Finite Element Methods. QS 1

Hand-in deadline: 9.00 am, 28 Jan, week 3.

Class: 30 Jan, week 3.

1. Let \mathcal{H} be a Hilbert space with inner product (\cdot, \cdot) and associated norm $\|\cdot\|$. The vectors $x, y \in \mathcal{H}$ are said to be *orthogonal* if (x, y) = 0. This is denoted by $x \perp y$. The orthogonal complement A^{\perp} of $A \in \mathcal{H}$ is the set of vectors orthogonal to A,

$$A^{\perp} = \{ x \in \mathcal{H} \mid x \perp y \text{ for all } y \in A \}.$$

Let \mathcal{M} be a closed linear subspace of \mathcal{H} .

- (a) Show that for each $x \in \mathcal{H}$ there is a unique $y \in \mathcal{M}$ such that $||x-y|| = \inf_{w \in \mathcal{M}} ||x-w||$.
- (b) Show that $y \in \mathcal{M}$ is the unique element such that $(x y) \perp w$ for all $w \in \mathcal{M}$.
- (c) Show that for every $x \in \mathcal{H}$ we can uniquely decompose x = y + z for $y \in \mathcal{M}$ and $z \in \mathcal{M}^{\perp}$.
- **2.** Let $\Omega \subset \mathbb{R}^d$ be a volume with boundary $\partial \Omega$. Assume Ω is smooth enough to apply the divergence theorem.
 - (a) Use the divergence theorem to show that

$$\frac{1}{d} \int_{\partial \Omega} n \cdot r \, dS = |\Omega|,$$

where r is the position vector, n is the outward-facing unit normal, and $|\Omega|$ is the volume of Ω .

- (b) Let $S \subset \mathbb{R}^3$ be the surface of a sphere of radius R. You are told that the area of S is $4\pi R^2$. Use the expression in (a) to find the volume of the ball enclosed by S.
- **3.** Let V be a real vector space. A bilinear form a(u, v) is said to be *skew-symmetric* if a(u, v) = -a(v, u). It is said to be *alternating* if a(u, u) = 0 for all $u \in V$.
 - (a) Show that every bilinear form on V may be written uniquely as the sum of a symmetric bilinear form and a skew-symmetric bilinear form.
 - (b) Show that a bilinear form on V is alternating if and only if it is skew-symmetric.

4. Let V be a real vector space and let (u, v) be an inner product on V. Let $\|\cdot\|$ be the induced norm. By considering the expansion of $\|u + v\|^2$, express the inner product purely in terms of norms.

Remark: this is the polarisation identity, and may be used to recover the inner product on the dual of a Hilbert space. (Recall that we only defined the norm on the dual space in lectures.)

- **5.** Suppose that $\Omega \subset \mathbb{R}$ is bounded and that $1 \leq p \leq q \leq \infty$. We know from Theorem 2.5.10 of the notes that $L^q(\Omega) \subseteq L^p(\Omega)$.
 - (a) Give an example to show that the inclusion is strict if p < q.
 - (b) Give an example to show that the inclusion is false if Ω is not bounded.
- **6.** Suppose V is a Banach space, and that it has a coercive bounded bilinear form $a: V \times V \to \mathbb{R}$. Show that V is in fact a Hilbert space.

Remark: this shows that coercivity is *essentially* a property of Hilbert spaces; if a Banach space has a coercive bounded bilinear form it is a Hilbert space in disguise. Later we will study more general conditions of well-posedness that apply to Banach spaces that are genuinely not Hilbert spaces.