Lecture 4: Second-order methods: Newton'smethod for unconstrained optimization

Coralia Cartis, Mathematical Institute, University of Oxford

C6.2/B2: Continuous Optimization

Other search directions in Generic Linesearch Methods (GLMs)

Let B^k symmetric, positive definite matrix [B^k defined by $^k \succ 0].$ Let s^k be

$$
B^k s^k = -\nabla f(x^k). \qquad (*)
$$

 $\implies \;\; s^k$ descent direction: $\boldsymbol{\nabla}f(x)$ \sim \sim \sim \boldsymbol{k} $^{k})^{T}$ \sim s \boldsymbol{k} $\frac{k}{} = -\nabla f(x)$ the contract of the contract of \boldsymbol{k} $^{k})^{T}$ $^{T}(B^{k}%$ $^k)^{-1}$ $^1 \nabla f(x$ $\ell = L$ \boldsymbol{k} $\binom{k}{\ell} < 0$ whenever $\nabla f(x^k) \neq 0$ as B^k pos. def. implies $(B^k)^{-1}$ $\implies \;\; s^k$ uniquely solves $k) \neq 0$ as B^k pos. def. implies $(B^k)^{-1}$ pos. def. minimiz $\mathsf{e}_{s\in\mathbb{R}^n}$ $m_k(s) = f(x)$ $k) + \nabla f(x^k)$ $^{\,k})^T$ $T_s+\frac{1}{2}$ $\frac{1}{2}s^{T}$ $^T B^k$ $"s.$

([∗]) is ^a scaled steepest descent direction; For some B^k , resulting GLMs can be made scale-invariant, and faster than steepest descent asymptoticallyHow to choose B^k ?...[Newton, modified Newton, quasi-Newton; to follow.]

Linesearch Newton's method

Let $f\in C^2$ $^{2}(\mathbb{R}^{n})$ and B^{k} $^{k}:=\nabla^{2}$ $\bm{^{2}f(x^k}$ $^{\bm{k}})$ in GLM.

Linesearch-Newton (also called Damped Newton's) method for minimization:

Choose $\epsilon>0$ and $x^0\in\mathbb{R}^n$.

While $\|\nabla f(x^k)\| > \epsilon$, REPI $\|k\left(\kappa\right)\|>\epsilon$, repeat:

solve the linear system ∇^2 $\bm{^{2}f(x^k}$ $^{\bm{k}})s^{\bm{k}}$ $\frac{k}{\kappa} = -\nabla f(x^k)$ $^{\bm{k}})$.

 \mathbf{r} and \mathbf{r} and \mathbf{r} set $x^{k+1} = x^k + \alpha^k s^k$, where $\alpha^k \in (0,1]$; $k := k+1$. END.

Needs ∇^2 \mathbf{k} $^{2}f(x^{k})$ to be positive definite so that Then $\alpha^{\bm{k}}$ can be computed by exact linesearch, bArmijo, etc. $s^{\bm{k}}$ descent. Some terminology:

Newton direction: $\,s^{\bm{k}}=-\,$ $(\nabla^2 f(x^k))^{-1} \nabla f(x^k).$

(Pure) <mark>Newton's method:</mark> Newton's method without linesearch sets $x^{k+1}=x^k+s^k$ where s^k is the Newton direction for all $k.$

Whenever $\mathbf{\nabla}^2f(x^k)$ is positive definite, second-order Taylor approximation of f around $x^{\bm{k}}$ (rec: $s^{\bm{k}}$ minimizes the $x^{\bm{k}}$ (recall stp. descent minimizes first-order Taylor).

Connection to Newton's method for root-finding

 x^* stationary point of $f \Longleftrightarrow \nabla f(x^*) = 0.$ Let $r(x) := \nabla f(x) = 0 \quad n \times n$ \displaystyle{n} system of nonlinear equations \longrightarrow apply Newton's method for root-finding to $\nabla f(x) = 0$: Let x^{k+1} s. t. $r(x \,$ Jacobian (matrix) of $r(x)$ at $x=x^k$, i.e., $J(x^k)_{ij}=\left(\frac{\partial r_i}{\partial x_j}\right)(x^k)$ $k)+J(x^k)(x^{k+1}-x)$ $k) = 0$, where $J(x^k)$ $^{\bm{k}})$ is the $x)$ at $x=x^k$, i.e., $J(x)$ \boldsymbol{k} $^{\bm{k}})_{\bm{i}\bm{j}}$ = $\biggl(\frac{\partial r}{\partial x}$ $\frac{\partial r_i}{\partial x_j}\bigg)$ $\bigl(x$ \boldsymbol{k} $^{\bm{k}})$.

