# Lecture 4: Second-order methods: Newton's method for unconstrained optimization

Coralia Cartis, Mathematical Institute, University of Oxford

C6.2/B2: Continuous Optimization

#### Other search directions in Generic Linesearch Methods (GLMs)

Let  $B^k$  symmetric, positive definite matrix  $[B^k \succ 0]$ . Let  $s^k$  be defined by

$$B^k s^k = -\nabla f(x^k). \tag{(*)}$$

 $\Rightarrow s^k \text{ descent direction:} \\ \nabla f(x^k)^T s^k = -\nabla f(x^k)^T (B^k)^{-1} \nabla f(x^k) < 0 \text{ whenever} \\ \nabla f(x^k) \neq 0 \text{ as } B^k \text{ pos. def. implies } (B^k)^{-1} \text{ pos. def.} \\ \Rightarrow s^k \text{ uniquely solves} \\ \text{minimize}_{s \in \mathbb{R}^n} \ m_k(s) = f(x^k) + \nabla f(x^k)^T s + \frac{1}{2} s^T B^k s. \end{aligned}$ 

(\*) is a scaled steepest descent direction;
 For some B<sup>k</sup>, resulting GLMs can be made scale-invariant, and faster than steepest descent asymptotically How to choose B<sup>k</sup> ?...[Newton, modified Newton, quasi-Newton; to follow.]

## Linesearch Newton's method

### Let $f \in C^2(\mathbb{R}^n)$ and $B^k := \nabla^2 f(x^k)$ in GLM.

Linesearch-Newton (also called Damped Newton's) method for minimization:

Choose  $\epsilon > 0$  and  $x^0 \in \mathbb{R}^n$ .

While  $\| 
abla f(x^k) \| > \epsilon$ , REPEAT:

solve the linear system  $abla^2 f(x^k) s^k = - 
abla f(x^k)$  .

set  $x^{k+1}=x^k+lpha^ks^k$ , where  $lpha^k\in(0,1]$ ; k:=k+1. END.

Needs  $\nabla^2 f(x^k)$  to be positive definite so that  $s^k$  descent. Then  $\alpha^k$  can be computed by exact linesearch, bArmijo, etc. Some terminology:

Newton direction:  $s^k = -(\nabla^2 f(x^k))^{-1} \nabla f(x^k)$ .

(Pure) Newton's method: Newton's method without linesearch sets  $x^{k+1} = x^k + s^k$  where  $s^k$  is the Newton direction for all k.

Whenever  $\nabla^2 f(x^k)$  is positive definite,  $s^k$  minimizes the second-order Taylor approximation of f around  $x^k$  (recall stp. descent minimizes first-order Taylor).

## **Connection to Newton's method for root-finding**

 $x^*$  stationary point of  $f \iff \nabla f(x^*) = 0$ . Let  $r(x) := \nabla f(x) = 0$   $n \times n$  system of nonlinear equations  $\rightarrow$  apply Newton's method for root-finding to  $\nabla f(x) = 0$ : Let  $x^{k+1}$  s. t.  $r(x^k) + J(x^k)(x^{k+1} - x^k) = 0$ , where  $J(x^k)$  is the Jacobian (matrix) of r(x) at  $x = x^k$ , i.e.,  $J(x^k)_{ij} = \left(\frac{\partial r_i}{\partial x_i}\right)(x^k)$ .

$$J(x^k)$$
 nonsingular  $x^{k+1} = x^k - (J(x^k))^{-1}r(x^k).$ 

The Jacobian of  $\nabla f$  at x is the Hessian matrix  $\nabla^2 f(x)$  $\bigvee \nabla^2 f(x^k)$  nonsingular

## Advantages of Newton's method for optimization

Fast (i.e., quadratic) local rate of convergence.

Theorem 7 (local convergence of (pure) Newton's method):

■ let  $f \in C^2(\mathbb{R}^n)$ ,  $\nabla f(x^*) = 0$  with  $\nabla^2 f(x^*)$  nonsingular;

- $\nabla^2 f$  locally Lipschitz continuous at  $x^*$ .
- If  $x^{k_0}$  is sufficiently close to  $x^*$ , for some  $k_0 \ge 0$ ,

$$\implies x^k$$
 is well-defined for all  $k \ge k_0$ ;

 $x^k \to x^*$  as  $k \to \infty$ , at quadratic rate.  $\Box$ 

In the conditions of Th 7:  $\nabla f(x^k) \rightarrow 0$  quadratically as well.

• " $x^{k_0}$  sufficiently close to  $x^*$ "= there exists  $\mathcal{N}(x^*, \delta)$  such that  $x^{k_0} \in \mathcal{N}$ . In general,  $\mathcal{N}$  not known beforehand (depends on unknown  $x^*$  and problem-dependent constants).

