Qutline for today

» Convexified CNNs to removing the weight nonlinearity.

> Introduction to Generative Adversarial Networks
> Inverse conv net for generating images
» The adversarial game
» Applications and improved training strategies, WGANs

Theories of DL Lecture 12 Convexified CNNs and Generative Adversarial Networks

Convexifying the parameters pt. 1 (Zhang et al. 16'!)

Consider a two layer convolutional neural network composed of one
convolutional layer followed by a fully connected layer.

Rather than working with x directly, form P vectors z,(x) for
p=1,..., P where z,(x) is the portion of x on patch p of the
convolutional layer. Then the k' component of H(x,) is given by

H(x,0), = Zzakﬂ pO' w; Zp(X))

j=1 p=1

Alternatively if we exclude the nonlinearity we can express this sum

by
ZZadeU(W zp(x ZZ (x)w;

Jj=1p=1

where Z(x) has z,(x) as its pt row.

"https://arxiv.org/pdf/1609.01000.pdf

Theories of DL Lecture 12 Convexified CNNs and Generative Adversarial Networks

https://arxiv.org/pdf/1609.01000.pdf

Convexifying the parameters pt. 2 (Zhang et al. 16'?)

Using the trace formula this can be further condensed to

r
H(x,0) =tr [Z(x) ZWJOZZ—,J' = tr (Z(x)Ax)
j=1
dy
z1(x)
I r (filters) ;
: ‘ P (patches) |
tr(P Z(x) X il e w | X . :)
| Qe
I ‘ ‘ J
A
zp(x)

The network parameters are given by Ay nonlinearity is imposed by
the Ay having rank r, and we can express all of the parameters of

imilarly rank r.
https://arxiv.org/pdf/1609.01000. pdf

Theories of DL Lecture 12 Convexified CNNs and Generative Adversarial Networks

https://arxiv.org/pdf/1609.01000.pdf

Convexifying the parameters pt. 3 (Zhang et al. 163)

One can impose the network structure through A, but remove the
non-convex rank constraint by replacing a convexification, that is
the sum of the singular values of A (Schatten-1, or nuclear, norm).

If the convolutional filters and fully connected rows are uniformly
bounded in ¢? by B; and B» respectively, then one can replace
then the sum of the singular values of A are bounded by By Byry/n
where n is the network output dimension and the network
parameters can be considered by varying the nuclear norm bound
between 0 and By Byry/n.

The resulting learning programme is fully convex and can be
efficiently solved. The above can be extended to nonlinear
activations and multiple layers, learning one layer at a time.

*https://arxiv.org/pdf/1609.01000.pdf

Theories of DL Lecture 12 Convexified CNNs and Generative Adversarial Networks

https://arxiv.org/pdf/1609.01000.pdf

Convexified CNN: MNIST (Zhang et al. 16'%)

basic | rand rot img | img+rot
SVMyyp [44] 3.03% | 14.58% | 11.11% | 22.61% | 55.18%
NN-1 [44] 4.69% | 20.04% | 18.11% | 27.41% | 62.16%
CNN-1 (ReLU) | 3.37% | 9.83% | 18.84% | 14.23% | 45.96%
CCNN-1 2.38% | 7.45% | 13.39% | 10.40% | 42.28%
TIRBM [38] 4.20% 35.50%

SDAE-3 [M4] | 2.84% | 10.30% | 9.53% | 16.68% | 43.76%
ScatNet-2 [8) | 1.27% | 12.30% | 7.48% | 1840% | 5048%
PCANet-2 9] | 1.06% | 6.19% | 7.37% | 1095% | 35.48%
ONN-2 (ReLU) | 2.11% | 5.64% | 8.21% | 1017% | 3243%
ONN-2 (Quad) | 1.75% | 5.30% | 883% | 11.60% | 36.90%
CCNN-2 138% | 4.32% | 6.98% | 7.46% | 30.23%

Table 1: Classification error on the basic MNIST and its four variations. The best performance
within each block is bolded. The tag “ReLU” and “Quad” means ReLU activation and quadratic
activation, respectively.

*https://arxiv.org/pdf/1609.01000.pdf

Theories of DL Lecture 12 Convexified CNNs and Generative Adversarial Networks

https://arxiv.org/pdf/1609.01000.pdf

Convexified CNN: CIFAR10 (Zhang et al. 16™)

Error rate 05 ‘-‘
CNN-1 34.14% g \
CCNN-1 23.62% S04
CNN-2 24.98%)
CCNN-2 20.52% go03
SVMrastiood 27] | 36.90% £
PCANet-2 [9] 22.86% R
CKN [30] 21.70% 7
CNN-3 21.48% =
CCNN-3 19.56% 0.1

0 2000 4000 6000 8000
time (sec)

Table 3: Classification error on the CIFAR- Figure 4: The convergence of CNN-3 and
10 dataset. The best performance within CCNN-3 on the CIFAR-10 dataset.
each block is bolded.

