
Finite Element Methods. QS 4

1. (a) Minimizer when Fréchet Derivative equal to zero:

lim
ε→0

J(u+ εv)− J(u)

ε
= lim
ε→0

1

2ε

(∫
Ω
γ∇(u+ εv) · ∇(u+ εv) +

1

2

(
(u+ εv)2 − 1

)2
dx

−
∫

Ω
γ∇u · ∇u+

1

2

(
u2 − 1

)2
dx
)

=

∫
Ω
γ(∇u · ∇v + u3v − uv) dx = 0.

Weak form: find u ∈ H1(Ω) such that

G(u; v) =

∫
Ω

(γ∇u · ∇v + u3v − uv) dx = 0 for all v ∈ H1(Ω)

Strong form:
−γ∇2u+ u3 − u = 0 in Ω, ∇u · n = 0 on ∂Ω.

(b) Taking the Fréchet derivative of G with respect to u, we find that the linearisation at a
fixed u in the direction of w ∈ H1(Ω) is

Gu(u; v, w) =

∫
Ω
γ(∇w · ∇v) + 3u2wv − wv) dx.

Thus, the Newton update solves: find δu ∈ H1(Ω) such that

Gu(u; v, δu) = −G(u; v) for all v ∈ H1(Ω).

2.

Let V = H1
0 (Ω;Rn) and Q = L2

0(Ω). The weak form I’m looking for is the following: find
(u, p) ∈ V ×Q such that∫

Ω
∇u : ∇v dx+

∫
Ω

(u · ∇u) · v dx−
∫

Ω
p(∇ · v) dx =

∫
Ω
f · v dx,

−
∫

Ω
q(∇ · u) dx = 0,

for all (v, q) ∈ V ×Q.

After calculating the Gâteaux derivative, the linearised problem is: find (δu, δp) ∈ V ×Q such
that∫

Ω
∇δu : ∇v dx+

∫
Ω

(δu · ∇u) · v dx+

∫
Ω

(u · ∇δu) · v dx−
∫

Ω
δp(∇ · v) dx = Rv(u, p, v),

−
∫

Ω
q(∇ · δu) dx = Rq(u, v, q),
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for all (v, q) ∈ V ×Q. Here Rv and Rq represent the residuals, the two equations above with
all terms taken to the LHS.

In strong form, this becomes

−∇2δu+ (δu · ∇)u+ (u · ∇)δu+∇δp = Rv in Ω,

∇ · δu = Rp in Ω,

δu = 0 on ∂Ω.

3.

Let H(u) = GF (u). Then Hu(u; δu) = GFu(u; δu) by the definition of the Fréchet derivative
and linearity of G. Newton-Kantorovich iteration:

(i) Find δu ∈ V such that Fu(u; δu) = −F (u).

(ii) Find δu ∈ V such that Hu(u; δu) = −H(u) ⇔ GFu(u; δu) = −GF (u) ⇔ Fu(u; δu) =
−F (u) since G is invertible.

So iterations are the same if starting with same initial guess.

4.

(i)
Theorem (Riesz Representation Theorem). Let X be a Hilbert Space. Any bounded linear
functional j ∈ X∗ can be uniquely represented by a g ∈ X, via

〈j, u〉 = (g, u).

Moreover, the norms agree: ‖j‖X∗ = ‖g‖X .

Well-posedness is guaranteed by a being an inner product, i.e. symmetric continuous and
coercive.

(ii)
Theorem (Lax-Milgram). Let V be a closed subspace of a Hilbert space H. Let a : H×H → IR
be a (not necessarily symmetric) continuous coercive bilinear form, and let F ∈ V . Consider
the variational problem:

find u ∈ V such that a(u, v) = F (v) for all v ∈ V.

This problem has a unique stable solution.

Well-posedness is guaranteed by a being continuous and coercive.

(iii)
Theorem (Babuškas theorem: necessary and sufficient conditions). Let V1 and V2 be two
Hilbert spaces with inner products (·, ·)V1 and (·, ·)V2 respectively. Let a : V1 × V2 → IR be a
bilinear form for which there exist constants C <∞, γ > 0, γ′ > 0 such that

1. |a(u, v)| ≤ C‖u‖V1‖v‖V2;
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2. γ ≤ inf
u∈V1
u6=0

sup
v∈V2
v 6=0

a(u, v)

‖u‖V1‖v‖V2
;

3. γ′ ≤ inf
v∈V2
v 6=0

sup
u∈V1
u6=0

a(u, v)

‖u‖V1‖v‖V2
;

for all u ∈ V1, v ∈ V2. Then for all F ∈ V ∗2 there exists exactly one element u ∈ V1 such that

a(u, v) = F (v) for all ∈ V2.

Furthermore the problem is stable in that

‖u‖V1 ≤
‖F‖V ∗

2

γ
.

Well-posedness is guaranteed by a being continuous and satifying the inf sup conditions.

(iv) Well-posed by the Riesz Representation Theorem ⇒ a is symmetric, continuous, and
coercive, so it satisfies the conditions of Lax-Milgram (continuous and coercive).

(v) For Lax-Milgram V1 = V2 = V . Well-posed under Lax-Milgram ⇒ a is continuous and
coercive.

Continuity implies the first condition of Babuška.

Coercivity implies a(u,u)
‖u‖2V

≥ γ′′ for all u ∈ V , for some γ′′ > 0. The inf-sup conditions are easily

satisfied.

