Qutline for today

» Dictionary learning as a model for the first layer of a deep net

» Algorithms used for recovery of sparse activations:
Selection of a subset of a dictionary for optimal signal
representation
Proofs of recovery of sparse activations using one step
thresholding, matching pursuit algorithms, and convex
regularisers

» The K-SVD algorithm and other methods to solve the
dictionary update step
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Wavelet, curvelet, and contourlet: fixed representations

Applied and computational harmonic analysis community
developed representations with optimal approximation properties
for piecewise smooth functlons

Most notable are the Daubechies wavelets and
Curvelets/Contourlets pioneered by Candes and Donoho.

While optimal, in a certain sense, for a specific class of functions,
they can typically be improved upon for any particular data set.
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Optimality of curvelets in 2D

“http://www.curvelet.org/papers/CurveEdges.pdf

Let f be a two dimensional function that is piecewise C2? with
a boundary that is also C2. Let £, f and f¢ be the best
approximation of f using n terms of the Fourier, Wavelet and
Curvelet representation respectively. Then their approximation er-
ror satisfy [|f — £F |2, = O(n=Y2), |f — FV|2, = O(n7?), and
If — £E)12, = O(n~2log3(n)); moreover, no fixed representation
can have a rate exceeding O(n~2).

Near optimality of such representation suggest a good first layer.
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Dictionary learning

While there are representations that are near optimal for realistic
classes of functions, one can usually improve upon them for a
particular data set; that is, one can learn a better dictionary for
that data.

Let Y € R™*P be a collection of p data elements in R™. Each
data element y; can be well represented by a dictionary D € R™*"
if there exists an x; with at most k nonzeros such that

lvi — Dx;|| < e(k). This can be combined in matrix notation as
minx || Y — DX|| subject to ||xj|lo < k for i =1,...,p.

Note that solving for the optimal x; for each y; is in general NP
hard, but for well behaved D it is easy.

Dictionary learning does a step further and learns the optimal D

rgi)rg IY — DX|| subject to ||xillo <k, ||di]| =1
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Dictionary learned from natural scenes (Olshausen and
Field 96"
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Dictionary learning through ADMM

Alternating direction method of multipliers (ADMM) holds all but
one component of a problem fixed and solves the other, then
iterates through the variables to be solved for.

For dictionary learning this is iteratively solving:

min ||Y — DX||  then min ||Y — DX||
X:||xillo<k D:||d;||=1
There are many methods for solving each of these subproblems.
Solving for X is more challenging, and will be our focus for now.
While better solutions exist, if X is held fixed one can solve for
YXT = DXXT as X € R"™P for p > n allowing
D = YXT(XXT)™1 followed by normalising the columns.
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Coherence

» With n > m the columns of D € R™*" can't be orthogonal,
we measure their dependence by the coherence of the columns.
pi2(D) = maxiy; | d} dj

» The collection of columns which are minimally coherent are
called Grassman Frames and satisfy:

nem \1/2
A > _ ~ m71/2
) > (5575
» We can use coherence to analyse a number of algorithms to
try and solve the sparse coding problem
min ||x|lo subject to ||lyi — Dxi|| <7
X

which in its worst case is NP-hard to solve.
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One step thresholding

Input: y, D and k (number of non-zeros in output vector).
Algorithm: Set A the index set of the k < m largest in |D*b|
Output the n-vector x whose entries are

xpn = (DiDA)™1Diy and  x(i) =0 for i & A.

Let y = Dxp, with the columns of D having unit ¢2 norm, and

Iollo < 5 (voelx0) - (D) +1)

then the Thresholding decoder with k = ||xo||lo will return xp, with
vp(X) := minjesupp(x) [XU)I/[1x]lp-
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One step thresholding (proof)

Proof.

With y = Dxg, denote w = D*b = D*Dxg.

The it entry in w is equal to w; = > _jesupp(x) X0()d; d;.
For i ¢ supp(xp) the magnitude of w; is bounded above as:

wil < > ol 1d7 djf < kpz(D)llxolloc-
jESUpP (o)

For i € supp(xp) the magnitude of w; is bounded below as:

wil > (=] Y, x()dd
JESUPP(x0).J#i
> ()] = (k = 1)p2(D)]1x0[co-
Recovery if maxjgsupp(x)| Wil < Minjesupp(xo) [Wil- O
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Matching Pursuit (Tropp 04'2)

Input: y, D and k (number of nonzeros in output vector).
Algorithm: Let r/ :=y — DxJ.

Set x =0, and let i := argmax,|d;r/| and define

xIT1 = x/ + (dfrf)e; where ¢ is the i coordinate vector.
Output x/ when a termination criteria is obtained.

Let y = Dxp, with the columns of D having unit #? norm, and

1 _
balle < 5 (#2(D) ™ +1),

then Matching Pursuit will have supp(x/) C supp(xo) for all .

