Qutline for today

» Visualisation of some network loss landscapes

» ResNet-56 with and without skip connection
» VGGY9 dependence on weight decrease and normalisation
» ResNet depth dependence and skip connections

> Early theoretical results on over parameterisation and number
of connected components of loss level curves.

» Removing the weight nonlinearity through convexification.
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Loss landscape example: ResNet-56 (Li et al. 18

(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter
normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.

'http://papers.nips.cc/paper/
7875-visualizing-the-loss-landscape-of-neural-nets.pdf
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Loss landscape example: VGG9 (Li et al.
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Figure 2: (a) and (d) are the 1D linear interpolation of VGG-9 solutions obtained by small-batch and
large-batch training methods. The blue lines are loss values and the red lines are accuracies. The
solid lines are training curves and the dashed lines are for testing. Small batch is at abscissa 0, and
large batch is at abscissa 1. The corresponding test errors are shown below. (b) and (e) shows the
change of weights norm ||0||> during training. When weight decay is disabled, the weight norm grows
steadily during training without constraints (¢) and (f) are the weight histograms, which verify that
small-batch methods produce more large weights with zero weight decay and more small weights
with non-zero weight decay.
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Loss landscape example: VGG9 normalized (Li et al. 18'3)
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Figure 3: The 1D and 2D visualization of solutions obtained using SGD with different weight decay
and batch size. The title of each subfigure contains the weight decay, batch size, and test error.
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Loss landscape example: ResNet skip (Li et al. 18™)
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Figure 5: 2D visualization of the loss surface of ResNet and ResNet-noshort with different depth.
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Loss landscape example: ResNet width (Li et al. 18™)
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Figure 6: Wide-ResNet-56 on CIFAR-10 both with shortcut connections (top) and without (bottom).
The label k = 2 means twice as many filters per layer. Test error is reported below each figure.
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Topology of loss landscape (Freeman et al. 16'°)

Consider our loss function: £(0; X,Y) = n~1 > e 10 X yu)
and its associated level set

Qe(\) ={0: L(O;X,Y) <A}

Of particular interest are the number of connected components, say
Ny, in Qz(A). If Ny =1 for all A then £(6; X, Y') has no isolated
local minima and any descent method can obtain a global minima.

If Ny > 1 there may be “spurious valleys” in which the minima in
the connected component does not achieve the global minima.

*https://arxiv.org/pdf/1611.01540.pdf
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Topology of loss landscape (Freeman et al. 16'")

Let H(x;0) be an L layer net given by h() = WAL with
WO e Rrexne-1 then if n, > min(ng, ny) for 0 < ¢ < L, the sum
of squares loss function has a single connected component

v

Let H(x;0) be an L layer net given by h() = (WO h(=1)) with
W e Rexme-1 and o(-) = max(0, ), then for any choice of ny
there is a distribution of data (X, Y) such that there are more than
one single connected component.

"https://arxiv.org/pdf/1611.01540.pdf
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Topology of loss landscape: quadratic activation (Venturi

et al. 16'8)

Consider a 2 layer ReLu network H(x,0) = W®@g(WMx) with
W® e R™*1 and W(2 e R™, then for any two parameters 6; and
0> with L(0;) < X for i = 1,2, then there is a path y(t) between 6;
and 65 such that 5(97(15)) < max(A, mfl/”).

Let H(x,0) be an L layer net given by h() = (W h(=1)) with
W) e Rme*ne—1 and quadratic activation o(z) = 22, then once the
number of parameters ny > 3N2" where N is the number of data
entries, then the sum of squares loss function has a single connected
component. For the two layer case with a single quadratic activation
this simplifies to n > 2.

v

®https://arxiv.org/pdf/1802.06384 . pdf

Theories of DL Lecture 11 Training a deep net: the objective landscape


https://arxiv.org/pdf/1802.06384.pdf

Convexifying the parameters pt. 1 (Zhang et al. 16')

Consider a two layer convolutional neural network composed of one
convolutional layer followed by a fully connected layer.

