Qutline for today

» Alternative descriminator for WGANSs, Binkowski

» Adversarial attacks on deep nets

» Sign gradient attack, DeepFool, rotations and translations
» Universal adversarial examples, transferability between nets
» Adversarial physical objects

» Towards robustness via the the convex outer-polytope and/or
sparsification of the network input or weights.
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Generative deep nets (Goodfellow et al. 14'2)

Example of a deep convolutional generator:
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Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps. 1

"https://arxiv.org/pdf/1511.06434.pdf
*https://arxiv.org/pdf/1406.2661.pdf
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Generative deep nets (Goodfellow et al. 14)

Train only the generator network parameters using the objective

mGin maxpn ! Z log(D(xy, yu)) + pt Z log (1 — D(G(2p),p))
p=1 P

= 10, 7icritic = 5, @ =

Algorithm 1 WGAN with gradient penalty. We use default values of A
0.0001, 3y = 0, B2 = 0.9.
Require: The gradlent penalty coefficient A, the number of critic iterations per generator iteration

Teritic» the batch size m, Adam hyperparameters v, 31, B2.
initial critic parameters wo, initial generator parameters 6.

Require:
while 6 has not converged do
fort = 1, ..., Ncritic do
fori=1,...,m do

Sample real data « ~ P, latent variable =z ~ p(z), a random number ¢ ~ U [0, 1].
x <« Go(=z

T <« ex + (1 — e)x

LY < Dy (&) — Do(x) + A(IVaDow(@)]|2 — 1)?

veNaLRwNE

end for
w «— Adam(V,, 5 327 LD w, «, By, B2)
10: end for
11: Sample a batch of latent variables {=(}7 | ~ p(=).
120 0« Adam(Vog; 3070, —Duw(Go(2)), 0, «, 51, Bz2) 3

13: end while

Use as the discriminator a measure between probabilities of
inkowski et al. 18" 4).
*https://arxiv.org/pdf/1704.00028. pdf
*https://arxiv.org/pdf/1801.01401.pdf
*https://arxiv.org/pdf/1406.2661.pdf
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Adversarial examples for deep nets (Goodfellow et al. 15°)

. T+
z Slgn(va<0..’Ey)) ESlgH(VzJ(G.fﬂ‘y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al.,, 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our e of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

®https://arxiv.org/pdf/1412.6572.pdf
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DeepFool algorithm (Moosavi-Dezfooli et al. 1

Algorithm 2 DeepFool: multi-class case

b AN A S

_
e

11:
12:
13:
14:
15:

input: Image x, classifier f.
output: Perturbation 7.

Initialize a¢g <— a, 7 <— O.
while k(x;) = k(ao) do
for k £ k(xo) do
wi — V(@) — Vi (mo) ()
Tt = T (@) — Fi(ao) (@)
end for ,
l <— arg Inink#k(mo) %

r; <—

end while
return 7 = > . 7;

Alternative to Goodfellow approach of
P(xu) = esign(grad, J(0; xu, yu)-

"https://arxiv.org/pdf/1511.04599.pdf
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DeepFool algorithm (Moosavi-Dezfooli et al. 15°)

Classifier Test error | fy4, [DeepFool] | time Py [4] time | g [18] | time
LeNet (MNIST) 1% 20x 107! 10ms | 1.0 W0ms | 25x1070 | >ds
FC500-150-10 (MNIST) | 1.7% 11x 107 Soms | 39x1071 | 10ms | 12x1071 | >2s
NIN (CIFAR-10) 115% | 23x107 1100ms | 12x 107" | 180ms | 24 x 1072 | 50
LeNet (CIFAR-10) 26% | 30x107 20ms | 13%107 [ 50ms |39%1072 | >Ts
CaffeNet (ILSVRC2012) | 426% | 27x 107 510 ms* | 3.5 1072 | 50 ms* | -

GoogLeNet (ILSVRC2012) | 31.3% 19x107° 800 ms* | 4.7x 1072 | 80 ms* | -

Table 1: The adversarial robustness of different classifiers on different datasets. The time required to compute one sample
for each method is given in the time columns. The times are computed on a Mid-2015 MacBook Pro without CUDA support.
The asterisk marks determines the values computed using a GTX 750 Ti GPU.

Average relative error of adversarial example 7(x) such that
F(x) # Fx+ P(x)): Paau(F) = [D| 71X e LN

®https://arxiv.org/pdf/1511.04599. pdf
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Rotations and Translations for CNNs (Engstrom et al

Natural Adversarial

o

“revolver” “mousetrap’’

—

“vulture ““orangutan’’

Figure 1: Examples of adversarial transformations and their
predictions in the standard and "black canvas'" setting.

