
Outline for today

I Dictionary learning as a model for the first layer of a deep net

I Algorithms used for recovery of sparse activations:
Selection of a subset of a dictionary for optimal signal
representation
Proofs of recovery of sparse activations using one step
thresholding, matching pursuit algorithms, and convex
regularisers

I The K-SVD algorithm and other methods to solve the
dictionary update step
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Wavelet, curvelet, and contourlet: fixed representations

Applied and computational harmonic analysis community
developed representations with optimal approximation properties
for piecewise smooth functions.

Most notable are the Daubechies wavelets and
Curvelets/Contourlets pioneered by Candes and Donoho.
While optimal, in a certain sense, for a specific class of functions,
they can typically be improved upon for any particular data set.

Theories of DL Lecture 4 Dictionary Learning and sparse coding



Optimality of curvelets in 2D

Theorem (Candes and Donoho 02’a)

ahttp://www.curvelet.org/papers/CurveEdges.pdf

Let f be a two dimensional function that is piecewise C 2 with
a boundary that is also C 2. Let f Fn , f Wn , and f Cn be the best
approximation of f using n terms of the Fourier, Wavelet and
Curvelet representation respectively. Then their approximation er-
ror satisfy ‖f − f Fn ‖2

L2 = O(n−1/2), ‖f − f Wn ‖2
L2 = O(n−1), and

‖f − f Cn ‖2
L2 = O(n−2 log3(n)); moreover, no fixed representation

can have a rate exceeding O(n−2).

Near optimality of such representation suggest a good first layer.
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Dictionary learning

While there are representations that are near optimal for realistic
classes of functions, one can usually improve upon them for a
particular data set; that is, one can learn a better dictionary for
that data.
Let Y ∈ Rm×p be a collection of p data elements in Rm. Each
data element yi can be well represented by a dictionary D ∈ Rm×n

if there exists an xi with at most k nonzeros such that
‖yi − Dxi‖ ≤ ε(k). This can be combined in matrix notation as
minX ‖Y − DX‖ subject to ‖xi‖0 ≤ k for i = 1, . . . , p.
Note that solving for the optimal xi for each yi is in general NP
hard, but for well behaved D it is easy.
Dictionary learning does a step further and learns the optimal D

min
D,X
‖Y − DX‖ subject to ‖xi‖0 ≤ k , ‖di‖ = 1
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Dictionary learned from natural scenes (Olshausen and
Field 96’1

Note the similarity to curvelets and the first layer of deep CNNs.

1https://www.nature.com/articles/381607a0.pdf
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Dictionary learning through ADMM

Alternating direction method of multipliers (ADMM) holds all but
one component of a problem fixed and solves the other, then
iterates through the variables to be solved for.
For dictionary learning this is iteratively solving:

min
X :‖xi‖0≤k

‖Y − DX‖ then min
D:‖di‖=1

‖Y − DX‖

There are many methods for solving each of these subproblems.
Solving for X is more challenging, and will be our focus for now.
While better solutions exist, if X is held fixed one can solve for
YXT = DXXT as X ∈ Rn×p for p > n allowing
D = YXT (XXT )−1 followed by normalising the columns.
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Coherence

I With n > m the columns of D ∈ Rm×n can’t be orthogonal,
we measure their dependence by the coherence of the columns.

µ2(D) := maxi 6=j |d∗i dj |

I The collection of columns which are minimally coherent are
called Grassman Frames and satisfy:

µ2(Am,n) ≥
(

n −m

m(n − 1)

)1/2

∼ m−1/2

I We can use coherence to analyse a number of algorithms to
try and solve the sparse coding problem

min
x
‖x‖0 subject to ‖yi − Dxi‖ ≤ τ

which in its worst case is NP-hard to solve.
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One step thresholding

Input: y , D and k (number of non-zeros in output vector).
Algorithm: Set Λ the index set of the k ≤ m largest in |D∗b|
Output the n-vector x whose entries are

xΛ = (D∗ΛDΛ)−1D∗Λy and x(i) = 0 for i /∈ Λ.

Theorem

Let y = Dx0, with the columns of D having unit `2 norm, and

‖x0‖0 <
1

2

(
ν∞(x0) · µ2(D)−1 + 1

)
,

then the Thresholding decoder with k = ‖x0‖0 will return x0, with
νp(x) := minj∈supp(x) |x(j)|/‖x‖p.
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One step thresholding (proof)

Proof.
With y = Dx0, denote w = D∗b = D∗Dx0.
The i th entry in w is equal to wi =

∑
j∈supp(x0) x0(j)d∗i dj .

