
Outline for today

I Methods for learning the net parameters:
I Stochastic gradient descent (SGD)
I Polyak and Nesterov momentum
I AdaGrad and variants toward Adam

I Simplified version of AdaGrad with scalar, adaptive, stepsize

I Convergence dependence of scalar AdaGrad on initial stepsize

Theories of DL Lecture 10 Training a deep net: gradient descent methods

Stochastic gradient descent (SGD)

Given a loss function L(θ;X ,Y), gradient descent is given by

θ(k+1) = θ(k) − η · gradθL(θ,X ,Y)

where η is referred to as the stepsize, or in deep learning the
“learning rate.”
Recall, we typically have a loss function which is the sum of n
individual loss functions, independent for each data point:
L(θ;X ,Y) = n−1

∑n
µ=1 l(θ; xµ, yµ)

For n� 1 gradient descent is computationally too costly and
instead one can break appart the n loss functions into
“mini-batches” and repeatedly solve

θ(k+1) = θ(k) − η|Λk |−1gradθ
∑
µ∈Λk

l(θ; xµ, yµ).

This is referred to as stochastic gradient descent as typically Λk is
chosen in some randomized method, usually as a partition of [n]
and a sequence of Λk which cover [n] is referred to as an “epoch.”

Theories of DL Lecture 10 Training a deep net: gradient descent methods

Stochastic gradient descent: challenges and benefits

θ(k+1) = θ(k) − η|Λk |−1gradθ
∑
µ∈Λk

l(θ; xµ, yµ).

I SGD is preferable for large n as it reduces the per iteration
computational cost dependence on n to instead depend on
|Λk | which can be set by the user as opposed to n which is
given by the data set.

I SGD, and gradient descent, require selection of a learning rate
(stepsize) which in deep learning is typically selected using
some costly trial and error heuristics.

I The learning rate is typically chosen adaptively in a way that
satisfies

∑∞
k=1 ηk =∞ and

∑∞
k=1 η

2
k <∞; in particular as

ηk ∼ k−1.
I The optimal selection of learning weight, and selection of Λ,

depends on the unknown local Lipschitz constant
‖gradl(θ1; xµ, yµ)− gradl(θ2; xµ, yµ)‖ ≤ Lµ‖θ1 − θ2‖.

Theories of DL Lecture 10 Training a deep net: gradient descent methods

SGD improvements: momentum

There are many improvements of stochastic gradient descent
typically used in practise for deep learning; particularly popular is
Polyak momentum:

θ(k+1) = θ(k) + β(θ(k) − θ(k−1))− α · gradθL
(
θ(k)

)
or Nesterov’s accelerated gradient:

θ̂k = θ(k) + β(θ(k) − θ(k−1))

θ(k+1) = θ̂(k) − α · gradθL
(
θ̂(k)

)
These acceleration methods give substantial improvements in the
linear convergence rate for convex problems; linear convergence

rates are: Normal GD κ−1
κ+1 , Polyak

√
κ−1√
κ+1

and NAG
√√

κ−1√
κ

.

Theories of DL Lecture 10 Training a deep net: gradient descent methods

SGD improv. : Adaptive sub-gradients (Duchi et al. 11’1)

A standard method for improving the convergence rate of
line-search methods is preconditioning, Adaptive sub-gradients
(AdaGrad) is such a method.
Let g (k)(θ(k)) =: gradθL(θ(k)) be the gradient of the training loss
function at iteration k , then an efficient method for
preconditioning is via a diagonal matrix B with entries

Bk(i , i) =

 k∑
j=1

(
g (j)(θ(j))(i)

)2

1/2

which is the diagonal of the square-root of the sum of prior
gradient outer-products. AdaGrad is the gradient descent method

θ(k+1) = θ(k) − η|Λk |−1(B(k) + εI)−1gradθ
∑
µ∈Λk

l(θ; xµ, yµ).

εI > 0 added to avoid poor scaling of small values of B(k)(i , i).
1http://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

Theories of DL Lecture 10 Training a deep net: gradient descent methods

http://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

AdaGrad improvements: RMSProp and AdaDelta

AdaGrad preconditions with the inverse of

Bk(i , i) =
(∑k

j=1

(
g (j)(θ(j))(i)

)2
)1/2

.

RMSProp (Hinton) gives more weight to the current gradient

BRMS
k (i , i) = γBRMS

k−1 (i , i) + (1− γ)
(
g (k)(θ(k))(i)

)2

for some γ ∈ [0, 1] and updates as

θ(k+1) = θ(k) − η|Λk |−1(B(k) + εI)−1/2gradθ
∑
µ∈Λk

l(θ; xµ, yµ).

AdaDelta (Zeiler 12’2) extends AdaGrad using a similar
preconditioned as BRMS

k , but also estimates the stepsize using an
average difference in θ(k) − θ(k−1).

2https://arxiv.org/abs/1212.5701

Theories of DL Lecture 10 Training a deep net: gradient descent methods

https://arxiv.org/abs/1212.5701

Adaptive moment estimation (Adam) (Kingma et al. 15’3)

3https://arxiv.org/pdf/1412.6980.pdf

Theories of DL Lecture 10 Training a deep net: gradient descent methods

https://arxiv.org/pdf/1412.6980.pdf

Adaptive moment estimation (Adam) (Kingma et al. 15’4)

4https://arxiv.org/pdf/1412.6980.pdf

Theories of DL Lecture 10 Training a deep net: gradient descent methods

https://arxiv.org/pdf/1412.6980.pdf

Adaptive moment estimation (Adam) (Kingma et al. 15’5)

5https://arxiv.org/pdf/1412.6980.pdf

Theories of DL Lecture 10 Training a deep net: gradient descent methods

https://arxiv.org/pdf/1412.6980.pdf

AdaGrad: as adaptive stepsize rule (Ward et al. 18’6)

Let g (k)(θ(k)) =: gradθL(θ(k)) be the gradient of the training loss
function at iteration k , then an efficient method for
preconditioning is via a diagonal matrix B with entries

Bk(i , i) =

 k∑
j=1

(
g (j)(θ(j))(i)

)2

1/2

which is the diagonal of the square-root of the sum of prior
gradient outer-products. AdaGrad is the gradient descent method

θ(k+1) = θ(k) − η|Λk |−1(B(k) + εI)−1gradθ
∑
µ∈Λk

l(θ; xµ, yµ).

