Lecture 5: Second-order methods: Newton’s
method for unconstrained optimization
(continued)

Coralia Cartis, Mathematical Institute, University of Oxford

C6.2/B2: Continuous Optimization

Lecture 5: Second-order methods: Newton’s method for unconstrained optimization (continued) — p. 1/13

Global convergence of linesearch-Newton’s method

m recall backtracking Armijo (bArmijo) linesearch.

Theorem 9 Let f € c2(R™) be bounded below on R™.

Let v be Lipschitz continuous. Let the eigenvalues of

V2 f(z*) be positive and uniformly bounded below, away from
zero (for all k). Apply Newton’s method to £ with bArmijo
linesearch and ¢ = 0. Then

either

there exists I > o0 such that vf(z!) =0
or

IVFf(zF)|| -0asSk — oco. [

e Theorem 9 is satisfied if f € ¢2 with v £ Lipschitz continuous
IS also strongly convex (i.e., the eigenvalues of v2 () for all

x are positive, bounded below, away from zero). Then s* is
descent for all . [Much stronger conditions than for SD methods.]_

Lecture 5: Second-order methods: Newton’s method for unconstrained optimization (continued) — p. 2/13

Global convergence of linesearch-Newton’s method ...

Proof of Theorem 9. The conditions of Theorem 4 (Global
convergence of GLM with bArmijo linesearch) are satisfied.
Thus Th 4 gives that either 31 > 0 such that vf(z!) = 0 or

|s¥|
Let V2f(zF) := H,. Th assumptions on f = Vs € R?, s # 0,

0 < >\m1n S)\mln(Hk) < S”I_lIlgs < Amax(Hk:) S AmaX°

[V (@*)Ts*| = [VF(a*)TH ' VF(@*)| > Anin(Hy DIV (@)

_ IvrEHI? 5 IVLEHI?
max(Hk:) - >\max)

Is¥]|2 = VF(«*)TH, >V f(2*) < Amax(H) IVF(2*)]1? < A
— M, me{ Qanin || V7 £ () ||, 52 Nk }for all &

ENT Lk
M,, 1= min{lvf(w)" |,|Vf(:1:k)Tsk’|} —~o0as k — oo. (1)

[V £ ()2

min |

— Vf(z*) — 0aSk — co. 0O

Lecture 5: Second-order methods: Newton’s method for unconstrained optimization (continued) — p. 3/13

Global convergence for general second-order GLMs

In GLM, let s* be defined by B¥sk = —v f(z*), where B*
symmetric and positive definite matrix.

Theorem 10 Let £ € ¢c*(R™) be bounded below on R™.

Let v £ be Lipschitz continuous. Let the eigenvalues of B* be
uniformly bounded above and below, away from zero, for all k.
Apply GLM with above s* and bArmijo linesearch and e = o.
Then

either

there exists 1 > 0 such that vf(z!) =0
or

IVf(zF)|]| = 0aSk — co. [

e Theorem requires locally strongly convex quadratic models
of f for all & (but the Hessian of £ may not be pos. def.).

Lecture 5: Second-order methods: Newton’s method for unconstrained optimization (continued) — p. 4/13

Modified damped Newton methods

If V2 f(x¥) is not positive definite, it is usual to solve instead
(V2f(a*) + M¥) s = —vf(ah),

where

e M¥* chosen such that V2 f(z*) + MF is “sufficiently”
positive definite.

e M* := 0 when V2 f(z*) is “sufficiently” positive definite.
Options:
1. As V2 f(xF) is symmetric, we can factor V2 f(zF) = Q*D*(Q*) T,
where QF is orthogonal and D* is diagonal, and set
V2 f(x*) + M* := Q* max (eI, |D*|)(Q%) T,

for some “small” e > 0. Expensive approach for large problems.

Lecture 5: Second-order methods: Newton’s method for unconstrained optimization (continued) — p. 5/13

Modified damped Newton methods

2. Estimate Amin(V2f(2*)) and set
MP* := max(0, € — Amin (V2 f(x*)))I.

Cheaper. Often tried in practice but “biased” (may
overemphasize a large negative eigval at the expense of
small, positive ones).

3. Modified Cholesky: compute Cholesky factorization
VEf(®) = L*(L) ',

where LF* is lower triangular matrix. Modify the generated L*
If the factorization is in danger of failing (modify small or
negative diagonal pivots, etc.).

Popular in computations.

Lecture 5: Second-order methods: Newton’s method for unconstrained optimization (continued) — p. 6/13

Approximating the Hessian matrix by finite differences

Approximating the Hessian from gradient vals: : € {1,...,n};
. 1 :
[V2f(z)]le’ = V(@ + he’) = Vf(z)]

Cost of approximating v2f(x) is n + 1 gradient values.

For all finite-differencing, careful with the choice of h In
computations:

e “too large” h — inaccurate approximations,
e “too small” h — numerical cancellation errors.

But successful techniques exist for smooth noiseless
problems when sufficient function and/or gradient values can
be computed.

For noisy problems, use derivative-free optimization methods
(if problem size is not too large).

Lecture 5: Second-order methods: Newton’s method for unconstrained optimization (continued) — p. 7/13

Quasi-Newton methods

Secant approximations for computing B* ~ V2 f(x*)

At the start of the GLM, choose B° (say, B° := I). After
computing s* = —(B*)='Vv f(z*) and zF+1 = z* + ks,
compute update B*+! of B~.