For i /∈ supp(x0) the magnitude of wi is bounded above as:

|wi | ≤
∑

j∈supp(x0)

|x0(j)| · |d∗i dj | ≤ kµ2(D)‖x0‖∞.

For i ∈ supp(x0) the magnitude of wi is bounded below as:

|wi | ≥ |x0(i)| −

∣∣∣∣∣∣
∑

j∈supp(x0),j 6=i

x0(j)d∗i dj

∣∣∣∣∣∣
≥ |x0(i)| − (k − 1)µ2(D)‖x0‖∞.

Recovery if maxi /∈supp(x0)|wi | < mini∈supp(x0) |wi |.
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Matching Pursuit (Tropp 04’2)

Input: y , D and k (number of nonzeros in output vector).
Algorithm: Let r j := y − Dx j .
Set x0 = 0, and let i := argmax`|d∗` r j | and define
x j+1 = x j + (d∗i r

j)ei where ei is the i th coordinate vector.
Output x j when a termination criteria is obtained.

Theorem

Let y = Dx0, with the columns of D having unit `2 norm, and

‖x0‖`0 <
1

2

(
µ2(D)−1 + 1

)
,

then Matching Pursuit will have supp(x j) ⊆ supp(x0) for all j .

∗ Preferable over one step thresholding: no dependence on νp(x0).

2https://ieeexplore.ieee.org/document/1337101
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Matching Pursuit (proof)

Proof.
Assume supp(x j) ⊂ supp(x0) for some j , which is true for j = 0.
Let r j = y − Dx j , and wi =

∑
`∈supp(x0)(x0 − x j)(`) · d∗i d`.

For i /∈ supp(x0) the magnitude of wi is bounded above as:

|wi | ≤
∑

`∈supp(x0)

|(x0 − x j)(`)| · |d∗i d`| ≤ kµ2(D)‖|x0 − x j‖∞.

For i ∈ supp(x0) the magnitude of wi is bounded below as:

|wi | ≥ |(x0 − x j)(i)| −

∣∣∣∣∣∣
∑

`∈supp(x0),` 6=i

(x0 − x j)(`) · d∗i d`

∣∣∣∣∣∣
≥ |(x0 − x j)(i)| − (k − 1)µ2(D)‖x0 − x j‖∞.

Recovery if maxi∈supp(x0)|wi | > maxi /∈supp(x0)|wi |.
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Orthogonal Matching Pursuit (Tropp 04’3)

Input: y , D and k (number of nonzeros in output vector).
Algorithm: Let r j := y − Dx j .
Set x0 = 0 and Λ0 to be the empty set, and set j = 0.
Let r j := y − Dx j , i := argmax`|d∗` r j |, and Λj+1 = i

⋃
Λj .

Set x j+1
Λj+1 = (D∗

Λj+1DΛj+1)−1D∗
Λj+1y

and x j+1(`) = 0 for ` /∈ Λj+1, and set j = j + 1.
Output x j when a termination criteria is obtained.

Theorem

Let y = Dx0, with the columns of D having unit `2 norm, and

‖x0‖`0 <
1

2

(
µ2(D)−1 + 1

)
,

then after ‖x0‖`0 steps, Orthogonal Matching Pursuit recovers x0.

∗ Proof, same as Matching Pursuit. Finite number of steps.
3https://ieeexplore.ieee.org/document/1337101
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`1-regularization (Tropp 06’4)

Input: y and D.
“Algorithm”: Return argmin‖x‖1 subject to y = Dx .

Theorem

Let y = Am,nx0, with

‖x0‖`0 <
1

2

(
µ2(D)−1 + 1

)
,

then the solution of `1-regularization is x0.

∗ Preferable over OMP: faster if use good `1 solver.

4http:

//users.cms.caltech.edu/~jtropp/papers/Tro06-Just-Relax.pdf
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`1-regularization (proof, page 1)

Proof.
Let Λ0 := supp(x0) and Λ1 := supp(x1) with y = Dx0 = Dx1, and
∃i with i ∈ Λ1 with i /∈ Λ0.
Note that because y = DΛ0x0 = DΛ1x1,

‖x0‖1 = ‖(D∗Λ0
DΛ0)−1D∗Λ0

DΛ0x0‖1

= ‖(D∗Λ0
DΛ0)−1D∗Λ0

y‖1

= ‖(D∗Λ0
DΛ0)−1D∗Λ0

DΛ1x1‖1.

