Lecture 1: Problems and solutions. Optimality conditions for unconstrained optimization

Coralia Cartis, Mathematical Institute, University of Oxford

C6.2/B2: Continuous Optimization

Problems and solutions

minimize $f(x)$ subject to $x \in \Omega \subseteq \mathbb{R}^{n}$.
■ $f: \Omega \rightarrow \mathbb{R}$ is (sufficiently) smooth $\left(f \in \mathcal{C}^{i}(\Omega), i \in\{1,2\}\right)$.
■ f objective; x variables; Ω feasible set (determined by finitely many constraints).

- n may be large.

■ minimizing $-f(x) \equiv-$ maximizing $f(x)$. Wlog, minimize.
x^{*} global minimizer of f over $\Omega \Longleftrightarrow f(x) \geq f\left(x^{*}\right), \forall x \in \Omega$.
x^{*} local minimizer of f over $\Omega \Longleftrightarrow$ there exists $\mathcal{N}\left(x^{*}, \delta\right)$ such that $f(x) \geq f\left(x^{*}\right)$, for all $x \in \Omega \cap \mathcal{N}\left(x^{*}, \delta\right)$, where $\mathcal{N}\left(x^{*}, \delta\right):=\left\{x \in \mathbb{R}^{n}:\left\|x-x^{*}\right\| \leq \delta\right\}$ and $\|\cdot\|$ is the Euclidean norm.

Example problem in one dimension

$$
\text { Example : } \quad \min f(x) \quad \text { subject to } \quad a \leq x \leq b
$$

\square The feasible region Ω is the interval $[a, b]$.
\square The point x_{1} is the global minimizer; x_{2} is a local
(non-global) minimizer; $x=a$ is a constrained local minimizer.

Example problems in two dimensions

Ackeley's test function

Rosenbrock's test function
[see Wikipedia]

Main classes of continuous optimization problems

Linear (Quadratic) programming: linear (quadratic) objective and linear constraints in the variables
$\min _{x \in \mathbb{R}^{n}} c^{T} x\left(+\frac{1}{2} x^{T} H x\right)$ subject to $a_{i}^{T} x=b_{i}, i \in E ; a_{i}^{T} x \geq b_{i}, i \in I$,
where $c, a_{i} \in \mathbb{R}^{n}$ for all i and H is $n \times n$ symmetric matrix; \boldsymbol{E} and I are finite index sets.

Unconstrained (Constrained) nonlinear programming

$$
\left.\min _{x \in \mathbb{R}^{n}} f(x) \text { (subject to } c_{i}(x)=0, i \in E ; c_{i}(x) \geq 0, i \in I\right)
$$

where $f, c_{i}: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ are (smooth, possibly nonlinear) functions for all $i ; \boldsymbol{E}$ and I are finite index sets. Most real-life problems are nonlinear, often large-scale !

Example: an OR application

Optimization of a high-pressure gas network pressures $p=\left(p_{i}, i\right)$; flows $q=\left(q_{j}, j\right)$; demands $d=\left(d_{k}, k\right)$; compressors. Maximize net flow s.t. the constraints:

$$
\left\{\begin{array}{l}
\boldsymbol{A q - d} \boldsymbol{q}=0 \\
\boldsymbol{A}^{T} \boldsymbol{p}^{2}+\boldsymbol{K} \boldsymbol{q}^{2.8359}=0 \\
\boldsymbol{A}_{2}^{T} \boldsymbol{q}+z \cdot c(p, \boldsymbol{q})=0 \\
p_{\min } \leq p \leq p_{\max } \\
\boldsymbol{q}_{\min } \leq q \leq q_{\max }
\end{array}\right.
$$

$\square A, A_{2} \in\{ \pm 1,0\} ; z \in\{0,1\}$

- 200 nodes and pipes, 26 machines: 400 variables;
\square variable demand, $(\boldsymbol{p}, \boldsymbol{d}) 10 \mathrm{mins}$.
$\longrightarrow 58,000$ vars; real-time.

