
Outline for today

I Understanding the filter activations on convolutional nets:

The first layers are masks by which the image is compared
against and responses recorded.

The activation at a second layer is a linear combination of
activations from the first layer and can be viewed as building
simple components of an image.

As depth increases the images that maximize an activation
become more like specific images, sometimes referred to as a
“grandmother cell”.

I The first layer of CNNs are similar to wavelets, which is to be
expected and is to be expected due to their near optimality
and helps explain transferability

I Focusing on learning one layer, dictionary learning
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Convolutional Neural Networks:

Convolutional neural network layers impose a structure on W (i):

1

W (i) is composed of a “mask” (usually of compact support, say
just living on 9 pixels) translated by some amount which is referred
to as “stride.” These “masks” are sometimes referred to as
“features.” Additional nonlinearities include “max pooling.”

1https://arxiv.org/pdf/1607.08194.pdf
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Exemplar CNN structure: LeNet5 LeCun et. al. 1998

2

C1: conv. layer with 6 feature maps, 5 by 5 support, stride 1.
S2 (and S4): non-overlapping 2 by 2 blocks which equally sum
values, mult by weight and add bias.
C3: conv. layer with 16 features, 5 by 5 support, partial connected.
C5: 120 features, 5 by 5 support, no stride; i.e. fully connected.
F6: fully connected, W ∈ R84×120.
CNNs trained on a data set typically work well on other, related,
data sets with different labels by retraining just the last layer.
Why might this be? What do the conv. filters look like?

2http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
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Convolutional Deep Belief Networks(H. Lee et al. 11’4)

We omit the details of this somewhat different architecture, which
is stylistically similar to a deep CNN.

Display of the convolutional masks in layers 1 and 2, trained from
Kyoto natural image database.3 Note wavelet structures.

3http://eizaburo-doi.github.io/kyoto_natim/
4http://www.cs.utoronto.ca/~rgrosse/cacm2011-cdbn.pdf
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Convolutional Deep Belief Networks(H. Lee et al. 11’6)

The third and fourth layers develop bases which represent features
or objects, trained on CalTech 101 dataset.5.

5http://www.vision.caltech.edu/Image_Datasets/Caltech101/
6http://www.cs.utoronto.ca/~rgrosse/cacm2011-cdbn.pdf
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Deep CNN, AlexNet(Krizhevsky et al. 12’7)

Images are those that maximize specific activation responses.
Layer 1 are masks, subsequent layers are their linear combinations.

7http://papers.nips.cc/paper/

4824-imagenet-classification-with-deep-convolutional-neural-networks.

pdf
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Deep CNN, VGG(Mahendran et al. 16’8)

Note, again we observe the same pattern, the initial filters are
similar to Gabor/Wavelet filters and later layers are image
components.

8https://arxiv.org/abs/1512.02017
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Summary: similarity and importance of initial layers

We observe the initial layer of CNNs to be similar to one another,
and to exhibit wavelet like representations. This is to be expected.

Accuracy of a random network is improved most by training earlier
layers (Raghu 16’9).

9https://arxiv.org/pdf/1611.08083.pdf
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Wavelet, curvelet, and contourlet: fixed representations

Applied and computational harmonic analysis community
developed representations with optimal approximation properties
for piecewise smooth functions.

Most notable are the Daubechies wavelets and
Curvelets/Contourlets pioneered by Candes and Donoho.
While optimal, in a certain sense, for a specific class of functions,
they can typically be improved upon for any particular data set.

Theories of DL Lecture 3 Visualising weights in a deep net and transferability



Optimality of curvelets in 2D

Theorem (Candes and Donoho 02’a)

ahttp://www.curvelet.org/papers/CurveEdges.pdf

Let f be a two dimensional function that is piecewise C 2 with
a boundary that is also C 2. Let f Fn , f Wn , and f Cn be the best
approximation of f using n terms of the Fourier, Wavelet and
Curvelet representation respectively. Then their approximation er-
ror satisfy ‖f − f Fn ‖2

L2 = O(n−1/2), ‖f − f Wn ‖2
L2 = O(n−1), and

‖f − f Cn ‖2
L2 = O(n−2 log3(n)); moreover, no fixed representation

can have a rate exceeding O(n−2).

Near optimality of such representation suggest a good first layer.
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Should be we deterministic or use learning?

The first layer of a net is seemingly the most important, and if we
have good prior knowledge of the data we can probably guess near
optimal candidate weights.
One can perform classification based on two layer net with:
layer 1: h2(x) = σ(W (1)x + b(1)) where W (1) is a fixed transform
of x to, say, the wavelet domain and σ(·) project to keep just the
largest entries with hard or soft thresholding;

σhard(x ; τ) =


x x > τ
0 |x | ≤ τ
−x x < −τ

, σsoft(x ; τ) =


x − τ x > τ

0 |x | ≤ τ
−x + τ x < −τ

layer2: h3 = σ(W (2)h2 + b(2)) with W (2) learned as the classifier
based on the sparse codes h2.
However, h2 does not build in invariance we would desire in
classification, such as dilation, rotation, translation, etc... Depth
remains important to generate these.
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Dictionary learning