Establish bounds on (D∗Λ0
DΛ0)−1D∗Λ0

di .

To establish proof need bounds for i ∈ Λ and i /∈ Λ.

For i ∈ Λ0: ‖(D∗Λ0
DΛ0)−1D∗Λ0

di‖1

= ‖(D∗Λ0
DΛ0)−1D∗Λ0

DΛ0ei‖1 = ‖ei‖1 = 1
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`1-regularization (proof, page 2)

Proof.
For any i /∈ Λ0 we establish the bound in two parts; first,

‖D∗Λ0
di‖1 ≤

∑
`∈Λ0

|d∗` di | ≤ kµ2(D).

Noting D∗Λ0
DΛ0 = Ik,k + B where Bi ,i = 0 and |Bi ,j | ≤ µ2(D), then

‖(Ik,k+B)−1‖1 =

∥∥∥∥∥
∞∑
`=0

(−B)`

∥∥∥∥∥
1

≤
∞∑
`=0

‖B‖`1 =
1

1− ‖B‖1
≤ 1

1− (k − 1)µ2(D)
.

Therefore, for i /∈ Λ0:

‖(D∗Λ0
DΛ0)−1D∗Λ0

di‖1 ≤
kµ2(D)

(1− (k − 1)µ2(D))
< 1
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`1-regularization (proof, page 3)

Proof.
Proof concludes through triangle inequality and use that:
• For i ∈ Λ0: ‖(D∗Λ0

DΛ0)−1D∗Λ0
di‖1 = 1

• For i /∈ Λ0: ‖(D∗Λ0
DΛ0)−1D∗Λ0

di‖1 < 1
• And ∃i with i ∈ Λ1 and i /∈ Λ0.
Then,

‖x0‖1 =

∥∥∥∥∥∥
∑
i∈Λ1

(D∗Λ0
DΛ0)−1D∗Λ0

dix1(i)

∥∥∥∥∥∥
1

≤
∑
i∈Λ1

|x1(i)| ·
∥∥(D∗Λ0

DΛ0)−1D∗Λ0
di
∥∥

1

<
∑
i∈Λ1

|x1(i)| = ||x1‖1.
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But, is the solution even unique?

The sparsity of the sparsest vector in the nullspace of D,

spark(D) := min
z
‖z‖`0 subject to Dz = 0.

Theorem (Coherence and Spark)

spark(D) ≥ min(m + 1, µ2(D)−1 + 1)

If ‖x0‖ < (µ2(D)−1 + 1)/2 unique satisfying y = Dx0.

Proof.
Gershgorin disc theorem for D∗ΛDΛ with |Λ| = k :
1 on diagonal, off diagonals bounded by µ2(D).
If k < µ2(D)−1 + 1, smallest singular value of D∗ΛDΛ is > 0
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How to interpret these results, is better possible?

I When is ‖x0‖`0 < 1
2

(
µ2(D)−1 + 1

)
?

Grassman Frames: µ2(D) ≥
(

n−m
m(n−1)

)1/2
∼ m−1/2

“Sqrt bottleneck” ‖x0‖`0 .
√
m

I Is better possible? (not without more)
Fourier & Dirac: D = [F I ] for m the square of an integer:
Let Λ = [

√
m, 2

√
m, · · · ,m], then∑

j∈Λ ej =
∑

j∈Λ fj =⇒ spark(D) = 2
√
m.

I Slightly more accurate sometimes with cumulative coherence:
maxi∈ΛmaxΛ′

∑
j∈Λ′ d∗i dj

I To avoid pathological cases introduce randomness
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One step thresholding: average sign pattern [ScVa07]

Input: y , D and k (number of nonzeros in output vector).
Algorithm: Set Λ the index set of the k ≤ m largest in |D∗y |
Output the n-vector x whose entries are

xΛ = (D∗ΛDΛ)−1DΛy and x(i) = 0 for i /∈ Λ.

Theorem

Let y = Dx0, with the columns of D having unit `2 norm, the sign
of the nonzeros in x0 selected randomly from ±1 independent of D,
and

‖x0‖`0 < (128 log(2n/ε))−1ν2
∞(x0)µ−2

2 (D),

then, with probability greater than 1− ε, the Thresholding decoder
with k = ‖x0‖`0 will return x0.
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One step thresholding: average sign pattern (proof, pg. 1)

Theorem (Rademacher concentration)

Fix a vector α. Let ε be a Rademacher series, vector with entries
drawn uniformly from ±1, of the same length as α, then

Prob

(∣∣∣∣∣∑
i

εiαi

∣∣∣∣∣ > t

)
≤ 2 exp

(
−t2

32‖α‖2
2

)
Let Λ := supp(x0). Thresholding fail to recover x0 if

maxi /∈Λ|d∗i y | > min
i∈Λ
|d∗i y |.