* Preferable over one step thresholding: no dependence on v,(xg).

https://ieeexplore.ieee.org/document/1337101
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Matching Pursuit (proof)

Proof.
Assume supp(x/) C supp(xp) for some j, which is true for j = 0.

Let ¥ =y — DxJ, and w; = ZEESUPP(XO)(XO — ) (¢) - did,.

For i ¢ supp(xp) the magnitude of w; is bounded above as:

wil < Y7 10 = xX)(O)] - |dF del < kpa(D)ll|x0 = X oo
Zesupp(xo)

For i € supp(xp) the magnitude of w; is bounded below as:

wil > (0 = X)) - Y. (o—X)0) did

Lesupp(xo),t4i
> [(xo = X)) = (k = 1)p2(D)[[x0 — */[|oc-

Recovery if maxjcsupp(x)| Wil > Maxigsupp(xo)|Wil-
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Orthogonal Matching Pursuit (Tropp 04'3)

Input: y, D and k (number of nonzeros in output vector).
Algorithm: Let r/ 1=y — DxJ.

Set x = 0 and A° to be the empty set, and set j = 0.

Let ¥ :=y — Dx/, i := argmax,|d;r/|, and N1 = iJN.
Set XJ/\J++11 = ( Ni+1 D/\J+1) lD;\kj+1y

and X/ T1(¢) = 0 for £ ¢ N1, and set j = j + 1.

Output x/ when a termination criteria is obtained.

Let y = Dxp, with the columns of D having unit ¢2 norm, and

1 _
ol < 5 (#2(D)* +1),

then after ||xo||,0 steps, Orthogonal Matching Pursuit recovers xo.

v

x Proof, same as Matching Pursuit. Finite number of steps.
*https://ieeexplore.ieee.org/document/1337101
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(*-regularization (

Input: y and D.
“Algorithm”: Return argmin||x||; subject to y = Dx.

Let y = Am,nXo, with

1 _
ol < 5 (#2(D)* +1),

then the solution of ¢!-regularization is xp.

* Preferable over OMP: faster if use good ¢! solver.

4
http:
//users.cms.caltech.edu/~jtropp/papers/Tro06-Just-Relax.pdf
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(*-regularization (proof, page 1)

Proof.
Let Ao := supp(xo) and Ay := supp(x1) with y = Dxg = Dxz, and
3i with i € Ay with i ¢ Ao.
Note that because y = Dp,xo = Dp, x1,
Ixlli = [I(DRyDas) " DA, Daoxolln
= [I(DA,Day) ' Droylln
= |(DryDag) ™ Diy Dayxa 11

Establish bounds on (D/"{OD/\O)_lD/*{Od,-.
To establish proof need bounds for i € A and i ¢ A.

For i € Np: ||(D7{0D/\0)_1D7{0d,'”1
= [I(DA, Dno) ™ DA, Daoeill = fleifls = 1
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(*-regularization (proof, page 2)

Proof.
For any i ¢ Ay we establish the bound in two parts; first,

DR dilly < ) [didil < kpa(D).
LeNy

Noting DX Da, = lxx + B where B; ; = 0 and |Bij| < po(D), then

> (=B
=0

Therefore, for i ¢ Ag:

<SBl = —L < L
=2 =Bl S 1= (k- Dn

(e x+B) 71 =

1

kpz(D)
(1= (k= 1)u2(D))

I(DA, Do) ™' Da, iz <
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(*-regularization (proof, page 3)

Proof.

Proof concludes through triangle inequality and use that:
e For i€ Ag: ||(D;{OD/\O)_1D;§Od,'||1 =1

e For i ¢ No: ||(Dx, Da,) ' D dill1 < 1

e And 3i with i € Ay and i ¢ Ao.

Then,
ol = {|>_(Dk,Day) ' Di,dixa (i)
< > ba(i)l- [[(DR,One) DR, il
€N
< Y bali)l = [pall
iE/\l
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But, is the solution even unique?

The sparsity of the sparsest vector in the nullspace of D,

spark(D) := min||z||o0 subjectto Dz =0.

spark(D) > min(m + 1, up(D)* + 1)
If ||x0]| < (2(D)~* +1)/2 unique satisfying y = Dxq.

Proof.

Gershgorin disc theorem for Dy D with |A| = k:

1 on diagonal, off diagonals bounded by p2(D).

If k < p2(D)~! + 1, smallest singular value of DfDj is > 0 O
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How to interpret these results, is better possible?

> When is ||xol0 < 3 (12(D

)?

—-1/2

Grassman Frames: (D) > ~m
<

\F

“Sqrt bottleneck” |xol|s0
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How to interpret these results, is better possible?

> When is ||xofl0 < 3 (12(D)~1 +1)7

1/2
Grassman Frames: (D) > ( b ) ~m 12

= \ m(n-1)
“Sqrt bottleneck” ||xol0 < /m
> s better possible? (not without more)
Fourier & Dirac: D = [F [] for m the square of an integer:
Let A =[y/m, 2¢/m, ---  m], then
Zje/\ & = Zje/\’i' = spark(D) = 2y/m.
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How to interpret these results, is better possible?