Rather than working with x directly, form P vectors z,(x) for
p=1,..., P where z,(x) is the portion of x on patch p of the
convolutional layer. Then the k' component of H(x, ) is given by

H(x,0), = Zzakﬂ pO' w; Zp(X))

j=1 p=1

Alternatively if we exclude the nonlinearity we can express this sum

by
ZZadeU(W zp(x ZZ (x)w;

Jj=1p=1

where Z(x) has z,(x) as its pt row.

*https://arxiv.org/pdf/1609.01000.pdf
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Convexifying the parameters pt. 2 (Zhang et al. 16'19)

Using the trace formula this can be further condensed to

r
H(x,0) =tr [ Z(x) ZWJOZZ—,J' = tr (Z(x)A)
j=1
dy
z1(x)
I r (filters) 1‘
: ‘ P (patches) |
tr( P Z(x) X il e w | X . : )
| Qe
I ‘ ‘ J
A
zp(x)

The network parameters are given by Ay nonlinearity is imposed by
the Ay having rank r, and we can express all of the parameters of

imilarly rank r.
Oyttps://arxiv.org/pdf/1609.01000. pdf
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Convexifying the parameters pt. 3 (Zhang et al. 16'!1)

One can impose the network structure through A, but remove the
non-convex rank constraint by replacing a convexification, that is
the sum of the singular values of A (Schatten-1, or nuclear, norm).

If the convolutional filters and fully connected rows are uniformly
bounded in ¢? by B; and B» respectively, then one can replace
then the sum of the singular values of A are bounded by By Byry/n
where n is the network output dimension and the network
parameters can be considered by varying the nuclear norm bound
between 0 and By Byry/n.

The resulting learning programme is fully convex and can be
efficiently solved. The above can be extended to nonlinear
activations and multiple layers, learning one layer at a time.

Upttps://arxiv.org/pdf/1609.01000. pdf
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Convexified CNN: MNIST (Zhang et al.

basic | rand rot img | img+rot
SVMyyp [44] 3.03% | 14.58% | 11.11% | 22.61% | 55.18%
NN-1 [44] 4.69% | 20.04% | 18.11% | 27.41% | 62.16%
CNN-1 (ReLU) | 3.37% | 9.83% | 18.84% | 14.23% | 45.96%
CCNN-1 2.38% | 7.45% | 13.39% | 10.40% | 42.28%
TIRBM [38] 4.20% 35.50%

SDAE-3 [M4] | 2.84% | 10.30% | 9.53% | 16.68% | 43.76%
ScatNet-2 [8) | 1.27% | 12.30% | 7.48% | 1840% | 5048%
PCANet-2 9] | 1.06% | 6.19% | 7.37% | 1095% | 35.48%
ONN-2 (ReLU) | 2.11% | 5.64% | 8.21% | 1017% | 3243%
ONN-2 (Quad) | 1.75% | 5.30% | 883% | 11.60% | 36.90%
CCNN-2 138% | 4.32% | 6.98% | 7.46% | 30.23%

Table 1: Classification error on the basic MNIST and its four variations. The best performance
within each block is bolded. The tag “ReLU” and “Quad” means ReLU activation and quadratic
activation, respectively.

Pyttps://arxiv.org/pdf/1609.01000. pdf
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Convexified CNN: CIFAR10 (Zhang et al. 16'1)

Error rate 05 ‘-‘
CNN-1 34.14% g \
CCNN-1 23.62% S04
CNN-2 24.98% )
CCNN-2 20.52% go03
SVMrastiood 27] | 36.90% £
PCANet-2 [9] 22.86% R
CKN [30] 21.70% 7
CNN-3 21.48% =
CCNN-3 19.56% 0.1

0 2000 4000 6000 8000
time (sec)

Table 3: Classification error on the CIFAR- Figure 4: The convergence of CNN-3 and
10 dataset. The best performance within CCNN-3 on the CIFAR-10 dataset.
each block is bolded.

CNN-1 | CNN-2 | CNN-3
Original 34.14% | 24.98% | 21.48%
Convexified | 23.62% | 21.88% | 18.18%

Table 4: Comparing the original CNN and the one whose top convolution layer is convexified by
CCNN. The classification errors are reported on CIFAR-10.

Bhttps://arxiv.org/pdf/1609.01000. pdf
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