scale). The values are normalized
by the L.2 norms of the weights for each layer, which significantly increase during the
optimization. The grey line (~ 350 epochs) marks the transition between the first phase,
with large gradient means and small variance (drift, high gradient SNR), and the second
phase, with large fluctuations and small means (diffusion, low SNR). Note that the gra-
dients log (SNR) (the log differences between the mean and the STD lines) approach a
constant for all the layers, reflecting the convergence of the network to a configuration
with constant flow of relevant information through the layers!

Oyttps://arxiv.org/pdf/1703.00810. pdf
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Information Bottleneck plane (Schwartz-Ziv et al. 17'11)
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Figure 5: The layers information paths during the SGD optimization for different architec-
tures. Each panel is the information plane for a network with a different number of
hidden layers. The width of the hidden layers start with 12, and each additional layer has
2 fewer neurons. The final layer with 2 neurons is shown in all panels. The line colors
correspond to the number of training epochs.

Uhttps://arxiv.org/pdf/1703.00810. pdf
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Information Bottleneck plane (Schwartz-Ziv et al. 17
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Figure 6: The DNN layers ge to fixed-poi of the IB equations. The error bars represent

standard error measures with N=50. In each line there are 5 points for the different layers.
For each point, /3 is the optimal value that was found for the corresponding layer.

The information bottleneck tradeoff is given by minimizing

min I(X: T)=BI(T:;Y
p(t|x).p(ylt),p(t) ( )= Al )

where 5 balances the tradeoff of representing X and Y.
Plotted in the figure is per layer the minimizer of

]EXDKL(p(tI"X)"péB(tl'|X))
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Dropout (Srivastava et al. 14'13)

Dropout is a method by which, during training, the activations are
set to zero with some probability. Note, dropout is only used in the

training phase, not in testing.

(b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right
An example of a thinned net produced by applying dropout to the network on the left.

Crossed units have been dropped.
Dropout has a number of valuable consequences, ranging from
improving sparsity in the net, improving testing accuracy, avoiding
overfitting, and can be used to evaluate uncertainty in a deep net.

13ht‘t:p :
//jmlr.org/papers/volumel5/srivastaval4a/srivastavaléda.pdf

Information Bottleneck: information theory and deep learning
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Dropout: test error (Srivastava et al. 14'14)

Without dropout

Classification Error %

400000 600000 800000 1000000
Number of weight updates

o 200000
Figure 4: Test error for different architectures
with and without dropout. The net-
works have 2 to 4 hidden layers each
with 1024 to 2048 units.

14
http:
//jmlr.org/papers/volumel5/srivastaval4a/srivastavaléda.pdf
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Dropout: street house numbers (Srivastava et al. 14'1°)

Method Error %
Binary Features (WDCH) (Netzer et al., 2011) 36.7
HOG (Netzer et al., 2011) 15.0
Stacked Sparse Autoencoders (Netzer et al., 2011) 10.3
KMeans (Netzer et al., 2011) 9.4
Multi-stage Conv Net with average pooling (Sermanet et al., 2012) 9.06
Multi-stage Conv Net 4+ L2 pooling (Sermanet et al., 2012) 5.36
Multi-stage Conv Net + L4 pooling + padding (Sermanet et al., 2012) 4.90
Conv Net + max-pooling 3.95
Conv Net + max pooling + dropout in fully connected layers 3.02
Conv Net + stochastic pooling (Zeiler and Fergus, 2013) 2.80
Conv Net + max pooling + dropout in all layers 2.55
Conv Net + maxout (Goodfellow et al., 2013) 2.47
Human Performance 2.0

Table 3: Results on the Street View House Numbers data set.

15ht‘t:p :
//jmlr.org/papers/volumel5/srivastaval4a/srivastavaléda.pdf
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Dropout: sparse features (Srivastava

(a) Without dropout (b) Dropout with p = 0.5.

Figure 7: Features learned on MNIST with one hidden layer autoencoders having 256 rectified
lincar units.

16h'l:‘tp :
//jmlr.org/papers/volumelb/srivastavald4a/srivastavalda.pdf
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