Review of Lecture 7: random matrix theory view of loss

function (Pennington et al. 17'1)

Let e, = Vi, — yi . be the error in the ith entry of the output for
data entry indexed by s, and 6 = {W® W@} € R2" be the net
parameters, then the hessian of the sum of squares loss function
has entries

e
~ 90,00,

with Hy positive semi-definite and H; indefinite.

Modelling Hy and H; as Wishart and Wigner respectively, the
additive spectra can be computed and fraction of non-negative
eigenvalues determined along with point where 2n/m and n~1L
predict the loss function is convex.

fﬂhﬁ =:Ho+ Hp

'http://proceedings.mlr.press/v70/penningtoni7a.html
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Qutline for today

v

Jacobian of the feed forward deep net, length propagation.

v

Stability or exponential growth/shrinkage of length with
depth; computation of the spectra through & Transform

v

Role of nonlinear activations and length fixed point maps.

v

Deep spectra and distributions of the activation derivatives

v

Classes of universality in the spectra for diverse activation
functions.
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Jacobian of deep net

Consider a fully connected L layer deep net given by
xO = ¢(h4))  with  AO = wOx(E=1) 4 p0)

for £ =1,..., L with nonlinear activation ¢(-) and W) ¢ RNxN,

Its Jacobian is given by

ox(L) L
— — @Ow
J= 0 My_;D"YW

where D) is diagonal with entries Di(ig) = gb’(h,(e)).

We further consider the case of a random net, W) and b(©) drawn
from specified distributions, and investigate how the ¢? length of
input vectors change as they are propagated through the net.
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Length propagation (Poole et al. 16'2)

Let ' = N~1||h()||3 be the average squared /5 length of the
pre-activation h() = WEOx(E=1) 4 p(©) at layer ¢.

Treating the model of W) and b(®) being drawn from N(0, c2)

and N(0, 012)) respectively, we can express the evolution of the
length as

) = ol N7Ho(h )3 + o

Replacing the average squared length N~1|| - ||3 for large N by the
squared integral we could instead consider the propagation

2
g =o2 /(27r)_1/2¢ < q(€—1)2> e ?Pdz 4+ o3

https://arxiv.org/pdf/1606.05340. pdf
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Length propagation fixed point (Poole et al. 16'3)

The average squared length ¢° = N_th(f)H% of the pre-activation
following the recursion

2
q¥) =02 /(27r)_1/2¢ ( q(€_1)2> e 22dz + o3

has a fixed point ¢* = o2, [(27)"Y/%¢ (\/ q(*)z)2 e 2/2dz 4 o2
whose stability governs the ability of the network to train. In fact,
the growth of a perturbation is given by the largest singular value
of JTJ, that is ||Jul|3/||ul|3 which is given by

2
X = aﬁ, /(27r)1/2q§' <\/q(*)z> e 2124z

*https://arxiv.org/pdf/1606.05340.pdf
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Stability of pre-activation lengths (Pennington et al. 1

0.25 -
Ordered 1.5
0.20 xX(ow,op) <1
Vanishing Gradients
1.0
0.15
A 0.5
0.10
0.0
0.05 Chaotic
xX(ow, o) > 1
Exploding Gradients
0.00
0.5 1.0 1.5 2.0 2.5 3.0
0—37
Figure 1: Order-chaos transition when @(h) =
tanh(h). The critical line x = 1 determines the bound-

ary between the two phases. In the chaotic regime
x > 1 and gradients explode while in the ordered
regime x < 1 and we expect gradients to vanish. The
value of g* along this line is shown as a heatmap.

“https://arxiv.org/pdf/1802.09979.pdf
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Spectrum of the Jacobian pt. 1 (Pennington et al. 18™)

Recall the input-output Jacobian is given by
ox(D)

~ 9x(0
where D() is diagonal with entries D (é/(h () )

=nk_, D(L’) w®

For z € C/R the Stieltjes Transform, G,(z), of a probability distri-
bution and its inverse are given by

Gp(z):/ﬂkﬂdt and  p(\) = -7t lim Imag(G,(\ + ie)).

z—t e—04+

The Stieltjes Transform and moment generating function are related
by M,(2) := 2G,(z) — 13 2, Z¥, and the S Transform is defined
as Sy(z) = ZN};Z(Z). The § Transform has the property that if pg
and p» are freely independent then S, ,, = S5,,S,,.

*https://arxiv.org/pdf/1802.09979.pdf
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Spectrum of the Jacobian pt. 2 (Pennington et al. 18'°)

Recall the input-output Jacobian is given by
9x(L)
— 9x(0)

where D() is diagonal with entries D ng’(h(e ).
The S Transform of JJT is then glven by

- néle(f) w®

SJJT - SDQSWTW

This can be computed through the moments M7 (z) = 32, 2,
Mp2(z) = 332, &, and SWTW = 0,2 (14 272, skz¥) where

e = [(2m) M2 (\/ q *)Z) e %/2dz.
In particular: my = (02,u1)" and 02 11 = x is the growth factor we

observed before for which x = 1 has controlled growth through the
layers..