$$
J(x^k) \stackrel{\text{nonsingular}}{\Longrightarrow} x^{k+1} = x^k - (J(x^k))^{-1} r(x^k).
$$

The Jacobian of ∇f at x x is the Hessian matrix ∇^2 $^{\mathbf{2}}f(x)$ $\big\Downarrow\nabla^2$ $\pmb{^2f(x^k}$ $\left(\kappa\right)$ nonsingular

$$
(\text{Pure})\,\,\text{Newton iterate}: x^{k+1}=x^k-(\nabla^2 f(x^k))^{-1}\nabla f(x^k).
$$

Advantages of Newton's method for optimization

■ Fast (i.e., quadratic) local rate of convergence.

Theorem 7 (local convergence of (pure) Newton's method):

let $f \in \mathcal{C}^2$ $^{2}(\mathbb{R}^{n}),\,\nabla f(x^{\ast})=0$ with ∇^{2} $^2f(x^*$) nonsingular;

- $\nabla^2 f$ locally Lipschitz continuous at x^* . 2f locally Lipschitz continuous at x^{\ast} .
- If \boldsymbol{x} k_0 is sufficiently close to $x^*.$ for some $k_0\geq0,$

$$
\implies x^k \text{ is well-defined for all } k \geq k_0;
$$

 $x^{\kappa} \to x^*$ as $k \to \infty.$ at qua \boldsymbol{k} ${}^k \rightarrow x^*$ as $k \rightarrow \infty$, at quadratic rate. ~ 100

In the conditions of Th 7: $\nabla f(x)$ \boldsymbol{k} $^k) \rightarrow 0$ quadratically as well.

" $x^{\boldsymbol{k_0}}$ sufficiently close to x^{**} = there e: \boldsymbol{k} $^{\rm o}$ sufficiently close to x^{*} "= there exists $\mathcal{N}(x^*,\delta)$ such that *Contract Contract* $\pmb{\mathcal{X}}$ unknown x^{\ast} and problem-dependent constants). $k_0 \in \mathcal{N}.$ In general, $\mathcal N$ not known beforehand (depends on
aknown a* and problem dependent constants)

Advantages of Newton's method for optimization

Sketch of Proof for Theorem 7:

Taylor expansion of ∇f around x [vector form]:

$$
\nabla f(x^*)=\nabla f(x)+\nabla^2 f(x)(x^*-x)+\mathcal{O}(\|x^*-x\|^2),
$$

where \boldsymbol{x} Lipschitz constant of $\nabla^2 f(x^*)$. Using $\nabla f(x^*)=0$ and $x:=$ x is sufficiently close to x^* and $\mathcal{O}(\cdot)$ depends on the $^2f(x^*$ \mathbf{a} \mathbf{a} \mathbf{b} *). Using $\nabla f(x^*)=0$ and $x := x^k$,whenever $x^{\bm{k}}$ suff. close to x^* , we have

$$
0 = \nabla f(x^k) + \nabla^2 f(x^k)(x^* - x^k) + \mathcal{O}(\|x^* - x^k\|^2).~(**)
$$

 ∇^2 $^2f(x^*$ \mathbf{f} oloco to \mathbf{f} Now (\mathbf{x}^*) *) nonsingular $\Longrightarrow \nabla^2$ $\ ^{2}f(x^{k})$ nonsingular whenever suff. close to $x^*.$ Now (**) implies x^{k} $x^{\bm{k}}-x^{\ast}=[\nabla^2 f(x^{\bm{k}})]^{-1}\nabla f(x^{\bm{k}})+\mathcal{C}$ tha Nawtar $^2f(x^k)]^{-1}$ irootion $^1 \nabla f(x$ $nd \quad k+1$ $^{k})+\mathcal{O}(\Vert x^{\ast}%$ the Newton direction, and $x^{k+1} = x^k + s^k$, we deduce that, $^*-x^k\|^2$ $^{\mathbf 2}).$ Letting $s^{\boldsymbol{k}}$ be whenever x^k suff. close to $x^*,\,x^{k+1}-x^*$ s^k+s^k , we deduce that, $\cdot \cdot \cdot \cdot$ $^{k+1}-x^*$ $^*=\mathcal{O}(\|x^k$ $^k-x^*$ $^{\ast} \|^{2}$ $^2).$ \Box

