- \triangleright Convexified CNNs to removing the weight nonlinearity.
- \blacktriangleright Introduction to Generative Adversarial Networks
	- Inverse conv net for generating images
	- \blacktriangleright The adversarial game
	- \triangleright Applications and improved training strategies, WGANs

Convexifying the parameters pt. 1 (Zhang et al. $16'{}^{1})$

Consider a two layer convolutional neural network composed of one convolutional layer followed by a fully connected layer. Rather than working with x directly, form P vectors $z_p(x)$ for $p = 1, \ldots, P$ where $z_p(x)$ is the portion of x on patch p of the convolutional layer. Then the k^{th} component of $H(x,\theta)$ is given by

$$
H(x,\theta)_k=\sum_{j=1}^r\sum_{p=1}^p\alpha_{k,j,p}\sigma(w_j^Tz_p(x)).
$$

Alternatively if we exclude the nonlinearity we can express this sum by

$$
\sum_{j=1}^r \sum_{p=1}^p \alpha_{k,j,p} \sigma(w_j^T z_p(x)) = \sum_{j=1}^r Z(x) w_j
$$

where $Z(x)$ has $z_p(x)$ as its p^{th} row.

1 <https://arxiv.org/pdf/1609.01000.pdf>

Convexifying the parameters pt. 2 (Zhang et al. $16²$)

Using the trace formula this can be further condensed to

$$
H(x,\theta)_k = \text{tr}\left(Z(x)\left(\sum_{j=1}^r w_j \alpha_{k,j}^T\right)\right) = \text{tr}(Z(x)A_k)
$$

The network parameters are given by A_k nonlinearity is imposed by the A_k having rank r, and we can express all of the parameters of the matrix by A which is similarly rank r . 2 <https://arxiv.org/pdf/1609.01000.pdf>

One can impose the network structure through A, but remove the non-convex rank constraint by replacing a convexification, that is the sum of the singular values of A (Schatten-1, or nuclear, norm).

If the convolutional filters and fully connected rows are uniformly bounded in ℓ^2 by B_1 and B_2 respectively, then one can replace then the sum of the singular values of A are bounded by $B_1B_2\prime$ √ n where n is the network output dimension and the network parameters can be considered by varying the nuclear norm bound between 0 and B_1B_2r ייי \overline{n} .

The resulting learning programme is fully convex and can be efficiently solved. The above can be extended to nonlinear activations and multiple layers, learning one layer at a time.

 3 <https://arxiv.org/pdf/1609.01000.pdf>

Table 1: Classification error on the basic MNIST and its four variations. The best performance within each block is bolded. The tag "ReLU" and "Quad" means ReLU activation and quadratic activation, respectively.

4 <https://arxiv.org/pdf/1609.01000.pdf>

Convexified CNN: CIFAR10 (Zhang et al. 16'⁵)

Table 3: Classification error on the CIFAR- Figure 4: The convergence of CNN-3 and 10 dataset. The best performance within CCNN-3 on the CIFAR-10 dataset. each block is bolded.

	$CNN-1$	$CNN-2$	$CNN-3$
Original	34.14%	24.98%	21.48%
Convexified	23.62%	21.88%	18.18%

Table 4: Comparing the original CNN and the one whose top convolution layer is convexified by CCNN. The classification errors are reported on CIFAR-10.

⁵<https://arxiv.org/pdf/1609.01000.pdf>

CNN model through sparse coding (Papyan et al. $16'$ ⁶)

Consider a deep conv. net composed of two convolutional layers:

The forward map (note notation using transpose of $W^{(i)}$):

$$
Z_2 = \sigma\left(b^{(2)} + (W^{(2)})^T \sigma\left(b^{(1)} + (W^{(1)})^T x\right)\right)
$$

 6 <https://arxiv.org/pdf/1607.08194.pdf>

Deconvolutional NN data model (Papyan et al. 16'7)

Two layer deconvolutional data model with weight matrices fixed, $W^{(i)} = D_i$, and $\Gamma_i \geq 0$ whose values compose data element X.

 7 <https://arxiv.org/pdf/1607.08194.pdf>

Generative deep nets (Goodfellow et al. $14'$ ⁹)

Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribution Z is projected to a small spatial extent convolutional representation with many feature maps.

 8 <https://arxiv.org/pdf/1511.06434.pdf> 9 <https://arxiv.org/pdf/1406.2661.pdf>

Generative deep nets (Goodfellow et al. 14'¹⁰)

Train the two network parameters using the objective

$$
\min_{G} \max_{D} n^{-1} \sum_{\mu=1}^{n} \log(D(x_{\mu}, y_{\mu})) + p^{-1} \sum_{p} \log(1 - D(G(z_{p}), y_{p}))
$$

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used $k = 1$, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{data}(\boldsymbol{x}).$
- Update the discriminator by ascending its stochastic gradient:

$$
\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].
$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by descending its stochastic gradient:

$$
\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log \left(1 - D \left(G \left(\boldsymbol{z}^{(i)} \right) \right) \right).
$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

 10 <https://arxiv.org/pdf/1406.2661.pdf>

Theories of DL Lecture 12 [Convexified CNNs and Generative Adversarial Networks](#page-0-0)

Generative deep nets (Radford et al. $16'$ ¹¹)

Figure 2: Generated bedrooms after one training pass through the dataset. Theoretically, the model could learn to memorize training examples, but this is experimentally unlikely as we train with a small learning rate and minibatch SGD. We are aware of no prior empirical evidence demonstrating memorization with SGD and a small learning rate.

