- Convexified CNNs to removing the weight nonlinearity.
- Introduction to Generative Adversarial Networks
 - Inverse conv net for generating images
 - The adversarial game
 - Applications and improved training strategies, WGANs

Convexifying the parameters pt. 1 (Zhang et al. $16'^1$)

Consider a two layer convolutional neural network composed of one convolutional layer followed by a fully connected layer. Rather than working with x directly, form P vectors $z_p(x)$ for p = 1, ..., P where $z_p(x)$ is the portion of x on patch p of the convolutional layer. Then the k^{th} component of $H(x, \theta)$ is given by

$$H(x,\theta)_k = \sum_{j=1}^r \sum_{p=1}^p \alpha_{k,j,p} \sigma(w_j^T z_p(x)).$$

Alternatively if we exclude the nonlinearity we can express this sum by

$$\sum_{j=1}^{r} \sum_{p=1}^{p} \alpha_{k,j,p} \sigma(w_j^T z_p(x)) = \sum_{j=1}^{r} Z(x) w_j$$

where Z(x) has $z_p(x)$ as its p^{th} row.

¹https://arxiv.org/pdf/1609.01000.pdf

Convexifying the parameters pt. 2 (Zhang et al. $16'^2$)

Using the trace formula this can be further condensed to

$$H(x,\theta)_k = \operatorname{tr}\left(Z(x)\left(\sum_{j=1}^r w_j \alpha_{k,j}^T\right)\right) = \operatorname{tr}\left(Z(x)A_k\right)$$

The network parameters are given by A_k nonlinearity is imposed by the A_k having rank r, and we can express all of the parameters of the matrix by A which is similarly rank r. ²https://arxiv.org/pdf/1609.01000.pdf

One can impose the network structure through A, but remove the non-convex rank constraint by replacing a convexification, that is the sum of the singular values of A (Schatten-1, or nuclear, norm).

If the convolutional filters and fully connected rows are uniformly bounded in ℓ^2 by B_1 and B_2 respectively, then one can replace then the sum of the singular values of A are bounded by $B_1B_2r\sqrt{n}$ where n is the network output dimension and the network parameters can be considered by varying the nuclear norm bound between 0 and $B_1B_2r\sqrt{n}$.

The resulting learning programme is fully convex and can be efficiently solved. The above can be extended to nonlinear activations and multiple layers, learning one layer at a time.

³https://arxiv.org/pdf/1609.01000.pdf

	basic	rand	rot	img	img+rot
SVM_{rbf} [44]	3.03%	14.58%	11.11%	22.61%	55.18%
NN-1 [44]	4.69%	20.04%	18.11%	27.41%	62.16%
CNN-1 (ReLU)	3.37%	9.83%	18.84%	14.23%	45.96%
CCNN-1	2.38%	7.45%	13.39%	10.40%	42.28%
TIRBM [38]	-	-	4.20%	-	35.50%
SDAE-3 [44]	2.84%	10.30%	9.53%	16.68%	43.76%
ScatNet-2 [8]	1.27%	12.30%	7.48%	18.40%	50.48%
PCANet-2 [9]	1.06%	6.19%	7.37%	10.95%	35.48%
CNN-2 (ReLU)	2.11%	5.64%	8.27%	10.17%	32.43%
CNN-2 (Quad)	1.75%	5.30%	8.83%	11.60%	36.90%
CCNN-2	1.38%	4.32%	6.98%	7.46%	30.23%

Table 1: Classification error on the basic MNIST and its four variations. The best performance within each block is bolded. The tag "ReLU" and "Quad" means ReLU activation and quadratic activation, respectively.

⁴https://arxiv.org/pdf/1609.01000.pdf

Convexified CNN: CIFAR10 (Zhang et al. 16'⁵)

Table 3: Classification error on the CIFAR- Figure 4: The convergence of CNN-3 and 10 dataset. The best performance within each block is bolded.

CCNN-3 on the CIFAB-10 dataset.

	CNN-1	CNN-2	CNN-3
Original	34.14%	24.98%	21.48%
Convexified	23.62%	21.88%	18.18%

Table 4: Comparing the original CNN and the one whose top convolution layer is convexified by CCNN. The classification errors are reported on CIFAR-10.

⁵https://arxiv.org/pdf/1609.01000.pdf

CNN model through sparse coding (Papyan et al. 16'⁶)

Consider a deep conv. net composed of two convolutional layers:

The forward map (note notation using transpose of $W^{(i)}$):

$$Z_{2} = \sigma \left(b^{(2)} + (W^{(2)})^{T} \sigma \left(b^{(1)} + (W^{(1)})^{T} x \right) \right)$$

⁶https://arxiv.org/pdf/1607.08194.pdf

Deconvolutional NN data model (Papyan et al. 16'⁷)

Two layer deconvolutional data model with weight matrices fixed, $W^{(i)} = D_i$, and $\Gamma_i \ge 0$ whose values compose data element X.

⁷https://arxiv.org/pdf/1607.08194.pdf

Generative deep nets (Goodfellow et al. 14'⁹)

Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribution Z is projected to a small spatial extent convolutional representation with many feature maps.