Prob

(
maxi /∈Λ|d∗i y | > p and min

i∈Λ
|d∗i y | < p

)
≤

Prob (maxi /∈Λ|d∗i y | > p) + Prob

(
min
i∈Λ
|d∗i y | < p

)
=: P1 + P2
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One step thresholding: average sign pattern (proof, pg. 2)

P1 = Prob (maxi /∈Λ|d∗i y | > p)

≤
∑
i /∈Λ

Prob (|d∗i y | > p)

=
∑
i /∈Λ

Prob

∣∣∣∣∣∣
∑
j∈Λ

x0(j)(d∗i dj)

∣∣∣∣∣∣ > p


≤ 2

∑
i /∈Λ

exp

(
−p2

32
∑

j∈Λ |x0(j)|2|d∗i dj |2

)

≤ 2(n − k) exp

(
−p2

32k‖x0‖2
∞µ

2
2(D)

)
.
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One step thresholding: average sign pattern (proof, pg. 3)

P2 = Prob

(
min
i∈Λ
|d∗i y | < p

)

≤ Prob

min
i∈Λ
|x0(i)| −maxi∈Λ

∣∣∣∣∣∣
∑

j∈Λ,j 6=i

x0(j)(d∗i dj)

∣∣∣∣∣∣ < p


≤

∑
i∈Λ

Prob

∣∣∣∣∣∣
∑

j∈Λ,j 6=i

x0(j)(d∗i dj)

∣∣∣∣∣∣ > min
i∈Λ
|x0(i)| − p


≤ 2

∑
i∈Λ

exp

(
−(mini∈Λ |x0(i)| − p)2

32
∑

j∈Λ,j 6=i |x0(j)|2|d∗i dj |2

)

≤ 2k exp

(
−(mini∈Λ |x0(i)| − p)2

32k‖x0‖2
∞µ

2
2(D)

)
.
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One step thresholding: average sign pattern (proof, pg. 4)

Balance P1 and P2 by setting p := mini∈Λ |x0(i)|/2:

P1 + P2 ≤ 2n exp

(
−(mini∈Λ |x0(i)|)2

128k‖x0‖2
∞µ

2
2(D)

)
≤ 2n exp

(
−ν∞(x0)2

128kµ2
2(D)

)
.

Setting this bound on the probability of failure equal to ε and
solving for k yields the conclusion of the proof.

I Similar work for matching pursuit by Schnass, `1 by Tropp,
and in Statistical RICs

I Stronger uniform statements we need more than coherence.
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Dictionary learning through ADMM

Alternating direction method of multipliers (ADMM) holds all but
one component of a problem fixed and solves the other, then
iterates through the variables to be solved for.
For dictionary learning this is iteratively solving:

min
X :‖xi‖0≤k

‖Y − DX‖ then min
D:‖di‖=1

‖Y − DX‖

Returning to the dictionary update step. Algorithms include
Method of optimal directions:
solve for YXT = DXXT as X ∈ Rn×p for p > n allowing
D = YXT (XXT )−1 followed by normalising the columns,
K-SVD, and steepest descent or other gradient updates of D.
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Dictionary learning: K-SVD (Aharon et al. ’065)

For a fixed sparse code one can view minD:‖di‖=1 ‖Y − DX‖ in
terms of individual columns:∥∥∥∥∥Y −

n∑
i=1

di x̃
T
i

∥∥∥∥∥
where x̃Ti is the i th row of X .
Being faithful to the sparsity constraint, we can view di as a
column used to represent those columns in Y indexed by the
support of x̃Ti . Letting Ei = [Y −

∑
j 6=i dj x̃

T
j ]supp(x̃Ti ) our task is

to minimize ∥∥∥Ei − di z̃
T
i

∥∥∥
where zTi is a vector of length |supp(x̃Ti )|, and whose solution is
given by the best rank 1 approximation of Ei .

5https://ieeexplore.ieee.org/document/1710377

Theories of DL Lecture 4 Dictionary Learning and sparse coding

https://ieeexplore.ieee.org/document/1710377