Example: an inverse problem application[Metoffice]

Data assimilation for weather forecasting

- best estimate of the current state of the atmosphere \longrightarrow find initial conditions x_{0} for the numerical forecast by solving the (ill-posed) nonlinear inverse problem

$$
\min _{x_{0}} \sum_{i=0}^{m}\left(H_{i}\left[x_{i}\right]-y_{i}\right)^{T} R_{i}^{-1}\left(H\left[x_{i}\right]-y_{i}\right),
$$

$x_{i}=S\left(t_{i}, t_{0}, x_{0}\right), S$ solution operator of the discrete nonlinear model; \boldsymbol{H}_{i} maps x_{i} to observations y_{i}, R_{i} error covariance matrix of the observations at t_{i}
x_{0} of size $10^{7}-10^{8}$; observations $m \approx 250,000$.

Optimality conditions for unconstrained problems

== algebraic characterizations of solutions \longrightarrow suitable for computations.

- provide a way to guarantee that a candidate point is optimal (sufficient conditions)
- indicate when a point is not optimal (necessary conditions)

$$
\text { minimize } f(x) \text { subject to } x \in \mathbb{R}^{n} \text {. (UP) }
$$

First-order necessary conditions: $f \in \mathcal{C}^{1}\left(\mathbb{R}^{n}\right)$;
x^{*} a local minimizer of $f \Longrightarrow \nabla f\left(x^{*}\right)=0$.
$\nabla f(x)=0 \quad \Longleftrightarrow \quad x$ stationary point of f.

Optimality conditions for unconstrained problems...

Lemma 1. Let $f \in \mathcal{C}^{1}, x \in \mathbb{R}^{n}$ and $s \in \mathbb{R}^{n}$ with $s \neq 0$. Then
$\nabla f(x)^{T} s<0 \Longrightarrow f(x+\alpha s)<f(x), \quad \forall \alpha>0$ sufficiently small.
Proof. $f \in \mathcal{C}^{1} \Longrightarrow \exists \bar{\alpha}>0$ such that

$$
\begin{equation*}
\nabla f(x+\alpha s)^{T} s<0, \forall \alpha \in[0, \bar{\alpha}] . \tag{}
\end{equation*}
$$

Taylor's/Mean value theorem:
$f(x+\alpha s)=f(x)+\alpha \nabla f(x+\tilde{\alpha} s)^{T} s$, for some $\tilde{\alpha} \in(0, \alpha)$.
$(\diamond) \Longrightarrow f(x+\alpha s)<f(x), \forall \alpha \in[0, \bar{\alpha}]$. \square

- s descent direction for f at x if $\nabla f(x)^{T} s<0$.

Proof of 1st order necessary conditions. assume $\nabla f\left(x^{*}\right) \neq 0$.
$s:=-\nabla f\left(x^{*}\right)$ is a descent direction for f at $x=x^{*}$:
$\nabla f\left(x^{*}\right)^{T}\left(-\nabla f\left(x^{*}\right)\right)=-\nabla f\left(x^{*}\right)^{T} \nabla f\left(x^{*}\right)=-\left\|\nabla f\left(x^{*}\right)\right\|^{2}<0$ since $\nabla f\left(x^{*}\right) \neq 0$ and $\|a\| \geq 0$ with equality iff $a=0$.
Thus, by Lemma $1, x^{*}$ is not a local minimizer of f. \square

Optimality conditions for unconstrained problems...

- $-\nabla f(x)$ is a descent direction for f at x whenever $\nabla f(x) \neq 0$.
- s descent direction for f at x if $\nabla f(x)^{T} s<0$, which is equivalent to

$$
\cos \langle-\nabla f(x), s\rangle=\frac{(-\nabla f(x))^{T} s}{\|\nabla f(x)\| \cdot\|s\|}=\frac{\left|\nabla f(x)^{T} s\right|}{\|\nabla f(x)\| \cdot\|s\|}>0
$$

and so:
$\langle-\nabla f(x), s\rangle \in[0, \pi / 2)$.

A descent direction $\boldsymbol{p}_{\boldsymbol{k}}$.

Summary of first-order conditions. A look ahead

minimize $f(x)$ subject to $x \in \mathbb{R}^{n}$. (UP)
First-order necessary optimality conditions: $f \in \mathcal{C}^{1}\left(\mathbb{R}^{n}\right)$; x^{*} a local minimizer of $f \Longrightarrow \nabla f\left(x^{*}\right)=0$.
$\tilde{x}=\arg \max _{x \in \mathbb{R}^{n}} f(x)$
\Downarrow
$\nabla f(\tilde{x})=0$.