> When is ||xofl0 < 3 (12(D)~1 +1)7
1/2

Grassman Frames: (D) > ( b ) ~m 12

= \ m(n-1)
“Sqrt bottleneck” ||xol0 < /m
> s better possible? (not without more)
Fourier & Dirac: D = [F [] for m the square of an integer:
Let A =[y/m, 2¢/m, ---  m], then
Zje/\ & = Zje/\’i' = spark(D) = 2y/m.
» Slightly more accurate sometimes with cumulative coherence:
max;cAmaxa/ ZjeA' d:d;

» To avoid pathological cases introduce randomness
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One step thresholding: average sign pattern [ScVa07]

Input: y, D and k (number of nonzeros in output vector).
Algorithm: Set A the index set of the k < m largest in |[D*y|
Output the n-vector x whose entries are

xpn = (DiDA)1Dpy and  x(i) =0 for i & A.
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One step thresholding: average sign pattern [ScVa07]

Input: y, D and k (number of nonzeros in output vector).
Algorithm: Set A the index set of the k < m largest in |[D*y|
Output the n-vector x whose entries are

xpn = (DiDA)1Dpy and  x(i) =0 for i & A.

Let y = Dxp, with the columns of D having unit 2 norm, the sign
of the nonzeros in xp selected randomly from £1 independent of D,
and

Ixolleo < (128log(2n/€)) 12, (x0)H3 (D),

then, with probability greater than 1 — ¢, the Thresholding decoder
with k = ||xo||,0 will return xg.

v
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One step thresholding: average sign pattern (proof, pg. 1)

Fix a vector o«. Let ¢ be a Rademacher series, vector with entries
drawn uniformly from +1, of the same length as «, then

g2
Prob ( Ze;a,’ > t) < 2exp (M)

Let A := supp(xp). Thresholding fail to recover xq if

maxjga|d;y| > min |dy|.

Prob <max,-¢,\|d,-*y| >p and minl|diy| < p> <
ieN

Prob (maxjga|d;y| > p) + Prob <r_ni/r\1 |diy| < p> = Pi+P
ic
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One step thresholding: average sign pattern (proof, pg. 2)

Py = Prob(max,-¢/\|d,?*y|>p)
< ZPVOqu;ky‘ > p)
i¢A
= 3 Prob (|3 xeli)drd) > p
igA JEN
2
—p
< 2) exp : i
%7: <3QZJGAIX0(J)I2\d,djyz)
12
< 2(n—k)exp< p )

32k|[xolI3.13(D)
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One step thresholding: average sign pattern (proof, pg. 3)

P, = Prob <min |diy| < p>
ien

< , n ' v
< Prob min |xo(7)| — maxjen Z .Xo(j)(d,dj) <p
JENJ#I
< N A% A . N
< SoProb (| 37 sa0)(drd)| > minlo(i)] — p
ien JENjFi
minien [x0(i)] — p)°
< 2 exp "
IGZ/\ (32 ZJG/\,_/#I |X0(-l)’2|d d; |2
< 2honp (D b)Y
32k]|x0|12,3(D)
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One step thresholding: average sign pattern (proof, pg. 4)

Balance P; and P, by setting p := minjep [xo(i)|/2:
(minjen [x0(7)])? —Voo(X0)?
P1+P2§2nexp< <2nexp | ——5-— .
128K[1%0|213(D) 128k;:3(D)

Setting this bound on the probability of failure equal to € and
solving for k yields the conclusion of the proof. O

» Similar work for matching pursuit by Schnass, ¢! by Tropp,
and in Statistical RICs

» Stronger uniform statements we need more than coherence.
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Dictionary learning through ADMM

Alternating direction method of multipliers (ADMM) holds all but
one component of a problem fixed and solves the other, then
iterates through the variables to be solved for.

For dictionary learning this is iteratively solving:

min ||Y — DX||  then min ||Y — DX||
X:||Ixillo<k D:||di||=1

Returning to the dictionary update step. Algorithms include
Method of optimal directions:

solve for YXT = DXXT as X € R"™P for p > n allowing

D = YXT(XXT)~ followed by normalising the columns,
K-SVD, and steepest descent or other gradient updates of D.
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Dictionary learning: K-SVD (Aharon et al. '06°)

For a fixed sparse code one can view minp, g =1 [|Y — DX] in
terms of individual columns:

Y — Z dix”
i=1

where %7 is the i row of X.

Being faithful to the sparsity constraint, we can view d; as a
column used to represent those columns in Y indexed by the
support of %7 Letting E; = [Y =3, ; dj;(jT]supp(;,.T) our task is
to minimize

| =]
where z is a vector of length |supp(%;")|, and whose solution is
given by the best rank 1 approximation of E;.

*https://ieeexplore.ieee.org/document/1710377
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