Local convergence for linesearch-Newton's method

Theorem 8 Let $f \in \mathcal{C}^2$ $^{2}(\mathbb{R}^{n})$ and ∇^{2} ha itaratr $^{\mathrm{2}}f$ be Lipschitz continuous and positive definite at the iterates.

Apply Newton's method with bArmijo linesearch and thechoices $\beta\leq0.5$ and $\alpha_{(0)}=1.$ Assume the iterates $x^{k}\rightarrow$ $k\to\infty,$ where ∇^2f x^{k} $^{\kappa} \rightarrow x^*$ as $^2f(x^*$ $^{\ast})\succ0.$

Then $\alpha^k=1$ for all k sufficiently large, and the rate of convergence of x^κ to x^\ast is quadratic (asymptotically).

Local convergence for Newton with bArmijo linesearch

$$
f(x_1,x_2)=10(x_2-x_1^2)^2+(x_1-1)^2;\quad x^*=(1,1).
$$

Newton with bArmijo linesearch applied to the Rosenbrock function $\boldsymbol{f}.$ $\beta < 0.5$ and $\alpha_{(0)} = 1$ in bArmijo; α $\mathcal{k}=1$ for suff. large $\mathcal{k}.$

Advantages of Newton's method for optimization

■ Newton's method (with or without linesearch) is scale invariant with respect to linear transformations of variables.

Let $A\in\mathbb{R}^{n\times n}$ nonsingular matrix and $y= Ax$ (A is constant, independent of x and y); let $B=A^{-1}$

Let $f(y) := f(x(y)) = f(By)$, minimize f wrt y .

$$
\implies \nabla \overline{f}(y) = B^T \nabla f(x) \text{ and } \nabla^2 \overline{f}(y) = B^T \nabla^2 f(x) B.
$$

Newton direction at
$$
y
$$
: $s_y = -[B^T \nabla^2 f(x)B]^{-1} B^T \nabla f(x)$
\n
$$
= -B^{-1}[\nabla^2 f(x)]^{-1} B^{-T} B^T \nabla f(x)
$$
\n
$$
= -B^{-1}[\nabla^2 f(x)]^{-1} \nabla f(x)
$$
\n
$$
= As_x.
$$

 $\implies y + \alpha s_y = A(x + \alpha s_x).$

Thus $y+\alpha s_y\thickapprox y^*$ $*\implies x+\alpha s_x\approx x^*,$ where y^* $^* = Ax^*$.

.

Disadvantages of Newton's method for optimization

- Newton's method with/without linesearch: the Newton direction $s^{\bm{k}}$ is not well-defined if $\mathbf{\nabla}^2 f(x^{\bm{k}})$ singular; $s^{\bm{k}}$ **Contract Contract Contract** $^{\mathbf{2}}f(x^k)$ singular; not be descent if $\mathbf{\nabla}^2 f(x^k)$ is not positi $s^{\bm{k}}$ may $^{\mathbf 2}f(x^k$ $^{\bm{k}}$) is not positive definite.
- Newton's method ('pure', without linesearch): iterates can get attracted to local maxima or saddle points of f if sufficiently close to them (in the conditions of local convergence Theorem 7, ∇^2 $^2f(x^*$) only required to benonsingular).
- Newton's method ('pure', without linesearch): iterates may fail to converge at all if x^{o} 'too far' from solution (outside neighbourhood of local convergence, failure mayoccur). Thus linesearch is needed to make Newton'smethod globally convergent.

Disadvantages of Newton's method for optimization

Example of failure of (pure) Newton's method to convergeglobally.

$$
f:\mathbb{R}\to\mathbb{R},\quad f(x)=-\frac{x^6}{6}+\frac{x^4}{4}+2x^2.
$$

 $x^* = 0$ local minimizer; $x=\pm$ $\sqrt{(1+\sqrt{17})/2}\approx \pm 1.6$ global max.