■ Look at higher-order derivatives to distinguish between minimizers and maximizers.
. . . except for convex functions.

Optimality conditions for convex problems

$\square f$ convex $\Longleftrightarrow f(x+\alpha(y-x)) \leq f(x)+\alpha(f(y)-f(x))$, for all $x, y \in \mathbb{R}^{n}, \alpha \in[0,1]$.
$■ \Longleftrightarrow \nabla^{2} f(x) \succeq 0$ (positive semidefinite), for all $x \in \mathbb{R}^{n}$, i.e.,
$\square s^{T} \nabla^{2} f\left(x^{*}\right) s \geq 0, \forall s \in \mathbb{R}^{n} ;$ equivalently,
\square eigenvalues $\lambda_{i}\left(\nabla^{2} f\left(x^{*}\right)\right) \geq 0, \forall i \in\{1, \ldots, n\}$.
If f convex, then
[Pb Sheet 1]
x^{*} local minimizer $\Longrightarrow x^{*}$ global minimizer.
x^{*} stationary point $\Longrightarrow x^{*}$ global minimizer.
Quadratic functions: $\quad q(x):=g^{T} x+\frac{1}{2} x^{T} H x$.
$\nabla^{2} \boldsymbol{q}(\boldsymbol{x})=\boldsymbol{H}$, for all \boldsymbol{x}; if \boldsymbol{H} is positive semidefinite, then \boldsymbol{q} convex; any stationary point \boldsymbol{x}^{*} is a global minimizer of \boldsymbol{q}.

Second-order optimality conditions (nonconvex fcts.)

Second-order necessary conditions: $f \in \mathcal{C}^{2}\left(\mathbb{R}^{n}\right)$; x^{*} local minimizer of $f \Longrightarrow \nabla^{2} f\left(x^{*}\right) \succeq 0$ (positive semidefinite), namely, $s^{T} \nabla^{2} f\left(x^{*}\right) s \geq 0$, for all $s \in \mathbb{R}^{n}$. [local convexity]

Example: $f(x):=x^{3}, x^{*}=0$ not a local minimizer but $f^{\prime}(0)=f^{\prime \prime}(0)=0$.

Second-order sufficient conditions: $f \in \mathcal{C}^{2}\left(\mathbb{R}^{n}\right)$; $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right) \succ 0$ (positive definite), namely,

$$
s^{T} \nabla^{2} f\left(x^{*}\right) s>0, \text { for all } s \neq 0 .
$$

$\Longrightarrow x^{*}$ (strict) local minimizer of f.
Example: $f(x):=x^{4}, x^{*}=0$ is a (strict) local minimizer but $f^{\prime \prime}(0)=0$.

Proof of second-order conditions

Let x and $s \neq 0$ in \mathbb{R}^{n} be fixed. Let $\Phi:[0, \infty) \longrightarrow \mathbb{R}$ where $\Phi(\alpha):=f(x+\alpha s)$ with $f \in \mathcal{C}^{2}\left(\mathbb{R}^{n}\right)$. Then (univariate) Taylor's/Mean-value theorem gives for any $\alpha>0$ that

$$
\Phi(\alpha)=\Phi(0)+\alpha \Phi^{\prime}(0)+\frac{\alpha^{2}}{2} \Phi^{\prime \prime}(\tilde{\alpha}) \text { for some } \tilde{\alpha} \in(0, \alpha),
$$

or equivalently, from def. of Φ and differentiation/chain rule:[Pb Sheet 1]
$f(x+\alpha s)=f(x)+\alpha s^{T} \nabla f(x)+\frac{\alpha^{2}}{2} s^{T} \nabla^{2} f(x+\tilde{\alpha} s) s$
for some $\tilde{\alpha} \in(0, \alpha)$.
Proof of second order necessary conditions. Assume there exists $s \in \mathbb{R}^{n}$ with $s^{T} \nabla^{2} f\left(x^{*}\right) s<0$. Then $s \neq 0$ and $f \in \mathcal{C}^{2}$ imply $s^{T} \nabla^{2} f\left(x^{*}+\alpha s\right) s<0$ for all $\alpha \in[0, \bar{\alpha}]$. Employing this and $\nabla f\left(x^{*}\right)=0$ in (\diamond) with $x=x^{*}$ gives that for each $\alpha \in(0, \bar{\alpha})$, there exists $\tilde{\alpha} \in(0, \alpha)$ such that