⁸https://arxiv.org/pdf/1511.06434.pdf
⁹https://arxiv.org/pdf/1406.2661.pdf

Generative deep nets (Goodfellow et al. 14'¹⁰)

Train the two network parameters using the objective

$$\min_{G} \max_{D} n^{-1} \sum_{\mu=1}^{n} \log(D(x_{\mu}, y_{\mu})) + p^{-1} \sum_{p} \log(1 - D(G(z_{p}), y_{p}))$$

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_a(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

¹⁰https://arxiv.org/pdf/1406.2661.pdf

Generative deep nets (Radford et al. $16'^{11}$)

Figure 2: Generated bedrooms after one training pass through the dataset. Theoretically, the model could learn to memorize training examples, but this is experimentally unlikely as we train with a small learning rate and minibatch SGD. We are aware of no prior empirical evidence demonstrating memorization with SGD and a small learning rate.

¹¹https://arxiv.org/pdf/1511.06434.pdf

Generative deep nets (Radford et al. 16'12)

Figure 3: Generated bedrooms after five epochs of training. There appears to be evidence of visual under-fitting via repeated noise textures across multiple samples such as the base boards of some of the beds.

¹²https://arxiv.org/pdf/1511.06434.pdf

Wasserstein GAN (Arjovsky et al. 17'14)

One of the central challenges with GANs is the ability to train the parameters. Improvements have been made through choice of generative architecture (DC-GAN of Radford) and through different training objective functions (W-GAN)

Algorithm 1 WGAN with gradient penalty. We use default values of $\lambda = 10$, $n_{\text{critic}} = 5$, $\alpha = 0.0001$, $\beta_1 = 0$, $\beta_2 = 0.9$.

Require: The gradient penalty coefficient λ , the number of critic iterations per generator iteration n_{critic} , the batch size m, Adam hyperparameters α , β_1 , β_2 .

Require: initial critic parameters w_0 , initial generator parameters θ_0 .

1: while θ has not converged do

```
2:
               for t = 1, \dots, n_{\text{critic}} do
 3:
                       for i = 1, ..., m do
                               Sample real data \boldsymbol{x} \sim \mathbb{P}_r, latent variable \boldsymbol{z} \sim p(\boldsymbol{z}), a random number \epsilon \sim U[0, 1].
 4:
 5:
                              \tilde{x} \leftarrow G_{\theta}(z)
                              \hat{\boldsymbol{x}} \leftarrow \epsilon \boldsymbol{x} + (1-\epsilon)\tilde{\boldsymbol{x}}
 6:
                               L^{(i)} \leftarrow D_w(\tilde{\boldsymbol{x}}) - D_w(\boldsymbol{x}) + \lambda (\|\nabla_{\hat{\boldsymbol{x}}} D_w(\hat{\boldsymbol{x}})\|_2 - 1)^2
 7:
                       end for
 8:
 9:
                       w \leftarrow \operatorname{Adam}(\nabla_w \frac{1}{m} \sum_{i=1}^m L^{(i)}, w, \alpha, \beta_1, \beta_2)
10 \cdot
               end for
               Sample a batch of latent variables \{z^{(i)}\}_{i=1}^m \sim p(z).
11:
               \theta \leftarrow \operatorname{Adam}(\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} -D_{w}(G_{\theta}(z)), \theta, \alpha, \beta_{1}, \beta_{2})
12:
13: end while
```

13

¹³https://arxiv.org/pdf/1704.00028.pdf ¹⁴https://arxiv.org/pdf/1701.07875.pdf

Wasserstein GAN (Arjovsky et al. 17'¹⁵)

Figure 2: Different GAN architectures trained with different methods. We only succeeded in training every architecture with a shared set of hyperparameters using WGAN-GP.

¹⁵https://arxiv.org/pdf/1704.00028.pdf

Wasserstein GAN (Arjovsky et al. 17'¹⁶)

Figure 3: CIFAR-10 Inception score over generator iterations (left) or wall-clock time (right) for four models: WGAN with weight clipping, WGAN-GP with RMSProp and Adam (to control for the optimizer), and DCGAN. WGAN-GP significantly outperforms weight clipping and performs comparably to DCGAN.

¹⁶https://arxiv.org/pdf/1704.00028.pdf

Large scale WGAN (Karras et al. 18'¹⁷)

Figure 1: Our training starts with both the generator (G) and discriminator (D) having a low spatial resolution of 4×4 pixels. As the training advances, we incrementally add layers to G and D, thus increasing the spatial resolution of the generated images. All existing layers remain trainable throughout the process. Here $\boxed{N \times N}$ refers to convolutional layers operating on $N \times N$ spatial resolution. This allows stable synthesis in high resolutions and also speeds up training considerably. One the right we show six example images generated using progressive growing at 1024×1024 .

¹⁷https://arxiv.org/abs/1710.10196

Large scale WGAN (Karras et al. $18'^{18}$)

Figure 10: Top: Our CELEBA-HQ results. Next five rows: Nearest neighbors found from the training data, based on feature-space distance. We used activations from five VGG layers, as suggested by Chen & Koltun (2017). Only the crop highlighted in bottom right image was used for comparison in order to exclude image background and focus the search on matching facial features.

¹⁸https://arxiv.org/abs/1710.10196