*https://arxiv.org/pdf/1712.02779.pdf

Theories of DL Lecture 13 Adversarial missclassification of deep networks


https://arxiv.org/pdf/1712.02779.pdf

Rotations and Translations for CNNs (Engstrom et al.

1810)

ImageNet

CIFAR-10

MNIST

Xent Loss
Xent Loss

Figure 3: Loss landscape of a random example for each dataset when performing left-right translations and rotations.
Translations and rotations are restricted to 10% of the image pixels and 30 deg respectively. We observe that the landscape
is significantly non-concave, making rendering FO methods for adversarial example generation powerless. Additional

examples are visualized in Figureﬂof the Appendix.

Oyttps://arxiv.org/pdf/1712.02779. pdf

Adversarial missclassification of deep networks
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Universal adversary (Moosavi-Dezfooli et al. 16'1)

Flagpole Labrador

Tibetan mastife

Tibetan mastife

&> Brabancon ariffon

= Labrador

L g

Figure 1: When added to a natural image. a universal per—
turbation image causes the image to be misclassified by the
deep neural network with high probability. Z.of7 irrrcgos-:
Original natural images. The labels are shown on top of
cach arrow. Cerzrcal irncage: Universal perturbation. Rig/:zz
irrrcages: Perturbed images. The estimated labels of the per—
turbed images are shown on top of each arrow.

Uhttps://arxiv.org/pdf/1610.08401.pdf
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Transferability between nets (Liu et al. 16'?)

RMSD | ResNet-152 | ResNet-101 | ResNet-50 | VGG-16 | GoogLeNet
ResNet-152 | 17.17 0% 0% 0% 0% 0%
-ResNet-101 | 1725 0% 1% 0% 0% 0%
ResNet50 | 17.25 0% 0% 2% 0% 0%
1
|

VG6G-16 | 1780 | 0% 0% 0% 6% 0%
-GoogLeNet | 1741 0% 0% 0% 0% 5%

Table 4 Accuracy of non-targeted adversarial images generated using the optimization-based ap-
proach. The first column indicates the average RMSD of the generated adversarial images. Cell
(i, ) corresponds to the accuracy of the attack generated using four models except model ¢ (row)
when evaluated over model j (column). In each row, the minus sign “~" indicates that the model
of the row is not used when generating the attacks. Results of top-3 accuracy can be found in the
appendix (Table14)

Pyttps://arxiv.org/pdf/1611.02770. pdf
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Transferability between nets (Liu et al. 16'3)

VGG-16 ResNet-50 ResNet-101 ResNet-152 GoogLeNet

Zoom-in

Zoom-out

100!

Figure 3: Decision regions of different models. We pick the same two directions for all plots: one is
the gradient direction of VGG-16 (x-axis), and the other is a random orthogonal direction (y-axis).
Each point in the span plane shows the predicted label of the image generated by adding a noise to
the original image (e.g., the origin corresponds to the predicted label of the original image). The
units of both axises are 1 pixel values. All sub-figure plots the regions on the span plane using the
same color for the same label. The image is in Figure |2|

Bhttps://arxiv.org/pdf/1611.02770.pdf
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Adversarial physical object: Turtle (Athalye et al. 171%)

I classified as turtle [l classified as rifle
B classified as other

Figure 1. Randomly sampled poses of a 3D-printed turtle adver-
sarially perturbed to classify as a rifle at every viewpoint’. An

unperturbed model is classified correctly as a turtle nearly 100%
of the time.

“https://arxiv.org/pdf/1707.07397.pdf
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Adversarial graffiti (Eykholt et al. 17

Table 5: A camouflage art attack on GTSRB-CNN. See
example images in Table[[] The targeted-attack success rate
is 80% (true class label: Stop, target: Speed Limit 80).

Distance & Angle  Top Class (Confid.) Second Class (Confid.)

510° Speed Limit 80 (0.88) ~ Speed Limit 70 (0.07)
50 15° Speed Limit 80 (0.94)  Stop (0.03)

5"30° Speed Limit 80 (0.86) ~ Keep Right (0.03)

51 45° Keep Right (0.82) Speed Limit 80 (0.12)
5" 60° Speed Limit 80 (0.55)  Stop (0.31)

10" 0° Speed Limit 80 (0.98) ~ Speed Limit 100 (0.006)
10" 15° Stop (0.75) Speed Limit 80 (0.20)
107 30° Speed Limit 80 (0.77) ~ Speed Limit 100 (0.11)

Figure 1: The left image shows real graffiti on a Stop sign, I5'0°  Speed Limit 80 (098) - Speed Limit 100 (001)