$$
f\left(x^{*}+\alpha s\right)=f\left(x^{*}\right)+\frac{\alpha^{2}}{2} s^{T} \nabla^{2} f\left(x^{*}+\tilde{\alpha} s\right) s<f\left(x^{*}\right) .
$$

We have reached a contradiction with x^{*} being a local minimizer. \square

Proof of second-order conditions

Recall (from previous slide) that for $x \in \mathbb{R}^{n}, s \neq 0$ and $\alpha>0$,
$f(x+\alpha s)=f(x)+\alpha s^{T} \nabla f(x)+\frac{\alpha^{2}}{2} s^{T} \nabla^{2} f(x+\tilde{\alpha} s) s$
for some $\tilde{\alpha} \in(0, \alpha)$.
Proof of second order sufficient conditions. $f \in \mathcal{C}^{2}$ and $\nabla^{2} f\left(x^{*}\right) \succ 0$ imply $\nabla^{2} f\left(x^{*}+s\right) \succ 0$ for all $x^{*}+s \in \mathcal{N}\left(x^{*}, \delta\right)$ some neighbourhood of x^{*}. For any such s with $\|s\| \leq \delta,(\diamond)$ with $\alpha=1$ and $x=x^{*}$, gives, for some $\tilde{\alpha} \in(0,1)$,

$$
f\left(x^{*}+s\right)=f\left(x^{*}\right)+\frac{1}{2} s^{T} \nabla^{2} f\left(x^{*}+\tilde{\alpha} s\right) s \geq f\left(x^{*}\right)
$$

where we also used $\nabla f\left(x^{*}\right)=0$ in the first equality and $\nabla^{2} f\left(x^{*}+\tilde{\alpha} s\right) \succ 0$ in the second inequality (note that $\left\|x^{*}+\tilde{\alpha} s-x^{*}\right\| \leq \delta$ since $\|s\| \leq \delta$ and $\tilde{\alpha} \in(0,1)$; thus $x^{*}+\tilde{\alpha} s \in \mathcal{N}\left(x^{*}, \delta\right)$ which ensures that $\nabla^{2} f\left(x^{*}+\tilde{\alpha} s\right) \succ 0$.) \square

Stationary points of quadratic functions

■ $H \in \mathbb{R}^{n \times n}$ symmetric, $g \in \mathbb{R}^{n}: \quad q(x):=g^{T} x+\frac{1}{2} x^{T} H x$.
$\nabla \boldsymbol{q}\left(\boldsymbol{x}^{*}\right)=0 \Longleftrightarrow \boldsymbol{H} \boldsymbol{x}^{*}+\boldsymbol{g}=\mathbf{0}$: linear system.
$\square \boldsymbol{H}$ nonsingular: $\quad \boldsymbol{x}^{*}=-\boldsymbol{H}^{-\boldsymbol{1}} \boldsymbol{g}$ unique stationary point.
$\square \boldsymbol{H}$ positive definite $\Longrightarrow \boldsymbol{x}^{*}$ minimizer (a), e)).
$■ \boldsymbol{H}$ negative definite $\Longrightarrow \boldsymbol{x}^{*}$ maximizer (b), e)).

- \boldsymbol{H} indefinite $\Longrightarrow \boldsymbol{x}^{*}$ saddle point (c), f)).
$■ \boldsymbol{H}$ singular and $\boldsymbol{g}+\boldsymbol{H x}=\mathbf{0}$ consistent:
■ \boldsymbol{H} positive semidefinite \Longrightarrow infinitely many global minimizers (d), g)).

■ Similarly \boldsymbol{H} negative semidefinite or indefinite.
General f : approximately locally quadratic around x^{*} stationary.

Stationary points of quadratic functions...

(a) Minimum

(b) Maximum

(c) Saddle
(f) Saddle

(d) Semidefinite

(g) Semidefinite minimum

