Qutline for today

» Methods for learning the net parameters:

» Stochastic gradient descent (SGD)
» Polyak and Nesterov momentum
» AdaGrad and variants toward Adam

» Simplified version of AdaGrad with scalar, adaptive, stepsize

» Convergence dependence of scalar AdaGrad on initial stepsize

Theories of DL Lecture 10 Training a deep net: gradient descent methods

Stochastic gradient descent (SGD)

Given a loss function £(6; X, Y), gradient descent is given by
o0+ — (k) _ . grad,£(6, X, Y)

where 7 is referred to as the stepsize, or in deep learning the
“learning rate.”

Recall, we typically have a loss function which is the sum of n
individual loss functions, independent for each data point:
LO;X,Y) =01 300 1(0: %0, y)

For n > 1 gradient descent is computationally too costly and
instead one can break appart the n loss functions into
“mini-batches” and repeatedly solve

U1 = 0 — IA,|"Tgrady > 1(6; %, y)-
HENK
This is referred to as stochastic gradient descent as typically Ag is
chosen in some randomized method, usually as a partition of [n]
and a sequence of A which cover [n] is referred to as an “epoch.”

Theories of DL Lecture 10 Training a deep net: gradient descent methods

Stochastic gradient descent: challenges and benefits

9(k+1) — g(k) — 77|/\k|_1grad9 Z I(Q;X/.My/—b)‘
HENK

SGD is preferable for large n as it reduces the per iteration
computational cost dependence on n to instead depend on
|Ak| which can be set by the user as opposed to n which is
given by the data set.

SGD, and gradient descent, require selection of a learning rate
(stepsize) which in deep learning is typically selected using
some costly trial and error heuristics.

The learning rate is typically chosen adaptively in a way that
satisfies > %o mk = o0 and Y 3% ; N2 < o0o; in particular as
me ~ kL.

The optimal selection of learning weight, and selection of A,
depends on the unknown local Lipschitz constant
lgrad/(01; X1,) — grad/(62; xu, yu) || < Lp[|61 — 62]].

Theories of DL Lecture 10 Training a deep net: gradient descent methods

SGD improvements: momentum

There are many improvements of stochastic gradient descent
typically used in practise for deep learning; particularly popular is
Polyak momentum:

pUtD) — (o) 4 ek — glk—1)) _ . grad, L (9(’<)>

or Nesterov's accelerated gradient:

ok = 0k 1 getk) — glk=1))
o+ =) _ o . grad,L (é(k))

These acceleration methods give substantial improvements in the
linear convergence rate for convex problems; linear convergence

rates are: Normal GD z—j Polyak ﬁ: and NAG ‘/5; .

Theories of DL Lecture 10 Training a deep net: gradient descent methods

SGD improv. : Adaptive sub-gradients (Duchi et al. 11'1)

A standard method for improving the convergence rate of
line-search methods is preconditioning, Adaptive sub-gradients
(AdaGrad) is such a method.

Let gk (8(K)) =: grad,£(6¥)) be the gradient of the training loss
function at iteration k, then an efficient method for
preconditioning is via a diagonal matrix B with entries

1/2
B /

Bii) = | 3 (8209)()”

j=1

which is the diagonal of the square-root of the sum of prior
gradient outer-products. AdaGrad is the gradient descent method

oUF1) = gt — AL |7H(BY) + el)grad, Z 1(0; X0, Yu)-
HENK

€l > 0 added to avoid paor scaling of small values of BK)(i, /).