A simplified version, focusing on the per iteration (as opposed to
per index) update is to let Bk = bk I where b2

k+1 = b2
k + ‖g (k)‖2

2.

6https://arxiv.org/pdf/1806.01811.pdf

Theories of DL Lecture 10 Training a deep net: gradient descent methods

https://arxiv.org/pdf/1806.01811.pdf

AdaGrad: scalar update in batch setting (Ward et al. 18’7)

Given a loss function L(θ;X ,Y) consider the scalar AdaGrad
update algorithm: Initialize with θ(0) and b0 > 0

b2
k = b2

b−1 + ‖gradθL(θ(k))‖2
2

θ(k) = θ(k−1) − b−1
k gradθL(θ(k))

Consider L(θ) ∈ C 1
L , that is L is the smallest value for which

‖‖gradθL(θ1)− gradθL(θ2)‖2 ≤ L‖θ1 − θ2‖ for all θ1, θ2, then
scalar batch AdaGrad satisfies mink=1,...,T−1 ‖gradθL(θ(k))‖2

2 ≤ ε
for either

T = 1 +
⌈

2ε−1L(θ(0))(b0 + 2L(θ(0)))
⌉

if b0 ≥ L, or

= 1 +
⌈
ε−1

(
L2 − b2

0 + 4(L(θ(0)) + (3/4 + log (L/b0))L)2
)⌉

if b0 < L. In contrast, if bk is held as a fixed constant b, then if
b < L/2 gradient descent can diverge, while if b ≥ L then
T = 2bε−1L(θ(0)).

7https://arxiv.org/pdf/1806.01811.pdf

Theories of DL Lecture 10 Training a deep net: gradient descent methods

https://arxiv.org/pdf/1806.01811.pdf

AdaGrad: scalar proof ingredients (Ward et al. 18’8)

The convergence complexity for AdaGrad in the scalar batch
setting follows from the following properties for any non-negative
values a1, . . . , aT with a1 > 0, (with ak taking the place of
‖gradθL(θ(k))‖2

2)

T∑
`=1

a`∑`
i=1 ai

≤ log

(
T∑
i=1

ai

)
+1 and

T∑
`=1

a`√∑`
i=1 ai

≤ 2

√√√√ T∑
i=1

ai .

Also, for any fixed ε ∈ (0, 1] and L, b0 > 0, the iterates
b2
k+1 = b2

k + ak has the property that after

N = dε−1(L2 − b2
o)e+ 1 iterations either minN−1

k=0 ak ≤ ε or bN ≥ L.
Lastly, letting k0 be the first iterate such that bk0 ≥ L, then for all
k ≥ k0 bk ≤ bk0−1 + 2L(θ(k0−1)) (bounded above) and
L(θ(k0−1)) ≤ L

2 (1 + 2 log(bk0−1/b0)) (not diverged).

8https://arxiv.org/pdf/1806.01811.pdf

Theories of DL Lecture 10 Training a deep net: gradient descent methods

https://arxiv.org/pdf/1806.01811.pdf

AdaGrad: scalar stochastic (Ward et al. 18’9)

Let g (k) be an unbiased estimator of the gradient gradθL(θ(k)) of
the training loss function at iteration k ; that is
E(g (k)) = gradθL(θ(k)). Moveover, let there be a uniform bound
E(‖g (k)‖2

2) ≤ c2
g . Then consider the stochastic scalar AdaGrad

update as

b2
k = b2

b−1 + ‖g (k)‖2
2

θ(k) = θ(k−1) − b−1
k g (k).

Unlike in the batch version of AdaGrad where bk converges to a
fixed stepsize, stochastic AdaGrad converges roughly at the rate
bk ≈ cgk

1/2. Morevover Ward et al. showed that

min
`=0,...,N−1

(
E‖gradθL(θ(k))‖4/3

)3/2
≤ O

(
b0 + cg

N
+

cg
N1/2

)
log(Nc2

g/b
2
0).

9https://arxiv.org/pdf/1806.01811.pdf

Theories of DL Lecture 10 Training a deep net: gradient descent methods

https://arxiv.org/pdf/1806.01811.pdf

AdaGrad: batch MNIST (Ward et al. 18’10)

10https://arxiv.org/pdf/1806.01811.pdf

Theories of DL Lecture 10 Training a deep net: gradient descent methods

https://arxiv.org/pdf/1806.01811.pdf

AdaGrad: stochastic MNIST (Ward et al. 18’11)

11https://arxiv.org/pdf/1806.01811.pdf

Theories of DL Lecture 10 Training a deep net: gradient descent methods

https://arxiv.org/pdf/1806.01811.pdf

AdaGrad: stochastic CIFAR10 (Ward et al. 18’12)

12https://arxiv.org/pdf/1806.01811.pdf

Theories of DL Lecture 10 Training a deep net: gradient descent methods

https://arxiv.org/pdf/1806.01811.pdf

