
Outline for today

I Convexified CNNs to removing the weight nonlinearity.

I Introduction to Generative Adversarial Networks
I Inverse conv net for generating images
I The adversarial game
I Applications and improved training strategies, WGANs
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Convexifying the parameters pt. 1 (Zhang et al. 16’1)

Consider a two layer convolutional neural network composed of one
convolutional layer followed by a fully connected layer.
Rather than working with x directly, form P vectors zp(x) for
p = 1, . . . ,P where zp(x) is the portion of x on patch p of the
convolutional layer. Then the kth component of H(x , θ) is given by

H(x , θ)k =
r∑

j=1

p∑
p=1

αk,j ,pσ(wT
j zp(x)).

Alternatively if we exclude the nonlinearity we can express this sum
by

r∑
j=1

p∑
p=1

αk,j ,pσ(wT
j zp(x)) =

r∑
j=1

Z (x)wj

where Z (x) has zp(x) as its pth row.

1https://arxiv.org/pdf/1609.01000.pdf
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Convexifying the parameters pt. 2 (Zhang et al. 16’2)

Using the trace formula this can be further condensed to

H(x , θ)k = tr

Z (x)

 r∑
j=1

wjα
T
k,j

 = tr (Z (x)Ak)

The network parameters are given by Ak nonlinearity is imposed by
the Ak having rank r , and we can express all of the parameters of
the matrix by A which is similarly rank r .

2https://arxiv.org/pdf/1609.01000.pdf
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Convexifying the parameters pt. 3 (Zhang et al. 16’3)

One can impose the network structure through A, but remove the
non-convex rank constraint by replacing a convexification, that is
the sum of the singular values of A (Schatten-1, or nuclear, norm).

If the convolutional filters and fully connected rows are uniformly
bounded in `2 by B1 and B2 respectively, then one can replace
then the sum of the singular values of A are bounded by B1B2r

√
n

where n is the network output dimension and the network
parameters can be considered by varying the nuclear norm bound
between 0 and B1B2r

√
n.

The resulting learning programme is fully convex and can be
efficiently solved. The above can be extended to nonlinear
activations and multiple layers, learning one layer at a time.

3https://arxiv.org/pdf/1609.01000.pdf

Theories of DL Lecture 12 Convexified CNNs and Generative Adversarial Networks

https://arxiv.org/pdf/1609.01000.pdf


Convexified CNN: MNIST (Zhang et al. 16’4)

4https://arxiv.org/pdf/1609.01000.pdf
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Convexified CNN: CIFAR10 (Zhang et al. 16’5)

5https://arxiv.org/pdf/1609.01000.pdf
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CNN model through sparse coding (Papyan et al. 16’6)

Consider a deep conv. net composed of two convolutional layers:

The forward map (note notation using transpose of W (i)):

Z2 = σ
(
b(2) + (W (2))Tσ

(
b(1) + (W (1))T x

))
6https://arxiv.org/pdf/1607.08194.pdf
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Deconvolutional NN data model (Papyan et al. 16’7)

Two layer deconvolutional data model with weight matrices fixed,
W (i) = Di , and Γi ≥ 0 whose values compose data element X .

7https://arxiv.org/pdf/1607.08194.pdf
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Generative deep nets (Goodfellow et al. 14’9)

Example of a deep convolutional generator:

8

8https://arxiv.org/pdf/1511.06434.pdf
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Generative deep nets (Goodfellow et al. 14’10)

Train the two network parameters using the objective

min
G

maxDn
−1

n∑
µ=1

log(D(xµ, yµ)) + p−1
∑
p

log (1− D(G (zp), yp))

10https://arxiv.org/pdf/1406.2661.pdf
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Generative deep nets (Radford et al. 16’11)

11https://arxiv.org/pdf/1511.06434.pdf
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Generative deep nets (Radford et al. 16’12)

12https://arxiv.org/pdf/1511.06434.pdf
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Wasserstein GAN (Arjovsky et al. 17’14)

One of the central challenges with GANs is the ability to train the
parameters. Improvements have been made through choice of
generative architecture (DC-GAN of Radford) and through
different training objective functions (W-GAN)

13
13https://arxiv.org/pdf/1704.00028.pdf
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Wasserstein GAN (Arjovsky et al. 17’15)

15https://arxiv.org/pdf/1704.00028.pdf
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Wasserstein GAN (Arjovsky et al. 17’16)

16https://arxiv.org/pdf/1704.00028.pdf
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Large scale WGAN (Karras et al. 18’17)

17https://arxiv.org/abs/1710.10196
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Large scale WGAN (Karras et al. 18’18)
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