
Outline for today

I Model of the Hessian for sum of squares loss function for two
layer fully connected random net

I Random matrix theory models for the Hessian

I Introduction to Wishart and Wigner random matrices

I Stieltjes and R Transform for summing distributions

I Parameters where negative eigenvalues occur
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Loss function for a simple two layer net

Consider a data set X ∈ Rn×m of m data entries in Rn and
associated target outputs (such as labels) Y ∈ Rn2×m (for
simplicity we let n2 = n). Also consider a (very) simple two layer
net:

h1 = σ(W (1)x0) note, no bias, and σ(·) = max(0, ·)
h2 = W (2)h1 note, no bias or nonlinear activation.

The output of the net is H(xµ; θ) = ŷµ and we measure the value
of the net through the average sum of squares:

L = (2m)−1
m∑
µ=1

n∑
i=1

(ŷi ,µ − yi ,µ)2

and define a weighted loss accuracy as ε = n−1L.
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Hessian for two layer net (without activation)

Let ei ,µ = ŷi ,µ − yi ,µ be the error in the i th entry of the output for

data entry indexed by µ, and θ = {W (1),W (2)} ∈ R2n2 be the net
parameters, then the hessian of the loss function has entries

Hα,β =
∂2L

∂θα∂θβ
=: H0 + H1

with positive semi-definite and error dependent components:

[H0]α,β := m−1
m∑

mu=1

n∑
i=1

∂ŷi ,µ
∂θα

∂ŷi ,µ
∂θβ

= m−1[JJT ]α,β

[H1]α,β := m−1
m∑

mu=1

n∑
i=1

ei ,µ
∂2ŷi ,µ
∂θα∂θβ

.

Note, H is composed of mn rank one matrices measuring the
dependence on the data X ,Y i ,µ. Let φ = 2n2/mn = 2n/m to
measure the relative rank fraction.
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Loss function landscape through Hessian eigenvalues

Functions, say L, which have hessians that are:

I positive definite (all positive eigenvalues) are convex and have
a single global minima and unique minimiser,

I positive semi-definite have single global minima but
non-unique minimiser due to the null-space

I indefinite (positive and negative eigenvalues) are non-convex
and may be a complicated landscape with multiple local
minimisers.

For the simple two layer network we considered the network has
Hessian H = H0 + H1 with H0 positive semidefinite and of size
independent of the error, while H1 is indefinite with magnitude
depending on the size of ei ,µ = ŷi ,µ − yi ,µ.
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Viewing the landscape through random matrix theory
(Pennington et al. 17’1)

One can interpret properties of the landscape through the Hessian
by considering simplified models:

I The weights are i.i.d. random normal variable,

I The dat are i.i.d. random variables,

I The residuals ei ,µ = ŷi ,µ − yi ,µ are normal random variables,
say N (0, 2ε) with ε = n−1L (which also allows the gradient to
vanish as m→∞,

I The matrices H0 and H1 are freely independent which allows
us to compute the spectra of H0 + H1 from their individual
spectra.

1http://proceedings.mlr.press/v70/pennington17a.html
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Wigner and Wishart distributions

Wigner matrices, entries drawn N (0, σ2), have eigenvalues drawn
from the semi-circle law:

ρsc(λ) =

{
1

2πσ2

√
4σ2 − λ2 if |λ| ≤ 2σ

0 otherwise

Wishart matrices, X = JJT product of J ∈ Rn×p drawn
N (0, σ2/p) have eigenvalues drawn from the Marchenko-Pastur
distribution:

ρMP(λ) =

{
ρ(λ) if φ = n/p < 1
(1− φ−1)δ(λ) + ρ(λ) otherwise

where ρ(λ) := (2πλσφ)−1
√

(λ− λ−)(λ+ − λ) for λ ∈ [λ−, λ+]
and λ± := σ(1±

√
φ)2.
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Stieltjes and R Transforms of probability distributions

The probability distribution of the sum of two (freely independent)
random matrix distributions can be calculated using the transforms:

Stieltjes and R Transformsa

ahttps:

//terrytao.wordpress.com/tag/stieltjes-transform-method/

For z ∈ C/R the Stieltjes Transform, Gρ(z), of a probability distri-
bution and its inverse are given by

Gρ(z) =

∫
R

ρ(t)

z − t
dt and ρ(λ) = −π−1 lim

ε→∞+
Imag(Gρ(λ+iε)).

