
Finite Element Methods. QS 4
This sheet is not to be turned in. Complete it, and check your answers with the provided solutions.

Class: 6 May, week 2 of Trinity term.

1. Consider the problem:

u = argmin
v∈H1(Ω)

J(v)

where

J(v) =
1

2

∫
Ω
γ∇v · ∇v +

1

2

(
v2 − 1

)2
dx.

(i) State the Euler–Lagrange equation that characterises stationary points u of this
functional.

(ii) Given an initial guess u0, state the linearised system of equations that must be
solved for the update δu in a Newton–Kantorovich iteration, in weak form.

2. Consider the stationary incompressible isothermal Newtonian Navier–Stokes equations,
given in strong form by

−∇2u+ (u · ∇)u+∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω.

Write this system of equations in weak form as a nonlinear variational equation.

Write the linearised system of equations that must be solved for the update (δu, δp) in a
Newton–Kantorovich iteration, in weak and strong form.

3. Let V and Y be Banach spaces.

Consider the Newton–Kantorovich iteration applied to
(i) F : V → V ∗;
(ii) (G ◦ F ) : V → Y , where G : V ∗ → Y is linear and bijective.

Prove that the Newton–Kantorovich iteration yields the same sequence of iterates in
both cases when initialised from the same initial guess u0 ∈ V .

Remark: this is the property of affine covariance, and is fundamental to the proper under-
standing of Newton-type methods. For a full discussion of this property, see P. Deuflhard,
Newton Methods for Nonlinear Problens, Springer-Verlag, 2011.
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4. Given a Hilbert space V , a bilinear form a : V × V → R and a linear form F : V → R,
consider the problem: find u ∈ V such that

a(u, v) = F (v) for all v ∈ V. (V)

(i) State the Riesz representation theorem. Explain briefly in what cases it guarantees
the well-posedness of (V).

(ii) State the Lax–Milgram theorem regarding the well-posedness of (V).
(iii) State Babuška’s theorem regarding the well-posedness of (V).
(iv) Show that if (V) is well-posed by the Riesz representation theorem, then it satisfies

the conditions of the Lax–Milgram theorem.
(v) Show that if (V) satisfies the conditions of the Lax–Milgram theorem, then it sat-

isfies the conditions of Babuška’s theorem.

5. Let V = H1
0 (Ω;Rn) and Q = L2

0(Ω). Let

L(u, p) =
1

2

∫
Ω
∇u : ∇u dx−

∫
Ω
f · u dx−

∫
Ω
p∇ · u dx.

We say (u, p) is a saddle point of L iff

L(u, q) ≤ L(u, p) ≤ L(v, p)

for all v ∈ V , q ∈ Q.

Show that (u, p) is a weak solution of the Stokes equations if and only if it is a saddle
point of the Lagrangian.

Hint: consider the two inequalities separately.

6. Consider the (contrived) problem

u = argmin
v∈H1(Ω;R3)

1

2

∫
Ω
∇v : ∇v + v2 dx−

∫
Ω
f · v dx,

subject to ∇× v = 0.

Suppose one were to discretise the Euler-Lagrange system for this problem with piecewise
linear Lagrange elements for every variable. Could this discretisation be stable? Why or
why not?
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7. (Advanced, optional)

Let Z : V → V be an invertible operator. Suppose that it is a symmetry of a residual
F : V → V ∗, i.e. it satisfies

ZRF (u) = RF (Zu)

for all u ∈ V , where R : V ∗ → V is the Riesz map. (Imagine, for example, that Z were
a reflection; this property asserts that the reflection of the residual is the residual of the
reflection.)

Prove that if the Newton–Kantorivich iteration is initialised from an initial guess u0

that satisfies Zu0 = u0, then all subsequent iterates uk will also satisfy Zuk = uk, so
long as the iterates are defined.

Remark: this means that one should be careful when solving nonlinear problems with
symmetries. In general, such problems will support both symmetric and nonsymmetric
solutions. If the initial guess is chosen to be symmetric, then only symmetric solutions
will be found by the iteration if the linear subproblem is solved exactly.
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