'http://jmlr.org/papers/volumel2/duchilla/duchilla.pdf

Theories of DL Lecture 10 Training a deep net: gradient descent methods

http://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

AdaGrad improvements: RMSProp and AdaDelta

AdaGrad preconditions with the inverse of

Bi(i,1) = (i (8900 (0)7) "

RMSProp (Hinton) gives more weight to the current gradient

BEVS (7, 1) = vBRYS(1.i) + (1 -) (6W(0W) (7))

for some v € [0, 1] and updates as

OUFN) =) — || " (B + el) M 2grady > 1(0; s yu).
HEN

AdaDelta (Zeiler 12'?) extends AdaGrad using a similar
preconditioned as B,’(?MS, but also estimates the stepsize using an
average difference in (k) — g(k=1),

https://arxiv.org/abs/1212.5701

Theories of DL Lecture 10 Training a deep net: gradient descent methods

https://arxiv.org/abs/1212.5701

Adaptive moment estimation (Adam) (Kingma et al. 15'3)

Algorithm 1: Adam, our proposed algorithm for stochastic optlmlzatlon See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g? indicates the elementwise
square g; © g;. Good default settings for the tested machine learning problems are @ = 0.001,
B = 0.9, B> = 0.999 and e = 10~%. All operations on vectors are element-wise. With [3{ and 55
we denote 31 and (32 to the power ¢.
Require: «a: Stepsize
Require: 3, 3 € [0,1): Exponential decay rates for the moment estimates
Require: f(6): Stochastic objective function with parameters ¢
Require: 6j: Initial parameter vector
myo < 0 (Initialize 1% moment vector)
vo < 0 (Initialize 24 moment vector)
t < 0 (Initialize timestep)
while 6, not converged do
t—t+1
g1 < Vo i(0:—1) (Get gradients w.r.t. stochastic objective at timestep t)
mg < B1-my—1 + (1 — B1) - g (Update biased first moment estimate)
vy < Bo v+ (1= Ba) - ,z]tz (Update biased second raw moment estimate)
s < me/(1 — BY) (Compute bias-corrected first moment estimate)
0 + v¢/(1 — 3%) (Compute bias-corrected second raw moment estimate)
0; < 0;_1 — o - My /(v/¢ + €) (Update parameters)
end while
return 6, (Resulting parameters)

*https://arxiv.org/pdf/1412.6980.pdf

Theories of DL Lecture 10 Training a deep net: gradient descent methods

https://arxiv.org/pdf/1412.6980.pdf

Adaptive moment estimation (Adam) (Kingma et al. 15')

o MNIST Multilayer Neural Network + dropout - e
\ AdaGrad ~_
— RMSProp AN
— SGDNesterov X
AdaDelta \ N
— Adam \ \\
0° X >
M ”M\«W 0 -
§ W 10°, 5 £ 15 W 5
2 I »‘W,, ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ et
g L MIST iy
£ =
. . — soom
0 ‘\\\\
N
\
AN
50 100 150 200 w
iterations over entire dataset
10°, e i)] 00
,,,,, B
(@) (b)

Figure 2: Training of multilayer neural networks on MNIST images. (a) Neural networks using
dropout stochastic regularization. (b) Neural networks with deterministic cost function. We compare
with the sum-of-functions (SFO) optimizer (Sohl-Dickstein et al., 2014)

“https://arxiv.org/pdf/1412.6980.pdf

Theories of DL Lecture 10 Training a deep net: gradient descent methods

https://arxiv.org/pdf/1412.6980.pdf

Adaptive moment estimation (Adam) (Kingma et al. 15™)

3 CIFAR10 ConvNet First 3 Epoches CIFAR10 ConvNet
— AdaGrad 0k — AdaGrad
— AdaGrad+dropout — AdaGrad+dropout
— SGDNesterov — SGDNesterov
251 SGDNesterov+dropout b SGDNesterov+dropout
— Adam — Adam
Adam-+dropout Adam-+dropout
4 200 PR
% %
8 8
o o
2 2
H < 107
g g
515 5
10?
1L
10°
0g H i H H H 10% H H H H I
.0 05 1.0 15 2.0 25 3.0 5 10 15 20 25 30 35 40 45
iterations over entire dataset iterations over entire dataset

Figure 3: Convolutional neural networks training cost. (left) Training cost for the first three epochs.
(right) Training cost over 45 epochs. CIFAR-10 with c64-c64-c128-1000 architecture.