While there are representations that are near optimal for realistic
classes of functions, one can usually improve upon them for a
particular data set; that is, one can learn a better dictionary for
that data.
Let Y ∈ Rm×p be a collection of p data elements in Rm. Each
data element yi can be well represented by a dictionary D ∈ Rm×n

if there exists an xi with at most k nonzeros such that
‖yi − Dxi‖ ≤ ε(k). This can be combined in matrix notation as
minX ‖Y − DX‖ subject to ‖xi‖0 ≤ k for i = 1, . . . , p.
Note that solving for the optimal xi for each yi is in general NP
hard, but for well behaved D it is easy.
Dictionary learning does a step further and learns the optimal D

min
D,X
‖Y − DX‖ subject to ‖xi‖0 ≤ k , ‖di‖ = 1
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Dictionary learned from natural scenes (Olshausen and
Field 96’10

Note the similarity to curvelets and the first layer of deep CNNs.

10https://www.nature.com/articles/381607a0.pdf
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Dictionary learning through ADMM

Alternating direction method of multipliers (ADMM) holds all but
one component of a problem fixed and solves the other, then
iterates through the variables to be solved for.
For dictionary learning this is iteratively solving:

min
X :‖xi‖0≤k

‖Y − DX‖ then min
D:‖di‖=1

‖Y − DX‖

There are many methods for solving each of these subproblems.
Solving for X is more challenging, and will be our focus for now.
While better solutions exist, if X is held fixed one can solve for
YXT = DXXT as X ∈ Rn×p for p > n allowing
D = YXT (XXT )−1 followed by normalising the columns.
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Coherence

I With n > m the columns of D ∈ Rm×n can’t be orthogonal,
we measure their dependence by the coherence of the columns.

µ2(D) := maxi 6=j |d∗i dj |

I The collection of columns which are minimally coherent are
called Grassman Frames and satisfy:

µ2(Am,n) ≥
(

n −m

m(n − 1)

)1/2

∼ m−1/2

I We can use coherence to analyse a number of algorithms to
try and solve the sparse coding problem

min
x
‖x‖0 subject to ‖yi − Dxi‖ ≤ τ

which in its worst case is NP-hard to solve.
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One step thresholding

Input: y , D and k (number of non-zeros in output vector).
Algorithm: Set Λ the index set of the k ≤ m largest in |D∗b|
Output the n-vector x whose entries are

xΛ = (D∗ΛDΛ)−1D∗Λy and x(i) = 0 for i /∈ Λ.

Theorem
Let y = Dx0, with the columns of D having unit `2 norm, and

‖x0‖0 <
1

2

(
ν∞(x0) · µ2(D)−1 + 1

)
,

then the Thresholding decoder with k = ‖x0‖0 will return x0, with
νp(x) := minj∈supp(x) |x(j)|/‖x‖p.
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One step thresholding (proof)

Proof.
With y = Dx0, denote w = D∗b = D∗Dx0.
The i th entry in w is equal to wi =

∑
j∈supp(x0) x0(j)d∗i dj .

For i /∈ supp(x0) the magnitude of wi is bounded above as:

|wi | ≤
∑

j∈supp(x0)

|x0(j)| · |d∗i dj | ≤ kµ2(D)‖x0‖∞.

For i ∈ supp(x0) the magnitude of wi is bounded below as:

|wi | ≥ |x0(i)| −

∣∣∣∣∣∣
∑

j∈supp(x0),j 6=i

x0(j)d∗i dj

∣∣∣∣∣∣
≥ |x0(i)| − (k − 1)µ2(D)‖x0‖∞.

Recovery if maxi /∈supp(x0)|wi | < mini∈supp(x0) |wi |.
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Matching Pursuit (Tropp 04’11)

Input: y , D and k (number of nonzeros in output vector).
Algorithm: Let r j := y − Dx j .
Set x0 = 0, and let i := argmax`|a∗` r j | and define
x j+1 = x j + (d∗i r

j)ei where ei is the i th coordinate vector.
Output x j when a termination criteria is obtained.

Theorem
Let y = Dx0, with the columns of D having unit `2 norm, and

‖x0‖`0 <
1

2

(
µ2(D)−1 + 1

)
,

then Matching Pursuit will have supp(x j) ⊆ supp(x0) for all j .

∗ Preferable over one step thresholding: no dependence on νp(x0).

11https://ieeexplore.ieee.org/document/1337101
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Matching Pursuit (proof)

Proof.
Assume supp(x j) ⊂ supp(x0) for some j , which is true for j = 0.
Let r j = y − Am,nx

j , and wi =
∑

`∈supp(x0)(x0 − x j)(`) · d∗i d`.
For i /∈ supp(x0) the magnitude of wi is bounded above as:

|wi | ≤
∑

`∈supp(x0)

|(x0 − x j)(`)| · |d∗i d`| ≤ kµ2(D)‖|x0 − x j‖∞.