CNN-1 | CNN-2 | CNN-3
Original 34.14% | 24.98% | 21.48%
Convexified | 23.62% | 21.88% | 18.18%

Table 4: Comparing the original CNN and the one whose top convolution layer is convexified by
CCNN. The classification errors are reported on CIFAR-10.

*https://arxiv.org/pdf/1609.01000.pdf

Theories of DL Lecture 12 Convexified CNNs and Generative Adversarial Networks

https://arxiv.org/pdf/1609.01000.pdf

CNN model through sparse coding (Papyan et al. 16°)

Consider a deep conv. net composed of two convolutional layers:

Z,eRV™ b, eRV™2 Wj e RVmXNM

nymy

N om b, € R¥™ WS e RVmN
- \
[m
[XeRY
= ReLU< T 22 RelU < & 3 &

| |

\ J
I J

The forward map (note notation using transpose of W(/):

=0 (b(2) + (WD), (b(l) n (W(l))Tx))

®https://arxiv.org/pdf/1607.08194 . pdf

Theories of DL Lecture 12 Convexified CNNs and Generative Adversarial Networks

https://arxiv.org/pdf/1607.08194.pdf

Deconvolutional NN data model (Papyan et al. 16'")

X € RV D, € RV>Nma r, € RYV™
ey
no N
- | e s,
L, € RV D, € RN >x<Nmz I, € RV™=2

Two layer deconvolutional data model with weight matrices fixed,
w() = D;, and '; > 0 whose values compose data element X.

"https://arxiv.org/pdf/1607.08194.pdf

Theories of DL Lecture 12 Convexified CNNs and Generative Adversarial Networks

https://arxiv.org/pdf/1607.08194.pdf

Generative deep nets (Goodfellow et al. 14'9)

Example of a deep convolutional generator:
3
\
. RS
—_— =
1001<m .:;>4 — ! e \‘@}
——————— 2 Stride 2

Stride2 16

Project and reshape
CONV 2 6

conva -
G(2)

Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps. 8

®https://arxiv.org/pdf/1511.06434 . pdf
*https://arxiv.org/pdf/1406.2661.pdf

Theories of DL Lecture 12 Convexified CNNs and Generative Adversarial Networks

https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1406.2661.pdf

Generative deep nets (Goodfellow et al. 14'10)

Train the two network parameters using the objective

mén maxpn* Z log(D (X, yu)) + pt Z log (1 — D(G(2p),¥p))
p=1 P

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k& = 1, the least expensive option, in our
experiments.
for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(V), ..., 20"} from noise prior py(2).
e Sample minibatch of m examples {x(),... ("™} from data generating distribution
Pdata ().

e Update the discriminator by ascending its stochastic gradient:

VoL Z; 1oz D (2) + 108 (1 - D (¢ (=9)))] -

end for
e Sample minibatch of 1 noise samples {z(1), ..., 20"} from noise prior p,(z).
e Update the generator by descending its stochastic gradient:

Vo, - glg (1-p(c (=2))).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-

tum in our experiments.

Oyttps://arxiv.org/pdf/1406.2661 . pdf

Theories of DL Lecture 12 Convexified CNNs and Generative Adversarial Networks

https://arxiv.org/pdf/1406.2661.pdf

Generative deep nets (Radford et al. 16')

Figure 2: Generated bedrooms after one training pass through the dataset. Theoretically, the model
could learn to memorize training examples, but this is experimentally unlikely as we train with a
small learning rate and minibatch SGD. We are aware of no prior empirical evidence demonstrating
memorization with SGD and a small learning rate.

Uhttps://arxiv.org/pdf/1511.06434.pdf

Theories of DL Lecture 12 Convexified CNNs and Generative Adversarial Networks

https://arxiv.org/pdf/1511.06434.pdf

Generative deep nets (Radford et al. 16'1?)

Figure 3: Generated bedrooms after five epochs of training. There appears to be evidence of visual
under-fitting via repeated noise textures across multiple samples such as the base boards of some of
the beds.

