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Other search directions in Generic Linesearch Methods (GLMs)

Let B symmetric, positive definite matrix [B* = o0]. Let s* be
defined by

BFsk = —V f(x¥). (%)

m— sk descent direction:
Vfi(xk)Tsk = —Vf(zF)T(B*)~1V f(z*) < 0 whenever
V f(x*) # 0 as B* pos. def. implies (B*)~! pos. def.

B — s* uniquely solves
MINIMIzZ€,crn mi(s) = f(z*) + Vf(z*)Ts + 3sTB*s.

B («) is a scaled steepest descent direction;

m For some B, resulting GLMs can be made scale-invariant,
and faster than steepest descent asymptotically

How to choose B* ?...[Newton, modified Newton, quasi-Newton; to follow.]
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Linesearch Newton’s method

Let f € C?(R™) and B* := V2 f(z*) in GLM.
Linesearch-Newton (also called Damped Newton’s) method for minimization.

Choose € >0 and z° € R™.

While ||V f(x®)|| > €, REPEAT:

B solve the linear system V2f(zF)s® = —Vf(zF).

B set xFt! =aF 4 aPfs®, where of € (0,1]; k:=k+1. END.

® Needs Vv2Zf(z*) to be positive definite so that s* descent.
Then o* can be computed by exact linesearch, bArmijo, etc.

Some terminology:

Newton direction: sk = —(V2f(z*))~1V f(zF).

(Pure) Newton’s method: Newton’s method without linesearch
sets ¢+ = zF 4+ s* where s* is the Newton direction for all .

m\Whenever v2f(z*) is positive definite, s* minimizes the
second-order Taylor approximation of £ around =* (recall stp.

—descent minimizes first-order Taylor),
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Connection to Newton’s method for root-finding

x* stationary point of f < Vf(z*) = 0.

Let r(z) := Vf(z) =0 n x n System of nonlinear equations
— apply Newton’s method for root-finding to vV f(x) = 0:

Let =%+ s. t. r»(2F) + J(z*)(=*T! — z*) = 0, where J(zF) IS the

Jacobian (matrix) of »(z) at = = ¥, i.e., J(z*);; = (g—;) ().

J(z*) nonsingular

et = ok — (J(2F)) "1 ().

B [he Jacobian of V£ at = is the Hessian matrix v2f(x)
~U« V2 f(x®) nonsingular

(Pure) Newton iterate : *T1 = z* — (V2 f(2*)) "1V £(z¥).
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Advantages of Newton’s method for optimization

m Fast (i.e., quadratic) local rate of convergence.
Theorem 7 (local convergence of (pure) Newton’s method):
mlet f € C2(R"), Vf(z*) = 0 with V2 f(x*) nonsingular;
m V2 f locally Lipschitz continuous at =*.
If %0 is sufficiently close to =*, for some ko > 0,

— zF is well-defined for all & > kq;
¥ — x* as k — oo, at quadratic rate. O

m In the conditions of Th 7: V £(z*) — 0 quadratically as well.

m “zko sufficiently close to z*”= there exists M (x*, §) such that
¥ € N. In general, A/ not known beforehand (depends on
unknown x* and problem-dependent constants).
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Advantages of Newton’s method for optimization

Sketch of Proof for Theorem 7
Taylor expansion of v £ around x [vector form]:

Vf(x®) = Vf(z) + V' f(z)(x" —z) + O([|lz* — =|?),

where z Is sufficiently close to =* and O(-) depends on the
Lipschitz constant of vZf(z*). Using Vf(z*) = 0 and = := =¥,
whenever z* suff. close to =*, we have

0= Vf(a*) + V2f(a*) (@* — ) + O([lz* — ). (++)

V2 f(z*) nonsingular = V2 f(z*) nonsingular whenever z*
suff. close to z*. Now (**) implies

xk — x* = [V2f(z®)] 71V f(zF) + O(||=* — =F||?). Letting s* be
the Newton direction, and z*+1 = z* + s* we deduce that,
whenever z* suff. close to z*, z*t! — x* = O(||z* — =*||?). O
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Local convergence for linesearch-Newton’s method

Theorem 8 Let f € c2(R™) and V2 # be Lipschitz continuous
and positive definite at the iterates.

Apply Newton’s method with bArmijo linesearch and the
choices g < 0.5 and « () = 1. Assume the iterates =* — z* as
k — oo, Where V2 f(x*) = 0.

Then o* = 1 for all k£ sufficiently large, and the rate of
convergence of =¥ to z* is quadratic (asymptotically).
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Local convergence for Newton with bArmijo linesearch

f(x1,z2) = 10(x2 — x3)? + (1 — 1)?; z* = (1,1).
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Newton with bArmijo linesearch applied to the Rosenbrock function f.
m 3 < 0.5 and ag) = 1 in bArmijo; a* = 1 for suff. large k.
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Advantages of Newton’s method for optimization

m Newton’s method (with or without linesearch) is scale
iInvariant with respect to linear transformations of variables.

Let A € R™*™ nonsingular matrix and y = Ax
(A is constant, independent of x and y); let B = A1,

Let f(y) := f(z(y)) = f(By); minimize f wrt y.
— Vf(y) = B'"Vf(z)and Vf(y) = B'V?f(x)B.

—[B*V?f(x)B]~'B"V f(x)
—B~[V3f(z)] ' B~ BV f(x)
—B7V2f ()] 7'V f(x)

As,.

Newton direction at y: s,

—> Y+ asy = A(x + asz).

Thus y 4+ as, = y* =— x4+ as, = z*, where y* = Azx*.
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Disadvantages of Newton’s method for optimization

m Newton’s method with/without linesearch: the Newton
direction s* is not well-defined if vZ£(z*) singular; s* may
not be descent if V2 f(z*) is not positive definite.

m Newton’s method (‘pure’, without linesearch): iterates can
get attracted to local maxima or saddle points of £ if
sufficiently close to them (in the conditions of local
convergence Theorem 7, v2f(z*) only required to be
nonsingular).

m Newton’s method (‘pure’, without linesearch): iterates
may fail to converge at all if £° too far’ from solution
(outside neighbourhood of local convergence, failure may
occur). Thus linesearch is needed to make Newton’s
method globally convergent.
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Disadvantages of Newton’s method for optimization

Example of failure of (pure) Newton’s method to converge
globally.

x®
fﬁR—)R, f(m)z—?—l—Z—l—2:1:2.

z* = 0 local minimizer; z = :I:\/(l + +/17)/2 ~ £1.6 global max.

10

Newton’s method applied s
to £, with ° = 1; |
= z2¢ =1 and

22k+1 = 1 for all .

—1 and 1 are not (even)
stationary points of f.
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Note that s* descent bu1:
we have gone ‘too far'.
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