For i ∈ supp(x0) the magnitude of wi is bounded below as:

|wi | ≥ |(x0 − x j)(i)| −

∣∣∣∣∣∣
∑

`∈supp(x0),` 6=i

(x0 − x j)(`) · d∗i d`

∣∣∣∣∣∣
≥ |(x0 − x j)(i)| − (k − 1)µ2(D)‖x0 − x j‖∞.

Recovery if maxi∈supp(x0)|wi | > maxi /∈supp(x0)|wi |.
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Orthogonal Matching Pursuit (Tropp 04’12)

Input: y , D and k (number of nonzeros in output vector).
Algorithm: Let r j := y − Dx j .
Set x0 = 0 and Λ0 to be the empty set, and set j = 0.
Let r j := y − Dx j , i := argmax`|d∗` r j |, and Λj+1 = i

⋃
Λj .

Set x j+1
Λj+1 = (D∗

Λj+1DΛj+1)−1D∗
Λj+1y

and x j+1(`) = 0 for ` /∈ Λj+1, and set j = j + 1.
Output x j when a termination criteria is obtained.

Theorem
Let y = Dx0, with the columns of D having unit `2 norm, and

‖x0‖`0 <
1

2

(
µ2(D)−1 + 1

)
,

then after ‖x0‖`0 steps, Orthogonal Matching Pursuit recovers x0.

∗ Proof, same as Matching Pursuit. Finite number of steps.

12https://ieeexplore.ieee.org/document/1337101
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`1-regularization (Tropp 06’13)

Input: y and D.
“Algorithm”: Return argmin‖x‖1 subject to y = Dx .

Theorem
Let y = Am,nx0, with

‖x0‖`0 <
1

2

(
µ2(D)−1 + 1

)
,

then the solution of `1-regularization is x0.

∗ Preferable over OMP: faster if use good `1 solver.

13http:

//users.cms.caltech.edu/~jtropp/papers/Tro06-Just-Relax.pdf
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`1-regularization (proof, page 1)

Proof.
Let Λ0 := supp(x0) and Λ1 := supp(x1) with y = Dx0 = Dx1, and
∃i with i ∈ Λ1 with i /∈ Λ0.
Note that because y = DΛ0x0 = DΛ1x1,

‖x0‖1 = ‖(D∗Λ0
DΛ0)−1D∗Λ0

DΛ0x0‖1

= ‖(D∗Λ0
DΛ0)−1D∗Λ0

y‖1

= ‖(D∗Λ0
DΛ0)−1D∗Λ0

DΛ1x1‖1.

Establish bounds on (D∗Λ0
DΛ0)−1D∗Λ0

di .

To establish proof need bounds for i ∈ Λ and i /∈ Λ.

For i ∈ Λ0: ‖(D∗Λ0
DΛ0)−1D∗Λ0

di‖1

= ‖(D∗Λ0
DΛ0)−1D∗Λ0

DΛ0ei‖1 = ‖ei‖1 = 1
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`1-regularization (proof, page 2)

Proof.
For any i /∈ Λ0 we establish the bound in two parts; first,

‖D∗Λ0
di‖1 ≤

∑
`∈Λ0

|d∗` di | ≤ kµ2(D).

Noting D∗Λ0
DΛ0 = Ik,k + B where Bi ,i = 0 and |Bi ,j | ≤ µ2(D), then

‖(Ik,k+B)−1‖1 =

∥∥∥∥∥
∞∑
`=0

(−B)`

∥∥∥∥∥
1

≤
∞∑
`=0

‖B‖`1 =
1

1− ‖B‖1
≤ 1

1− (k − 1)µ2(D)
.

Therefore, for i /∈ Λ0:

‖(D∗Λ0
DΛ0)−1D∗Λ0

di‖1 ≤
kµ2(D)

(1− (k − 1)µ2(D))
< 1
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`1-regularization (proof, page 3)

Proof.
Proof concludes through triangle inequality and use that:
• For i ∈ Λ0: ‖(D∗Λ0

DΛ0)−1D∗Λ0
di‖1 = 1

• For i /∈ Λ0: ‖(D∗Λ0
DΛ0)−1D∗Λ0

di‖1 < 1
• And ∃i with i ∈ Λ1 and i /∈ Λ0.
Then,

‖x0‖1 =

∥∥∥∥∥∥
∑
i∈Λ1

(D∗Λ0
DΛ0)−1D∗Λ0

dix1(i)

∥∥∥∥∥∥
1

≤
∑
i∈Λ1

|x1(i)| ·
∥∥(D∗Λ0

DΛ0)−1D∗Λ0
di
∥∥

1

<
∑
i∈Λ1

|x1(i)| = ||x1‖1.
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But, is the solution even unique?

The sparsity of the sparsest vector in the nullspace of D,

spark(D) := min
z
‖z‖`0 subject to Dz = 0.

Theorem (Spark and Coherence)

spark(D) ≥ min(m + 1, µ2(D)−1 + 1)

If ‖x0‖ < (µ2(D)−1 + 1)/2 unique satisfying y = Dx0.

Proof.
Gershgorin disc theorem for D∗ΛDΛ with |Λ| = k :
1 on diagonal, off diagonals bounded by µ2(D).
If k < µ2(D)−1 + 1, smallest singular value of D∗ΛDΛ is > 0
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