5. Let

a(u, v) =

∫
Ω
∇u : ∇v dx, b(v, q) = −

∫
Ω
q∇ · v dx, f(v) =

∫
Ω
f · v dx.

We have that L(u, p) = 1
2a(u, u) + b(u, p)− f(u). Start with first inequality:

∀q ∈ Q, L(u, q) ≤ L(u, p)⇔ ∀q ∈ Q, L(u, q)− L(u, p) ≤ 0

⇔ ∀q ∈ Q, b(u, q)− b(u, p) ≤ 0

⇔ ∀q ∈ Q, b(u, q − p) ≤ 0

⇔ ∀q ∈ Q, b(u, q) = 0,

where in the last step we used the fact that Q is a vector space (take q+ p and −q+ p).

Recall that if a is symmetric and positive. Then u solves a(u, v) = f(v) for all v ∈ V if and
only if u minimises J(v) = 1

2a(v, v)− f(v) in V . Let Jp(v) = 1
2a(v, v) + b(v, p)− f(v). Second

inequality:

∀v ∈ V, L(u, p) ≤ L(v, p)⇔ u minimises Jp in V

⇔ ∀v ∈ V, a(u, v) + b(v, p) = f(v).
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(the last line is the weak form of Stokes)

6.

Let the Lagrangian

L(v, q) =
1

2

∫
Ω

(
∇v : ∇v + v2

)
dx−

∫
Ω
f · v dx−

∫
Ω
q · ∇ × v dx,

where q is a vector function.

We can find the Euler-Lagrange equations for this problem by taking the Fréchet derivative of
L(u, p) w.r.t to u in the direction v and w.r.t p in the direction q. We obtain: find (u, p) ∈ V ×Q
such that ∫

Ω
∇u : ∇v dx+

∫
Ω
uv dx−

∫
Ω
p · ∇ × v dx =

∫
Ω
f · v dx,

b(u, q) = −
∫

Ω
q · ∇ × udx = 0,

for all (v, q) ∈ V ×Q.

We consider the Lagrange finite element [CG1]3× [CG1]3, i.e. piecewise linear basis functions.
Let Vh and Qh be the finite element function space that arises from equipping each cell K of
a mesh M with this element.

We then do the same as in the notes by constructing a spurious pressure mode ph 6= 0 ∈ Qh
such that b(vh, ph) = 0 for all vh ∈ Vh. This implies the problem does not satisfy the inf-sup
condition for saddle point problems (14.7.10) in the notes.

The students can now come up with a discretized domain such that there is a spurious mode.
For example, Let Ω be a cube, and divide this cube into six tetrahedrons such that the functions
defined below are zero. We label the nodes as in the following figure.

The six tetrahedrons have nodes abch, bcdh, chdf, agch, gech, ecfh. Since it’s P1, ph is a
pressure vector field determined completely by its degrees of freedom at the vertices, thus we
specify its values there: let

p
(l)
h (i, j) =

{
1 on nodes a, b, d, e, f, g,

−1 on nodes c, h,

where p
(l)
h , l = 1, 2, 3 are the components of ph.

4



These functions are not equal to zero but have integral zero (tetrahedron centroid quadrature
is exact for P1). Now, since vh is piecewise linear on each tetrahedron K, each component of
(∇× vh)|K, (∇× vh)(l)|K is a constant, l = 1, 2, 3. Therefore, for arbitrary vh ∈ Vh,

b(vh, ph) = −
∫

Ω
ph · ∇ × vh dx

= −
∫

Ω

(
p

(1)
h (∇× vh)(1) + p

(2)
h (∇× vh)(2) + p

(3)
h (∇× vh)(3)

)
dx

= −
∑
K∈M

[
(∇× vh)(1)|K

∫
K
p

(1)
h dx+ (∇× vh)(2)|K

∫
K
p

(2)
h dx+ (∇× vh)(3)|K

∫
K
p

(3)
h dx

]
= 0.

Therefore, the discrete inf-sup condition:

0 < γ ≤ inf
qh∈Qh
qh 6=0

sup
vh∈Vh
vh 6=0

b(vh, qh)

‖vh‖V ‖qh‖Q
,

cannot be satisfied.

7. (Advanced, optional)

Solution: Assume the induction hypothesis Zuk = uk. First, examine the N-K iteration:

uk+1 = uk − F ′(uk)−1F (uk)

= uk − F ′(uk)−1R−1RF (uk).

Now consider Zuk+1:

Zuk+1 = Zuk − Z
(
F ′(uk)

−1R−1
)
RF (uk).

If Z commuted with F ′(uk)
−1R−1, then we’d be happy. Assume this for now, and let’s pro-

ceed:

Zuk+1 = Zuk −
(
F ′(uk)

−1R−1
)
ZRF (uk)

= uk −
(
F ′(uk)

−1R−1
)
RF (Zuk)

= uk −
(
F ′(uk)

−1R−1
)
RF (uk)

= uk+1.

It remains to investigate whether Z does indeed commute with this operator. To see this,
differentiate both sides of the symmetry relationship to yield

ZRF ′(u; v) = RF ′(Zu;Zv)

for all u, v ∈ V , and so
ZRF ′(u) = RF ′(Zu)Z.
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Since Z is invertible, this implies

RF ′(u) = Z−1RF ′(Zu)Z

and hence (
RF ′(u)

)−1
= Z−1F ′(Zu)−1R−1Z,

or in other words
ZF ′(u)−1R−1 = F ′(Zu)−1R−1Z.

So the operators do commute, so long as u = Zu!
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