The Stieltjes and R Transform of ρ are related by the solutions of
Rρ(Gρ(z)) + 1/Gρ(z) = z and has the property that if ρ1 and ρ2
are freely independent then Rρ1+ρ2 = Rρ1 +Rρ2 .
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Recall the Hessian for two layer net (without activation)

Let ei ,µ = ŷi ,µ − yi ,µ be the error in the i th entry of the output for

data entry indexed by µ, and θ = {W (1),W (2)} ∈ R2n2 be the net
parameters, then the hessian of the loss function has entries

Hα,β =
∂2L

∂θα∂θβ
=: H0 + H1

with positive semi-definite and error dependent components:

[H0]α,β := m−1
m∑

mu=1

n∑
i=1

∂ŷi ,µ
∂θα

∂ŷi ,µ
∂θβ

= m−1[JJT ]α,β

[H1]α,β := m−1
m∑

mu=1

n∑
i=1

ei ,µ
∂2ŷi ,µ
∂θα∂θβ

.

Where we assumed that H0 and H1 can be modelled as being
drawn from Wishart and Wigner distributions respectively.
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Modelling the landscape through random matrix theory
(Pennington et al. 17’2)

Using the Pennington model (φ = 2n/m and ε = n−1L) we have
ρH0(λ) = ρMP(λ; 1, φ) and ρH1(λ) = ρSC (λ;

√
2ε).

Their R transforms are respectively

RH0 =
1

1− zφ
and RH1 = 2εz ,

from which follows the probability distribution, ρH(λ; ε, φ):

2http://proceedings.mlr.press/v70/pennington17a.html
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Fraction of negative eigenvalues (Pennington et al. 17’3)

Consider the fraction of negative eigenvalues of ρH(λ):

α(ε, φ) :=

∫ 0

−∞
ρH(λ; ε, φ)dλ.

Fraction of negative eigenvalues (without ReLU)a

ahttp://proceedings.mlr.press/v70/pennington17a.html

For ρH(λ) modelling the Hessian of the two layer net, when α is
small it is well approximated by

α(ε, φ) ≈ α0(φ)

∣∣∣∣ε− εcεc

∣∣∣∣3/2
where

εc =
1

16
(1− 20φ− 8φ2 + (1 + 8φ)3/2).

3http://proceedings.mlr.press/v70/pennington17a.html
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The two layer ReLU net (Pennington et al. 17’4)

The introduction of the ReLU nonlinear activation changes the
Hessian, roughly setting to zero half of the entries and generating
a block off-diagonal structure in H1 with RH1(z) = εφz

2−εφ2z2 .

Continuing to model H0 as Wishart (less clear an assumption):

Fraction of negative eigenvalues (with ReLU)a

ahttp://proceedings.mlr.press/v70/pennington17a.html

For ρH(λ) modelling the Hessian of the two layer net, when α is
small it is well approximated by

α(ε, φ) ≈ α̃0(φ)

∣∣∣∣ε− εcεc

∣∣∣∣3/2 where

εc =
σ2(27− 18ξ − ξ2 + 8ξ3/2)

32φ(1− φ)3
, with ξ = 1 + 16φ− 8φ2.

4http://proceedings.mlr.press/v70/pennington17a.html
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Empirical values of εc and α (Pennington et al. 17’5)

5http://proceedings.mlr.press/v70/pennington17a.html
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