Wish list:

Compute B*+! as a function of already-computed quantities
V f(zkT1), Vf(z*F), ..., VF(z®), B*, sk,

B*t+1 should be symmetric, nonsingular (pos. def.),
BFt+1 “close” to B*, a “cheap” update of B*, BF — v2f(z*), efc.

— a new class of methods: faster than steepest descent
method, cheaper to compute per iteration than Newton'’s.

For the first wish, choose B*+*! to satisfy the secant equation
’)’k . — Vf($k+1) . Vf(a:k) — Bkz—I—l(wk—i—l . wk) — Bk_l_laksk.

Lecture 5: Second-order methods: Newton’s method for unconstrained optimization (continued) — p. 8/13

Quasi-Newton methods ...

Interpretation of the secant equation:

It is satisfied by B**! := v2f when f is a quadratic function.
The change in gradient contains information about the Hessian.
The gradient change predicted by the current quadratic model

Vf(zkT1l) — Vf(zF) = Vq(z* 4+ aks*) — Vq(zF) = —a*V f(z*),
where q(z* + s) = f(z*) + Vf(2*)Ts + 35T B¥s
and sk = —(B*)"1vf(zF).
Want the new quadratic model

u(zk + s) := f(z*) + VF(a*)Ts + 35T BF s

to predict correctly the change in gradient ~*, i.e.,
vk = Vf(zFtl) — Vf(z*) = Vu(zFT!) — Vu(zk) = BT (k1 — k).

Lecture 5: Second-order methods: Newton’s method for unconstrained optimization (continued) — p. 9/13

Quasi-Newton methods ...

Many ways to compute B**! to satisfy the secant equation.
Trade-off between “wishes” on the list for some of the methods.

Symmetric rank 1 updates. [see Prob Sheet 3]

Set B**! .= B* + «*(«*)T, for some u* € R™, and all £ > o.
e B**t1 symmetric, “close” to B*.

e Work per iteration: ©(n?) (as opposed to the ©(n2) of
Newton), due to Sherman-Morrison-Woodbury formula!

The secant equation = u* = (v* — B*§*)/p",

where 6% := k1 — z*k = aksk, (pF)? := (v* — B*6*) T 6% > 0.

e B* may not be positive definite, s* may not be descent.
e p* may be close to zero leading to large updates.

Other updates: BFGS, DFP, Broyden family, etc.

Lecture 5: Second-order methods: Newton’s method for unconstrained optimization

(continued) — p. 10/13

Quasi-Newton methods ...

BFGS updates. [see Prob Sheet 3]

e Broyden-Fletcher-Goldfarb-Shanno (independently).

Set Bjy1 := By + uku,;'_ -+ kav,;r, for some u, € R™, v € R™.

e It is a rank 2 update (if w,, and v, are linearly independent).
o SWM formula yields ©(n?) operations/iteration.

e In practice, update the Cholesky factors of B, (still ©(n?)).

Given B, = JiJ,| , where J,, arbitrary nonsingular, and || - ||»
Frobenius norm, let J,; solve

mJin |J — Ji||r subjectto Jdor = k-

= Bgy1 := Jk+1J,L_1 = By + uku,l_ + 'vk'v,;'_,

e Let J, := L, the lower triangular Cholesky factor of B,.

Lecture 5: Second-order methods: Newton’s method for unconstrained optimization (continued) — p. 11/13

Quasi-Newton methods ...

BFGS updates. (continued)

e Thus B, Is “close” to By.
e B, symmetric pos. def. = B, symmetric pos. def. (provided
(6*)T~F > 0, ensured by say, Wolfe linesearch)

e BFGS method: GLM with s, := —B; 'V f(x), With B,
updated by BFGS formula on each iteration.

e For global convergence of BFGS method, must use Wolfe
linesearch to compute stepsize instead of bArmijo linesearch.

e The BFGS method has local Q-superlinear convergence!

e When applying the BFGS method with exact linesearches,
to a strictly convex quadratic function f, then B,, = V2 after n
iterations.

o Satisfies all the wishes on the wish list! Has been very
popular when second derivatives of £ are not available.

Lecture 5: Second-order methods: Newton’s method for unconstrained optimization (continued) — p. 12/13

Appendix: providing derivatives to algorithms

How to compute/provide derivatives to a solver?

m Calculate derivatives by hand when easy/simple objective
and constraints; user provides code that computes them.

m Calculate or approximate derivatives automatically:

m Automatic differentiation: breaks down computer code for
evaluating f into elementary arithmetic operations +
differentiate by chain rule. Software: ADIFOR, ADOL-C.

m Symbolic differentiation: manipulate the algebraic
expression of f (if available). Software: symbolic
packages of MAPLE, MATHEMATICA, MATLAB.

m Finite differencing — approximate derivatives.

See Nocedal & Wright, Numerical Optimization (2nd edition,
2006) for more details of the above procedures.

Lecture 5: Second-order methods: Newton’s method for unconstrained optimization (continued) — p. 13/13

	Global convergence of linesearch-Newton's method
	Global convergence of linesearch-Newton's method ...
	Global convergence for general second-order GLMs
	Modified damped Newton methods
	Modified damped Newton methods
	Approximating the Hessian matrix by finite differences
	Quasi-Newton methods
	Quasi-Newton methods ...
	Quasi-Newton methods ...
	Quasi-Newton methods ...
	Quasi-Newton methods ...
	hspace *{-0.25cm}Appendix: providing derivatives to algorithms