*https://arxiv.org/pdf/1412.6980.pdf

Theories of DL Lecture 10 ning a deep net: gradient descent methods

https://arxiv.org/pdf/1412.6980.pdf

AdaGrad: as adaptive stepsize rule (Ward et al. 18'°)

Let g (8(K)) =: grady£((¥)) be the gradient of the training loss
function at iteration k, then an efficient method for
preconditioning is via a diagonal matrix B with entries

1/2
B /

Buli.i) = | 3 (89(09)(7))”

j=1

which is the diagonal of the square-root of the sum of prior
gradient outer-products. AdaGrad is the gradient descent method

ok+1) — (k) _ A | ~H(B®) + e)grad, Z 1(0; X5 Yuu)-
HEN

A simplified version, focusing on the per iteration (as opposed to
per index) update is to let By = by/ where b7 ; = b7 + &) 13.

*https://arxiv.org/pdf/1806.01811.pdf

Theories of DL Lecture 10 Training a deep net: gradient descent methods

https://arxiv.org/pdf/1806.01811.pdf

AdaGrad: scalar update in batch setting (Ward et al. 18'")

Given a loss function £(6; X, Y) consider the scalar AdaGrad
update algorithm: Initialize with 6(°) and by > 0

by = by + llgradg£(6%)]3
o) = 9= _ p tgrad,£(9))

Consider £() € C}, that is L is the smallest value for which
||ngad9£(91) — gradeﬁ(eg)Hg < LH01 — 92” for all 91, 92, then
scalar batch AdaGrad satisfies ming—y _7_1 ||gradsL(00))|3 < ¢
for either

T = 1+[26—15(0(0))(130+2,c(9<0>))] if bo>L, or

= 14 |1 (L2 - B +4(L(09) + (3/4+ Iog(L/bg))L)ZN
if bg < L. In contrast, if by is held as a fixed constant b, then i
b < L/2 gradient descent can diverge, while if b > L then
T = 2be 1L(6©).
"https://arxiv.org/pdf/1806.01811.pdf

Theories of DL Lecture 10 Training a deep net: gradient descent methods

https://arxiv.org/pdf/1806.01811.pdf

AdaGrad: scalar proof ingredients (Ward et al. 18'%)

The convergence complexity for AdaGrad in the scalar batch
setting follows from the following properties for any non-negative
values aj,...,ar with a; > 0, (with aj taking the place of
lgrady £(6%))]13)

-
<lo a; |+1 and
;ZII‘?’ g<z) Z\/Z:lal

Also, for any fixed € € (0,1] and L, by > 0, the iterates
bi+1 b? + ay has the property that after

= [e71(L? — b2)] + 1 iterations either mlnf(V;Ol ag <eorby>L.
Lastly, letting ko be the first iterate such that by, > L, then for all
k > ko bx < by,_1 +2L(0%~1)) (bounded above) and
£(0to=1)) < L (1 + 2log(bky—1/bo)) (not diverged).

®https://arxiv.org/pdf/1806.01811.pdf

Theories of DL Lecture 10 Training a deep net: gradient descent methods

https://arxiv.org/pdf/1806.01811.pdf

AdaGrad: scalar stochastic (Ward et al. 189)

Let g(%) be an unbiased estimator of the gradient grad,£(6¥) of
the training loss function at iteration k; that is

E(g(*)) = grad,£(6¥)). Moveover, let there be a uniform bound
E(|lg®|13) < c2. Then consider the stochastic scalar AdaGrad
update as

by = bp+ g3
oW — k1) _ p1g(h),

Unlike in the batch version of AdaGrad where by converges to a
fixed stepsize, stochastic AdaGrad converges roughly at the rate
by ~ cgkl/z. Morevover Ward et al. showed that

