Qutline for today

» Convexified CNNs to removing the weight nonlinearity.

> Introduction to Generative Adversarial Networks
> Inverse conv net for generating images
» The adversarial game
» Applications and improved training strategies, WGANs
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Convexifying the parameters pt. 1 (Zhang et al. 16'!)

Consider a two layer convolutional neural network composed of one
convolutional layer followed by a fully connected layer.

Rather than working with x directly, form P vectors z,(x) for
p=1,..., P where z,(x) is the portion of x on patch p of the
convolutional layer. Then the k' component of H(x, ) is given by

H(x,0), = Zzakﬂ pO' w; Zp(X))

j=1 p=1

Alternatively if we exclude the nonlinearity we can express this sum

by
ZZadeU(W zp(x ZZ (x)w;

Jj=1p=1

where Z(x) has z,(x) as its pt row.

"https://arxiv.org/pdf/1609.01000.pdf
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Convexifying the parameters pt. 2 (Zhang et al. 16'?)

Using the trace formula this can be further condensed to

r
H(x,0) =tr [ Z(x) ZWJOZZ—,J' = tr (Z(x)Ax)
j=1
dy
z1(x)
I r (filters) ;
: ‘ P (patches) |
tr( P Z(x) X il e w | X . : )
| Qe
I ‘ ‘ J
A
zp(x)

The network parameters are given by Ay nonlinearity is imposed by
the Ay having rank r, and we can express all of the parameters of

imilarly rank r.
https://arxiv.org/pdf/1609.01000. pdf
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Convexifying the parameters pt. 3 (Zhang et al. 163)

One can impose the network structure through A, but remove the
non-convex rank constraint by replacing a convexification, that is
the sum of the singular values of A (Schatten-1, or nuclear, norm).

If the convolutional filters and fully connected rows are uniformly
bounded in ¢? by B; and B» respectively, then one can replace
then the sum of the singular values of A are bounded by By Byry/n
where n is the network output dimension and the network
parameters can be considered by varying the nuclear norm bound
between 0 and By Byry/n.

The resulting learning programme is fully convex and can be
efficiently solved. The above can be extended to nonlinear
activations and multiple layers, learning one layer at a time.

*https://arxiv.org/pdf/1609.01000.pdf
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Convexified CNN: MNIST (Zhang et al. 16'%)

basic | rand rot img | img+rot
SVMyyp [44] 3.03% | 14.58% | 11.11% | 22.61% | 55.18%
NN-1 [44] 4.69% | 20.04% | 18.11% | 27.41% | 62.16%
CNN-1 (ReLU) | 3.37% | 9.83% | 18.84% | 14.23% | 45.96%
CCNN-1 2.38% | 7.45% | 13.39% | 10.40% | 42.28%
TIRBM [38] 4.20% 35.50%

SDAE-3 [M4] | 2.84% | 10.30% | 9.53% | 16.68% | 43.76%
ScatNet-2 [8) | 1.27% | 12.30% | 7.48% | 1840% | 5048%
PCANet-2 9] | 1.06% | 6.19% | 7.37% | 1095% | 35.48%
ONN-2 (ReLU) | 2.11% | 5.64% | 8.21% | 1017% | 3243%
ONN-2 (Quad) | 1.75% | 5.30% | 883% | 11.60% | 36.90%
CCNN-2 138% | 4.32% | 6.98% | 7.46% | 30.23%

Table 1: Classification error on the basic MNIST and its four variations. The best performance
within each block is bolded. The tag “ReLU” and “Quad” means ReLU activation and quadratic
activation, respectively.

*https://arxiv.org/pdf/1609.01000.pdf
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Convexified CNN: CIFAR10 (Zhang et al. 16™)

Error rate 05 ‘-‘
CNN-1 34.14% g \
CCNN-1 23.62% S04
CNN-2 24.98% )
CCNN-2 20.52% go03
SVMrastiood 27] | 36.90% £
PCANet-2 [9] 22.86% R
CKN [30] 21.70% 7
CNN-3 21.48% =
CCNN-3 19.56% 0.1
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time (sec)

Table 3: Classification error on the CIFAR- Figure 4: The convergence of CNN-3 and
10 dataset. The best performance within CCNN-3 on the CIFAR-10 dataset.
each block is bolded.

CNN-1 | CNN-2 | CNN-3
Original 34.14% | 24.98% | 21.48%
Convexified | 23.62% | 21.88% | 18.18%

Table 4: Comparing the original CNN and the one whose top convolution layer is convexified by
CCNN. The classification errors are reported on CIFAR-10.

*https://arxiv.org/pdf/1609.01000.pdf
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CNN model through sparse coding (Papyan et al. 16°)

Consider a deep conv. net composed of two convolutional layers:

Z,eRV™ b, eRV™2  Wj e RVmXNM

nymy

N om b, € R¥™ WS e RVmN
- \
[ m
[ XeRY
= ReLU< T 22 RelU < & 3 &

| |

\ J
I J

The forward map (note notation using transpose of W(/):

=0 (b(2) + (WD), (b(l) n (W(l))Tx))

®https://arxiv.org/pdf/1607.08194 . pdf

Theories of DL Lecture 12 Convexified CNNs and Generative Adversarial Networks



https://arxiv.org/pdf/1607.08194.pdf

Deconvolutional NN data model (Papyan et al. 16'")

X € RV D, € RV>Nma r, € RYV™
ey
no N
- | e s,
L, € RV D, € RN >x<Nmz I, € RV™=2

Two layer deconvolutional data model with weight matrices fixed,
w() = D;, and '; > 0 whose values compose data element X.

