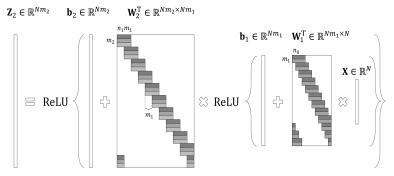
- A data model generated through a deep sparse <u>deconvolutional</u> model
- A notion of stripe sparsity based on locality of the features; stripe sparsity
- Proof that for such data the generating activations are obtained in a deep network formulation
- Examples of representations learned through the sparse deconvolutional models, and early results using l¹ regularization.

CNN model through sparse coding (Papyan et al. $16'^1$)

Consider a deep conv. net composed of two convolutional layers:

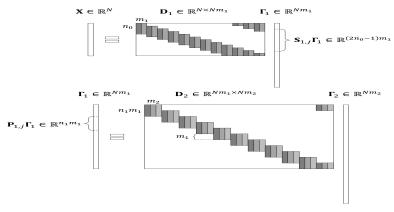


The forward map (note notation using transpose of $W^{(i)}$):

$$Z_{2} = \sigma \left(b^{(2)} + (W^{(2)})^{T} \sigma \left(b^{(1)} + (W^{(1)})^{T} x \right) \right)$$

¹https://arxiv.org/pdf/1607.08194.pdf

Deconvolutional NN data model (Papyan et al. 16'²)



Two layer deconvolutional data model with weight matrices fixed, $W^{(i)} = D_i$, and $\Gamma_i \ge 0$ whose values compose data element X.

²https://arxiv.org/pdf/1607.08194.pdf

Stripe sparsity model (Papyan et al. 16'³)

Consider a data vector x restricted to a patch of n consecutive entries, $x_i \in \mathbb{R}^n$. Due to the convolutional structure in D with m masks, each of length n, the portion of Γ that can influence x_i is the patch $\gamma_i \in \mathbb{R}^{(2n-1)m}$.

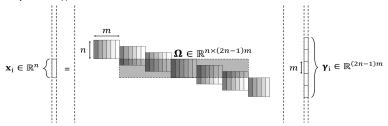


Figure 4: The *i*-th patch \mathbf{x}_i of the global system $\mathbf{X} = \mathbf{D}\mathbf{\Gamma}$, given by $\mathbf{x}_i = \mathbf{\Omega}\boldsymbol{\gamma}_i$.

We consider Γ to have a stripe sparsity defined by $\|\Gamma\|_{0,\infty}^s = \max_i \|\gamma_i\|_0$.

³https://arxiv.org/pdf/1607.08194.pdf

Consider the data model where for fixed known $\{D_i\}_{i=1}^N$ and stripe sparsity $\|\Gamma_i\|_{0,\infty}^s \leq s_i$ for $i = 1, \cdot, N$ the data is composed by

$$X = D_1 \Gamma_1$$

$$\Gamma_1 = D_2 \Gamma_2$$

$$\vdots$$

$$\Gamma_{N-1} = D_N \Gamma_N$$
 (1)

For such a data model is it guaranteed that a deep network with weights $W^{(i)} = D_i^T$ would have the same activations as Γ_i ; that is would Γ_i be similar to $h_{i+1} = \sigma(W^{(i)}h_i)$ in some norm or otherwise?

⁴https://arxiv.org/pdf/1607.08194.pdf

Г

Theorem (Layered hard thresholding)

Let Y = X + E where E denotes missfit to the model or noise and X be given by the data model (1null). Let $||E||_{2,\infty}^P \leq \epsilon_0$ be a local bound on the error and let $\hat{\Gamma}_i = H_{\beta_i} \left(D_i^T \hat{\Gamma}_{i-1} \right)$ where $\hat{\Gamma}_0 = Y$, then if β_i are chosen appropriately (formulae available) and

$$\|\Gamma_i\|_{0,\infty}^s \leq \frac{1}{2} \left(1 + \mu^{-1}(D_i) \frac{|\Gamma_i^{min}|}{|\Gamma_i^{max}|}\right) - \mu^{-1}(D_i) \frac{\epsilon_{i-1}}{|\Gamma_i^{max}|}$$

then the support of $\hat{\Gamma}_i$ and Γ_i are the same and moreover $\|\Gamma_i - \hat{\Gamma}_i\|_{2,\infty}^P \leq \epsilon_i = \sqrt{\|\Gamma_i\|_{0,\infty}^P} \left(\epsilon_{i-1} + \mu(D_i)|\Gamma_i^{max}|(\|\Gamma_i\|_{0,\infty}^s - 1)\right).$

For simple union of subspace data models the convolutional network is guaranteed to recover the generating activations with

Theories of DL Lecture 5 Deep convolutional sparse coding

Learned ML-CSC on MNIST (Sulam et al. 18'⁶)

a)

b)

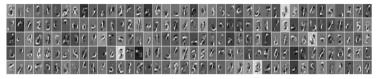


Fig. 3: ML-CSC model trained on the MNIST dataset. a) The local filters of the dictionary D_1 . b) The local filters of the effective dictionary $D^{(2)} = D_1D_2$. c) Some of the 1024 local atoms of the effective dictionary $D^{(3)}$ which, because of the dimensions of the filters and the strides, are global atoms of size 28×28 .