3/2 bo + ¢, q
: (k)y14/3 < 0 g g 2712
. om,...l,r)v) (EngadgE(e)l) (@) < N + N1/2> IOg(NCg/bO)

*https://arxiv.org/pdf/1806.01811.pdf

Theories of DL Lecture 10 Training a deep net: gradient descent methods

https://arxiv.org/pdf/1806.01811.pdf

18 10)

“©
)
(]
O
Pl
=
~—
_I
=2,
=
=
L=
O
=
T
0

AdaGrad

-=- SGD LinearDecay -+~ SGD SqrtDecay

SGD Constant

.-

AdaGrad

-

B

s

FC at epoch: 60

Aoeinddy urest

Aoeanddy 153,

o . e
& e it e BN
£ o o -
] =
g
5
®
4
w
p
g
g
§
®
o
4
3 G Pl S
8 e
2 e
S
g 8
5 ERN
® L)
< 2
3
=]
e -

° e
] Y S o -

B]
£
S
g 28
g R
® 1
1 - 2
0 - .
£ e e 2
£ =3
8| - S
@ -t R
8 .
3 A 5
£ 3 =

: B

curacy with respect

C

MNIST. Top (bottom) row are plots of train (test) a
to the initialization by. The left 6 figures are for logistic regression (LR) with snapshots at epoch 5,

20 and 60 in the 1st, 2nd and 3rd column res

atch setting on

Figure 1: B

pectively. The right 6 figures are for two fully connected

ers (FC) with snapshots at epoch 5, 20 and 60 in the 4th, 5th and 6th column.

lay

.org/pdf/1806.01811.pdf

iv

//arx

Pptips

gradient descent methods

o
-
]
<
2
9]
Q
-
=
[a]
=
©
@
4]
S
o
<
=

https://arxiv.org/pdf/1806.01811.pdf

)

-+~ SGD SqrtDecay

111

Ward et al. 18

(

T
N
=
=
D
)
0
T
L=
O
(©)
)
0

AdaGrad

-~ SGD LinearDecay

FC at epoch: 5

-#- SGD Constant

LR at epoch: 20

-+- AdaGrad

FC at epoch: 60

FC at epoch: 20

LR at epoch: 60

LR at epoch: 5

R S S

e

100
8

R
-

qxa; S .,‘,,.«Aw\.k; ——
— T 7

I

Aoeandoy urelr

Aoeindoy 3581

bo

bo

Figure 2: Stochastic setting on MNIST. Left 6 figures by logistic regression and right 6 figures by

two fully connected layer. Note that the scale of y-axis change. See Figure 1 for reading instruction.

//arxiv.org/pdf/1806.01811.pdf

Unttps

Theories of DL Lecture 10

)
<
<]
i
=]
I}
£
2
5]
o
@
o
<
-
=
-]
I
e
(7]
]
I}
-9
@
5]
-]
©
o0

https://arxiv.org/pdf/1806.01811.pdf

112)
-+~ SGD SqrtDecay

ResNet at epoch: 120

ResNet at epoch: 60

Ward et al. 18

ResNet at epoch: 10

(

gradient descent methods

LeNet at epoch: 120

SGD Constant

LeNet at epoch: 60

.

//arxiv.org/pdf/1806.01811.pdf

o
i
z
o
O
D
-
(%]
[}
=
O
(©)
+—
0

LeNet at epoch: 10

-+- AdaGrad

Adeanddy ureiy Aoeandoy 3591

Note that the epoch (see title) is different from previous figures and no momentum is used. See
12https

Figure 3: Stochastic setting on CIFAR10. Left 6 figures by LeNet and right 6 figures by ResNet.
Figure 1 for reading instruction.

o
-
]
<
2
9]
Q
-
=
[a]
=
©
@
=
S
o
<
=

AdaGrad

https://arxiv.org/pdf/1806.01811.pdf