 11 <https://arxiv.org/pdf/1511.06434.pdf>

Generative deep nets (Radford et al. $16'{}^{12})$

Figure 3: Generated bedrooms after five epochs of training. There appears to be evidence of visual under-fitting via repeated noise textures across multiple samples such as the base boards of some of the beds.

¹²<https://arxiv.org/pdf/1511.06434.pdf>

Theories of DL Lecture 12 [Convexified CNNs and Generative Adversarial Networks](#page-0-0)

Wasserstein GAN (Arjovsky et al. 17'¹⁴)

One of the central challenges with GANs is the ability to train the parameters. Improvements have been made through choice of generative architecture (DC-GAN of Radford) and through different training objective functions (W-GAN)

Algorithm 1 WGAN with gradient penalty. We use default values of $\lambda = 10$, $n_{\text{critic}} = 5$, $\alpha =$ 0.0001, $\beta_1 = 0$, $\beta_2 = 0.9$.

Require: The gradient penalty coefficient λ , the number of critic iterations per generator iteration n_{critic} , the batch size m, Adam hyperparameters α , β_1 , β_2 .

Require: initial critic parameters w_0 , initial generator parameters θ_0 .

1: while θ has not converged do

 $2:$ for $t = 1, ..., n_{\text{critic}}$ do $3:$ for $i = 1, ..., m$ do Sample real data $x \sim \mathbb{P}_r$, latent variable $z \sim p(z)$, a random number $\epsilon \sim U[0, 1]$. $4:$ $\tilde{\bm{x}} \leftarrow G_{\theta}(\bm{z})$ $5:$ $\hat{x} \leftarrow \epsilon x + (1 - \epsilon)\tilde{x}$ 6: $L^{(i)} \leftarrow D_w(\tilde{x}) - D_w(x) + \lambda (||\nabla_{\hat{x}} D_w(\hat{x})||_2 - 1)^2$ $7:$ $8:$ end for $9:$ $w \leftarrow \text{Adam}(\nabla_w \frac{1}{m} \sum_{i=1}^m L^{(i)}, w, \alpha, \beta_1, \beta_2)$ $10¹$ end for Sample a batch of latent variables $\{z^{(i)}\}_{i=1}^m \sim p(z)$. $11:$ $\theta \leftarrow \text{Adam}(\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} -D_w(G_{\theta}(z)), \hat{\theta}, \alpha, \beta_1, \beta_2)$ $12:$ 13: end while

13

 13 <https://arxiv.org/pdf/1704.00028.pdf> 14 <https://arxiv.org/pdf/1701.07875.pdf>

Wasserstein GAN (Arjovsky et al. 17'¹⁵)

Figure 2: Different GAN architectures trained with different methods. We only succeeded in training every architecture with a shared set of hyperparameters using WGAN-GP.

¹⁵<https://arxiv.org/pdf/1704.00028.pdf>

Wasserstein GAN (Arjovsky et al. 17'¹⁶)

Figure 3: CIFAR-10 Inception score over generator iterations (left) or wall-clock time (right) for four models: WGAN with weight clipping, WGAN-GP with RMSProp and Adam (to control for the optimizer), and DCGAN. WGAN-GP significantly outperforms weight clipping and performs comparably to DCGAN.

 16 <https://arxiv.org/pdf/1704.00028.pdf>

Large scale WGAN (Karras et al. 18'¹⁷)

Figure 1: Our training starts with both the generator (G) and discriminator (D) having a low spatial resolution of 4×4 pixels. As the training advances, we incrementally add layers to G and D, thus increasing the spatial resolution of the generated images. All existing layers remain trainable throughout the process. Here $|N \times N|$ refers to convolutional layers operating on $N \times N$ spatial resolution. This allows stable synthesis in high resolutions and also speeds up training considerably. One the right we show six example images generated using progressive growing at 1024×1024 .

 17 <https://arxiv.org/abs/1710.10196>

Large scale WGAN (Karras et al. 18'¹⁸)

Figure 10: Top: Our CELEBA-HQ results. Next five rows: Nearest neighbors found from the training data, based on feature-space distance. We used activations from five VGG layers, as suggested by Chen & Koltun (2017). Only the crop highlighted in bottom right image was used for comparison in order to exclude image background and focus the search on matching facial features.

¹⁸<https://arxiv.org/abs/1710.10196>

Theories of DL Lecture 12 [Convexified CNNs and Generative Adversarial Networks](#page-0-0)