Learned dictionaries are show increasing structure from local wavelets in D_1 to composite features in D_2 to representative numbers in D_3 .

⁶https://arxiv.org/abs/1708.08705

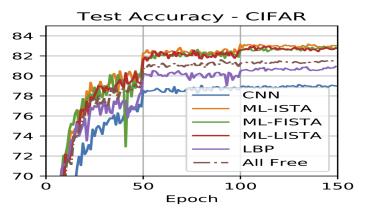
Theorem (Layered ℓ^1 -regularization)

Let Y = X + E where E denotes missfit to the model or noise and X be given by the data model (1null). Let $||E||_{2,\infty}^P \leq \epsilon_0$ be a local bound on the error and let $\hat{\Gamma}_i = \operatorname{argmin}_{\Gamma} \xi_i ||\Gamma||_1 + \frac{1}{2} ||D_i\Gamma - \hat{\Gamma}_{i-1}||_2^2$ where $\hat{\Gamma}_0 = Y$, then if $\xi_i = 4\epsilon_{i-1}$ and $||\Gamma_i||_{0,\infty}^s \leq \frac{1}{3} (1 + \mu^{-1}(D_i))$ then the support of $\hat{\Gamma}_i$ and Γ_i are the same and moreover $||\Gamma_i - \hat{\Gamma}_i||_{2,\infty}^P \leq \epsilon_i = ||E||_{2,\infty}^P 7.5^i \Pi_{j=1}^i \sqrt{||\Gamma_j||_{0,\infty}^P}$.

More complex methods to determine activations give provable recovery with less strict conditions, here $\|\Gamma_i\|_{0,\infty}^s$ has not dependence on the magnitude of entries.

⁷https://arxiv.org/pdf/1607.08194.pdf

Accuracy of multi-layer ℓ^1 -regularizers (Sulam et al. 18'⁸)



Three layer networks with ℓ^1 regularization through (F)ISTA vs. a six layer CNN (three layers convolutional layers followed by fully connected layers). LISTA and LBP are variants also using ℓ^1 regularization.

⁸https://arxiv.org/pdf/1806.00701.pdf

Consider the data model where for fixed known $\{D_i\}_{i=1}^N$ and stripe sparsity $\|\Gamma_i\|_{0,\infty}^s \leq s_i$ for $i = 1, \cdot, N$ the data is composed by

$$X = D_1 \Sigma_1 \Gamma_1 + V_0$$

$$\Gamma_1 = D_2 \Sigma_2 \Gamma_2 + V_1$$

$$\vdots$$

$$\Gamma_{N-1} = D_N \Sigma_N \Gamma_N + V_{N-1}$$
(2)

where Σ_i are diagonal matrices whose diagonal is composed of randomly drawn ± 1 .

Introducing this randomness allows us to further weaken the conditions on the coherence needed to guarantee recovery.

⁹https://ieeexplore.ieee.org/document/8439894

Provable activation pathway recovery (Murray et al. 18'¹⁰)

Theorem hard thresholding)

Let $\hat{\mathbf{X}}^{(l-1)}$ be consistent with the D-CSC model (2null), with $\|\mathbf{V}^{(l)}\|_{2,\infty}^{P^{(l)}} \leq \zeta_l$ and $\|\mathbf{X}^{(l)}\|_{0,\infty}^{Q^{(l)}} \leq S_l$ for all $l = 0, \ldots, L-1$, and $\Sigma^{(l)}$ diagonal matrices with independent Rademacher random variables. Let denote as Z_L the event that the activation path is successfully recovered by hard thresholding $\hat{\Gamma}_i = H_{S_i} \left(D_i^T \hat{\Gamma}_{i-1} \right)$. Then

$$P(\bar{Z}_L) \le 2dM \sum_{l=1}^{L} n_l \exp\left(-\frac{|X_{min}^{(l)}|^2}{8\left(|X_{max}^{(l)}|^2 \mu_l^2 S_l + \zeta_{l-1}^2\right)}\right)$$

Where $X^{(0)} \in \mathbb{R}^{M \times d}$ and filters at layer *I* are of length n_I .

The derived probability bound scales proportional to μ_l^{-2} across a given layer, rather than μ_l^{-1}

¹⁰https://ieeexplore.ieee.org/document/8439894

Deep convolutional sparse coding: summary

- By constructing a union of subspace data model we can employ methods of analysis developed by the compressed sensing community.
- Data of this type provably have the activations one would expect based on the data construction.
- Recovery is possible for nonlinear activations which include: soft or hard thresholding as well as l¹-regularization.
- The data model isn't as rich as we would hope as it is linear
- Recovery guarantees scale poorly with depth and are based on coherence between filters which are not small for local convolutional filters; recall Grassmann frame bounds.
- Open questions include the role of activations, learning the features, and building in structure within and between labels.