) oy 15 15°  Stop (090) Speed Limit 80 (0.06)
something that most umans would not think is SUSPICIOUS. 0+ g et T30 095)  Speed Limi 10000

0%)
The right image shows our a physical perturbation applied 20" 15" Speed Limit 80097 Speed Limit 100 (00D
25 0° Speed Limit 80 (0.99)  Speed Limit 70 (0.0008)
(0.99)
0.99)

t0 Stop sign. We design our perturbations to mimic graff, WO SpeedLimit80(099)  Speed Limit 100 (000)
aﬂd thlls “hide iﬂ the humﬂﬂ psyche " 407 0° Speed Limit 80 (0.99)  Speed Limit 100 (0.002)

Bhttps://arxiv.org/pdf/1707.08945 . pdf
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Provable defense: convex polytope pt. 1 (Wo

Possible output of net fy(-) from bounded perturbation is a
non-convex set, say Z¢(x) = {fo(x +0) : ||d]|cc < €}. A convex
outer-polytope of Z.(x), say Z"(x), can be computed by
replacing the input to each activation with a two dimensional
convex set:

Input z and Final layer 2 and  Convex outer bound

Bounded ReLU set Convex reation
dllowable perturbations - pegp petyor  adversaral polytope ! e

Figure 2. lustration of the convex ReLU relaxation over the
Figure 1. Conceptual illustration of the (non-convex) adversarial polytope, and an outer convex bound.  poydeq st ()
Requires knowledge of lower and upper bound for each input to a
nonlinear activation. Let ¢ = e/ — ey or ¢ = 2€; — 1)/,55 and solve:

min ¢’2, and if nonnegative then robust to e perturbation.

) EZAG (X)

¥https://arxiv.org/pdf/1711.00851. pdf
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Provable defense: convex polytope pt. 2 (Wong et al. 1717)

Algorithm 1 Computing Activation Bounds

input: Network parameters {W/;, b; f;ll, data point @,

ball size €
A initialization

g = W

1

lo i— T WE 4+ b — || W[4

wz ’ T o el W

| - l1,: for a marrix here denotes €4 norm of all columns
for: —=2,...,k — 1 do

form Z; . I;f, Z;; form 7D0; as in (10)
/A initialize new terrms
iz, 1= (D)7, W e

~Yi : bj
S propagate existing 1ermns
A, F =2,...,7— 1
j — 1,...,72 — 1
7 compute bounds
Wi = T oy + > ;:1 Y5
Civr = 2y — €llPallr,: + 25 0> cq, i l—r5,0 ]+

w1 = Py + €|l |1, — >
end for
output: bounds {¥¢;, w; }fzz

G 2 ez, €ir [0 ]+

https://arxiv.org/pdf/1711.00851. pdf
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Provable defense: convex polytope pt. 3 (Wong et al. 171%)

Table 1. Error rates for various problems and attacks, and our robust bound for baseline and robust models.

PROBLEM Roust ¢ TESTERROR FGSMERROR PGDERROR  ROBUST ERROR BOUND
MNIST x o 00 1.07% 50.01% §1.68% 100%
MNIST Vo0 180% 3.93% 4.11% 5.82%
FASHION-MNIST ~— x 0.1  9.36% 77.98% §1.85% 100%
FASHION-MNIST /0.1 21.73% 31.25% 31.63% 34.53%
HAR x o005 495% 60.57% 63.82% §1.56%
HAR ¢ 005  7.80% 21.49% 21.52% 21.90%
SVEN x o000 16.01% 62.21% §3.43% 100%
SVAN Vo000 2038% 33.28% 33.74% 40.67%

Byttps://arxiv.org/pdf/1711.00851. pdf
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Robustness via sparsification (Gopalakrishnan et al. 1819)

e e
l 1 Retain
T ——@—“ K largest
i coefficients
I

Sparsifying front end

Sparse network

Figure 1: Sparsifying front end defense: For a basis in which the input is sparse, the
input is projected onto the subspace spanned by the K largest basis coefficients. This  Figure 2: Network sparsity defense: lmposing sparsity within the neural network
attenuates the impact of the attack by K/N, where N is the input dimension. attenates the worst-case growth of the attack as it flows up the network

Theorem 2. Consider an {u-constrained input perturbation eg = e, with |ef,, <e.
Suppose that we impose f1 constraints on the weights at each layer as follows:

|wijll, <75 Vi

Then the effect of the perturbation is ls-bounded at each layer:

J
lejlly <e] ] 2)
=1

Ohttps://arxiv.org/abs/1810.10625
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Accuracy (%)
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30 White box attack
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(c) With network sparsity

Figure 6: Fashion-MNIST: Binary classification accuracies as a function of €

Dnttps://arxiv.org/abs/1810.10625
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