## Advantages of Newton's method for optimization

#### Sketch of Proof for Theorem 7:

Taylor expansion of  $\nabla f$  around x [vector form]:

$$abla f(x^*) = 
abla f(x) + 
abla^2 f(x)(x^* - x) + \mathcal{O}(\|x^* - x\|^2),$$

where x is sufficiently close to  $x^*$  and  $\mathcal{O}(\cdot)$  depends on the Lipschitz constant of  $\nabla^2 f(x^*)$ . Using  $\nabla f(x^*) = 0$  and  $x := x^k$ , whenever  $x^k$  suff. close to  $x^*$ , we have

$$0 = \nabla f(x^k) + \nabla^2 f(x^k)(x^* - x^k) + \mathcal{O}(\|x^* - x^k\|^2). \; (**)$$

 $abla^2 f(x^*)$  nonsingular  $\implies \nabla^2 f(x^k)$  nonsingular whenever  $x^k$ suff. close to  $x^*$ . Now (\*\*) implies  $x^k - x^* = [\nabla^2 f(x^k)]^{-1} \nabla f(x^k) + \mathcal{O}(||x^* - x^k||^2)$ . Letting  $s^k$  be the Newton direction, and  $x^{k+1} = x^k + s^k$ , we deduce that, whenever  $x^k$  suff. close to  $x^*$ ,  $x^{k+1} - x^* = \mathcal{O}(||x^k - x^*||^2)$ .  $\Box$ 

## Local convergence for linesearch-Newton's method

Theorem 8 Let  $f \in C^2(\mathbb{R}^n)$  and  $\nabla^2 f$  be Lipschitz continuous and positive definite at the iterates.

Apply Newton's method with bArmijo linesearch and the choices  $\beta \leq 0.5$  and  $\alpha_{(0)} = 1$ . Assume the iterates  $x^k \to x^*$  as  $k \to \infty$ , where  $\nabla^2 f(x^*) \succ 0$ .

Then  $\alpha^k = 1$  for all k sufficiently large, and the rate of convergence of  $x^k$  to  $x^*$  is quadratic (asymptotically).

## Local convergence for Newton with bArmijo linesearch

$$f(x_1, x_2) = 10(x_2 - x_1^2)^2 + (x_1 - 1)^2; \quad x^* = (1, 1).$$



Newton with bArmijo linesearch applied to the Rosenbrock function f.  $\beta < 0.5$  and  $\alpha_{(0)} = 1$  in bArmijo;  $\alpha^k = 1$  for suff. large k.

## Advantages of Newton's method for optimization

Newton's method (with or without linesearch) is scale invariant with respect to linear transformations of variables.

Let  $A \in \mathbb{R}^{n \times n}$  nonsingular matrix and y = Ax(A is constant, independent of x and y); let  $B = A^{-1}$ .

Let  $\overline{f}(y) := f(x(y)) = f(By)$ ; minimize  $\overline{f}$  wrt y.

$$\implies \nabla \overline{f}(y) = B^T \nabla f(x) \text{ and } \nabla^2 \overline{f}(y) = B^T \nabla^2 f(x) B.$$

Newton direction at y: 
$$s_y = -[B^T \nabla^2 f(x)B]^{-1} B^T \nabla f(x)$$
  
 $= -B^{-1} [\nabla^2 f(x)]^{-1} B^{-T} B^T \nabla f(x)$   
 $= -B^{-1} [\nabla^2 f(x)]^{-1} \nabla f(x)$   
 $= As_x.$ 

 $\implies y + \alpha s_y = A(x + \alpha s_x).$ 

Thus  $y + \alpha s_y pprox y^* \implies x + \alpha s_x pprox x^*$ , where  $y^* = Ax^*$ .

## **Disadvantages of Newton's method for optimization**

- Newton's method with/without linesearch: the Newton direction  $s^k$  is not well-defined if  $\nabla^2 f(x^k)$  singular;  $s^k$  may not be descent if  $\nabla^2 f(x^k)$  is not positive definite.
- Newton's method ('pure', without linesearch): iterates can get attracted to local maxima or saddle points of *f* if sufficiently close to them (in the conditions of local convergence Theorem 7,  $\nabla^2 f(x^*)$  only required to be nonsingular).
- Newton's method ('pure', without linesearch): iterates may fail to converge at all if x<sup>0</sup> 'too far' from solution (outside neighbourhood of local convergence, failure may occur). Thus linesearch is needed to make Newton's method globally convergent.

## **Disadvantages of Newton's method for optimization**

Example of failure of (pure) Newton's method to converge globally.

$$f:\mathbb{R} o\mathbb{R},\quad f(x)=-rac{x^{\mathrm{o}}}{6}+rac{x^{4}}{4}+2x^{2}.$$

 $x^* = 0$  local minimizer;  $x = \pm \sqrt{(1 + \sqrt{17})/2} \approx \pm 1.6$  global max.