*https://arxiv.org/pdf/1802.09979.pdf
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Nonlinear activation stability (Pennington et al. 18'")

Table 1: Properties of Nonlinearities

O(h) MD2 (Z) 3 0,2” 03]T
Linear h - 1 1 1 L(-91)
ReLu (] %fq % 2 L(l-¢)
Bard T | -+1]; b~ 1} =1 | enf( =) e 1) erf(liqn L(—erf%)—l-ﬂ)
L} " 14mq"
B el At(bh i) | e | VI | LU 1)

1/2 ¢/<V q(*)z)z

Z—QS/ (\/ q(*)z)

Where Mp2(z) = [(27)~

Gaussian s; = —1 where as for W orthogonal s1 = 0. Note that for
all nonlinear actlvatlons for ula =1, O'JJ-,— grows linearly with L.
Linear ¢(-): ¢* = awq + ab, and fixed point (o, 0p) = (1,0).

ReLU ¢(-): ¢* = 302,g* + 02, and fixed point (0w, 0p) = (v2,0).
Hard Tanh and Erf have curves as fixed points x(o, op).

"https://arxiv.org/pdf/1802.09979.pdf
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Deep spectra of Jacobian (Pennington et al. 18'8)
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Figure 2: Examples of deep spectra at criticality for different nonlinearities at different depths. Singular values
from empirical simulations of networks of width 1000 are shown with solid lines while theoretical predictions
from the master equation and algorithm are overlaid with dashed lines. For each panel, the weight variance o2
is held constant as the depth increases. Notice that linear Gaussian and orthogonal ReLU have similarly-shaped
distributions, especially for large depths, where poor conditioning and many large singular values are observed.

Erf and Hard Tanh are better conditioned, but at 128 layers we begin to observe some spread in the distributions.

Linear Gaussian and ReLU exhibit greater growth in the spectra
with depth as compared to Hard Tahh and Erf.

®https://arxiv.org/pdf/1802.09979.pdf
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Nonlinear activation stability (Pennington et al. 18')

Table 1: Properties of Nonlinearities

o(h) Mpe(z) I 0 T
Linear h % 1 1 L(-91)
ReLu ]+ i ; 2 L(l-s)
1y 1 1 1 g
Hard Tanh | [h+ 1 = [h- 1]+ -1 er(‘/ﬁ)z_1 erf( =) T L(erf( = 1-5)
VT Log(l1 4mg 1 : Lng" g
Erf erf(4°h) WZ@(Z‘Q, o ) | VIt L(\/W 1-s))

—\ 2
_1/2Me_22/2dz and for W
z—qS’(\/q(*i)z)
Gaussian s; = —1 where as for W orthogonal s; = 0. Note that for
all nonlinear activations for p;02, =1, J_2IJT grows linearly with L.
Linear and ReLU have UEJT growing linearly with L (except linear
orthogonal where s; = 0).
Hard Tanh and Erf: g*(L) can be selected such that O'?UT
approaches a fixed value as L — oo.
*https://arxiv.org/pdf/1802.09979.pdf

Where Mp2(z) = [(2)

Theories of DL Lecture 8 Random matrix theory as a view on deep nets: trainability


https://arxiv.org/pdf/1802.09979.pdf

Distribution of activations ¢'(z) (Pennington et al. 18'1°)
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Figure 3: Distribution of ¢/(h) for different nonlinearities. The top row shows the nonlinearity, ¢(h), along with
the Gaussian distribution of pre-activations h for four different choices of the variance, ¢*. The bottom row gives
the induced distribution of ¢'(h). We see that for ReLU the distribution is independent of ¢*. This implies that
there is no stable limiting distribution for the spectrum of JJ”. By contrast for the other nonlinearities the
distribution is a relatively strong function of ¢*.

Opttps://arxiv.org/pdf/1802.09979. pdf
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Distribution of Jacobian spectra (Pennin
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Figure 4: Two limiting universality classes of Jacobian spectra. Hard Tanh and Shifted ReLU fall into one class,
characterized by Bernoulli-distributed ¢'(h)?, while Exf and Smoothed ReLU fall into a second class, characterized
by a smooth distribution for ¢'(h)?. The black curves are theoretical predictions for the limiting distributions
with variance 0 = 1/4. The colored lines are emprical spectra of finite-depth width-1000 orthogonal neural
networks. The empirical spectra converge to the limiting distributions in all cases. The rate of convergence is
similar for Hard-Tanh and Shifted ReLU, whereas it is significantly different for Erf and Smoothed Relu, which
converge to the same limiting distribution along distinct trajectories. In all cases, the solid colored lines go from
shallow L = 2 networks (red) to deep networks (purple). In all cases but Exf the deepest networks have L = 128.
For Erf, the dashed lines show solutions to for very large depth up to L = 8192.

Upttps://arxiv.org/pdf/1802.09979. pdf
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