Phttps://arxiv.org/pdf/1511.06434. pdf

Theories of DL Lecture 12 Convexified CNNs and Generative Adversarial Networks

https://arxiv.org/pdf/1511.06434.pdf

Wasserstein GAN (Arjovsky et al. 17'4)

One of the central challenges with GANs is the ability to train the
parameters. Improvements have been made through choice of
generative architecture (DC-GAN of Radford) and through
different training objective functions (W-GAN)

Algorithm 1 WGAN with gradient penalty. We use default values of A = 10, ngritic = 5, @ =
0.0001, By =0, B2 = 0.9.
Require: The gradient penalty coefficient \, the number of critic iterations per generator iteration
Neritic» the batch size m, Adam hyperparameters «, (31, S2.
Require: initial critic parameters wy, initial generator parameters 6.
1: while € has not converged do

2: fort =1, ..., Neritic do

3: for:=1,...,mdo

4 Sample real data @ ~ P, latent variable z ~ p(z), a random number ¢ ~ U|0, 1].
5: T+ Go(z)

6: & ex+ (1 —e€)x

7 LY « Dy(&) — Dw(x) + A(||VaDo(2) |2 — 1)

8 end for

9: w <+ Adam(V,, £ 3" L0 w, o, B1, B2)

10: end for

11: Sample a batch of latent variables {z()}7 | ~ p(z).
12: 0« Adam(Vy L 3" | —D,(Go(2)),0,a,p1, B2)
13: end while

Bhttps://arxiv.org/pdf/1704.00028. pdf
“https://arxiv.org/pdf/1701.07875. pdf

Theories of DL Lecture 12 ified CNNs and Generative Adversarial Networks

https://arxiv.org/pdf/1704.00028.pdf
https://arxiv.org/pdf/1701.07875.pdf

Wasserstein GAN (Arjovsky et al. 17'1°

DCGAN LSGAN WGAN (clipping) WGAN-GP (ours)

Baseline (G: DCGAN, D: DCGAN)
e~ .
e) B . "Ehigden
G': No BN and a coni[ant number of ﬁltem D: DCGAN
acuh ﬁ e |

G': 4-layer 512-dim ReLU MLP, D: DCGAN

No normalization in either G or D

¢ (4] =
f* T - L

Gated multiplicative nonlmeanuei everywhere in G’ and D
-] &

101-layer ResNet GG and D

Figure 2: Different GAN architectures trained with different methods. We only succeeded in train-
ing every architecture with a shared set of hyperparameters using WGAN-GP.

Bhttps://arxiv. org/pdf/1704 00028 . pdf

Theories of DL Lect rative Adversarial Networks

https://arxiv.org/pdf/1704.00028.pdf

Wasserstein GAN (Arjovsky et al. 17'10)

Convergence on CIFAR-10 Convergence on CIFAR-10

— Weight clipping 21 — Weight clipping
2 — Gradient Penalty (RMSProp) = ~— Gradient Penalty (RMSProp)
9 —— Gradient Penalty (Adam) 9 — Gradient Penalty {Adam)
— DCGAN — DCGAN
1 1
0.0 05 10 15 20 0 1 2 3 i

Generator iterations Wallclock time (in seconds)

Figure 3: CIFAR-10 Inception score over generator iterations (left) or wall-clock time (right) for
four models: WGAN with weight clipping, WGAN-GP with RMSProp and Adam (to control for
the optimizer), and DCGAN. WGAN-GP significantly outperforms weight clipping and performs
comparably to DCGAN.

®https://arxiv.org/pdf/1704.00028. pdf

Theories of DL Lecture 12 Convexified CNNs and Generative Adversarial Networks

https://arxiv.org/pdf/1704.00028.pdf

Large scale WGAN (Karras et al. 18'17)

G Latent Latent Latent
) +
[44] [44] Ba
—
——————
)

e ——
1024x1024

H. R. - B
;i Reals i Reals .\ | Reals

D : ; 1024x1024
H : ——— 1

[——]
3 ——
H 8x8 [E—]
4x4 4x4 4x4

Training progresses ———————————»

Figure 1: Our training starts with both the generator (G) and discriminator (D) having a low spa-
tial resolution of 4x4 pixels. As the training advances, we incrementally add layers to G and D,
thus increasing the spatial resolution of the generated images. All existing layers remain trainable
throughout the process. Here refers to convolutional layers operating on NV x N spatial
resolution. This allows stable synthesis in high resolutions and also speeds up training considerably.
One the right we show six example images generated using progressive growing at 1024 x 1024.

https://arxiv.org/abs/1710.10196
Theories of DL Lecture 12

Convexified CNNs and Generative Adversarial Networks

https://arxiv.org/abs/1710.10196

Large scale WGAN (Karras et al. 18'18)

Figure 1C c s. Next five rows: Nearest neighbor ain-
ing dats sed on fez ace dis “e. We used activations from five VG y a ted
by Chen & 2 nly the crop highlighted ottom right imag.

in order to exclude ima cKground and focus the ch on matchi

Bhttps://arxiv.org/abs/1710.10196

Theories of DL Lecture 12 Convexified CNNs and Generative Adversarial Networks

https://arxiv.org/abs/1710.10196