"https://arxiv.org/pdf/1607.08194.pdf
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Generative deep nets (Goodfellow et al. 14'9)

Example of a deep convolutional generator:
3
\
. RS
—_— =
1001<m .:;>4 — ! e \‘@}
——————— 2 Stride 2

Stride2 16

Project and reshape
CONV 2 6

conva -
G(2)

Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps. 8

®https://arxiv.org/pdf/1511.06434 . pdf
*https://arxiv.org/pdf/1406.2661.pdf
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Generative deep nets (Goodfellow et al. 14'10)

Train the two network parameters using the objective

mén maxpn* Z log(D (X, yu)) + pt Z log (1 — D(G(2p),¥p))
p=1 P

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k& = 1, the least expensive option, in our
experiments.
for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(V), ..., 20"} from noise prior py(2).
e Sample minibatch of m examples {x(),... ("™} from data generating distribution
Pdata ().

e Update the discriminator by ascending its stochastic gradient:

VoL Z; 1oz D (2) + 108 (1 - D (¢ (=9)))] -

end for
e Sample minibatch of 1 noise samples {z(1), ..., 20"} from noise prior p,(z).
e Update the generator by descending its stochastic gradient:

Vo, - glg (1-p(c (=2))).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-

tum in our experiments.

Oyttps://arxiv.org/pdf/1406.2661 . pdf
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Generative deep nets (Radford et al. 16')

Figure 2: Generated bedrooms after one training pass through the dataset. Theoretically, the model
could learn to memorize training examples, but this is experimentally unlikely as we train with a
small learning rate and minibatch SGD. We are aware of no prior empirical evidence demonstrating
memorization with SGD and a small learning rate.

Uhttps://arxiv.org/pdf/1511.06434.pdf
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Generative deep nets (Radford et al. 16'1?)

Figure 3: Generated bedrooms after five epochs of training. There appears to be evidence of visual
under-fitting via repeated noise textures across multiple samples such as the base boards of some of
the beds.

Phttps://arxiv.org/pdf/1511.06434. pdf
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Wasserstein GAN (Arjovsky et al. 17'4)

One of the central challenges with GANs is the ability to train the
parameters. Improvements have been made through choice of
generative architecture (DC-GAN of Radford) and through
different training objective functions (W-GAN)

Algorithm 1 WGAN with gradient penalty. We use default values of A = 10, ngritic = 5, @ =
0.0001, By =0, B2 = 0.9.
Require: The gradient penalty coefficient \, the number of critic iterations per generator iteration
Neritic» the batch size m, Adam hyperparameters «, (31, S2.
Require: initial critic parameters wy, initial generator parameters 6.
1: while € has not converged do

2: fort =1, ..., Neritic do

3: for:=1,...,mdo

4 Sample real data @ ~ P, latent variable z ~ p(z), a random number ¢ ~ U|0, 1].
5: T+ Go(z)

6: & ex+ (1 —e€)x

7 LY « Dy(&) — Dw(x) + A(||VaDo(2) |2 — 1)

8 end for

9: w <+ Adam(V,, £ 3" L0 w, o, B1, B2)

10: end for

11: Sample a batch of latent variables {z()}7 | ~ p(z).
12: 0« Adam(Vy L 3" | —D,(Go(2)),0,a,p1, B2)
13: end while

Bhttps://arxiv.org/pdf/1704.00028. pdf
“https://arxiv.org/pdf/1701.07875. pdf
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Wasserstein GAN (Arjovsky et al. 17'1°

DCGAN LSGAN WGAN (clipping) WGAN-GP (ours)

Baseline (G: DCGAN, D: DCGAN)
e~ .
e ) B . "Ehigden
G': No BN and a coni[ant number of ﬁltem D: DCGAN
acuh ﬁ e |

G': 4-layer 512-dim ReLU MLP, D: DCGAN

No normalization in either G or D

¢ (4] =
f* T - L

Gated multiplicative nonlmeanuei everywhere in G’ and D
- ] &

101-layer ResNet GG and D

Figure 2: Different GAN architectures trained with different methods. We only succeeded in train-
ing every architecture with a shared set of hyperparameters using WGAN-GP.

Bhttps://arxiv. org/pdf/1704 00028 . pdf
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Wasserstein GAN (Arjovsky et al. 17'10)

Convergence on CIFAR-10 Convergence on CIFAR-10

— Weight clipping 21 — Weight clipping
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Figure 3: CIFAR-10 Inception score over generator iterations (left) or wall-clock time (right) for
four models: WGAN with weight clipping, WGAN-GP with RMSProp and Adam (to control for
the optimizer), and DCGAN. WGAN-GP significantly outperforms weight clipping and performs
comparably to DCGAN.

®https://arxiv.org/pdf/1704.00028. pdf
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Large scale WGAN (Karras et al. 18'17)
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Figure 1: Our training starts with both the generator (G) and discriminator (D) having a low spa-
tial resolution of 4x4 pixels. As the training advances, we incrementally add layers to G and D,
thus increasing the spatial resolution of the generated images. All existing layers remain trainable
throughout the process. Here refers to convolutional layers operating on NV x N spatial
resolution. This allows stable synthesis in high resolutions and also speeds up training considerably.
One the right we show six example images generated using progressive growing at 1024 x 1024.

https://arxiv.org/abs/1710.10196
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Large scale WGAN (Karras et al. 18'18)

Figure 1C c s. Next five rows: Nearest neighbor ain-
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Bhttps://arxiv.org/abs/1710.10196
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