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Linesearch versus trust-region methods

(UP): minimize f(x) subject to x ∈ R
n.

Linesearch methods: ‘liberal’ in the choice of search direction,
keeping bad behaviour in control by choice of αk.

• choose descent direction sk,

• compute stepsize αk to reduce f(xk + αsk),

• update xk+1 := xk + αksk.

Trust region (TR) methods: ‘conservative’ in the choice of
search direction, so that a full stepsize along it may really
reduce the objective.

• pick direction sk to reduce a “local model” of f(xk + sk),

• accept xk+1 := xk + sk if decrease in the model is also

achieved by f(xk + sk),

• else set xk+1 := xk and “refine” the model.

Lectures 7 and 8: Trust-region methods for unconstrained optimization – p. 2/25



Trust-region models for unconstrained problems

Approximate f(xk + s) by:

• linear model lk(s) := f(xk) + s⊤∇f(xk) or

• quadratic model

qk(s) := f(xk) + s⊤∇f(xk) +
1

2
s⊤∇2f(xk)s.

Impediments:

models may not resemble f(xk + s) when s is large,

models may be unbounded from below,

∗ lk(s) always unbounded below (unless ∇f(xk) = 0)

∗ qk(s) is always unbounded below if ∇2f(xk) is negative

definite or indefinite, and sometimes if ∇2f(xk) is positive
semidefinite.
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Trust region models and subproblem

Prevent bad approximations by trusting the model only in a
trust region, defined by the trust region constraint

‖s‖ ≤ ∆k, (R)

for some “appropriate” radius ∆k > 0.

The constraint (R) also prevents lk, qk from unboundedness!

=⇒ the trust region subproblem

min
s∈Rn

mk(s) subject to ‖s‖ ≤ ∆k, (TR)

where mk := lk, k ≥ 0, or mk := qk, k ≥ 0.

• From now on, mk := qk.

(TR) easier to solve than (P). May even solve (TR) only
approximately.
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Trust region models and subproblem - an example
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quadratic TR model about x=(−0.25,0.5), ∆=1

Trust-region models of f(x) = x4
1 + x1x2 + (1 + x2)

2.
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Generic trust-region method

Let sk be a(n approximate) solution of (TR). Then

• predicted model decrease:

mk(0) −mk(s
k) = f(xk) −mk(s

k).

• actual function decrease: f(xk) − f(xk + sk).

The trust region radius ∆k is chosen based on the value of

ρk :=
f(xk) − f(xk + sk)

f(xk) −mk(sk)
.

If ρk is not too smaller than 1, xk+1 := xk + sk, ∆k+1 ≥ ∆k.

If ρk close to or ≥ 1, ∆k is increased.

If ρk ≪ 1, xk+1 = xk and ∆k is reduced.
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A Generic Trust Region (GTR) method

Given ∆0 > 0, x0 ∈ R
n, ǫ > 0. While ‖∇f(xk)‖ ≥ ǫ, do:

1. Form the local quadratic model mk(s) of f(xk + s).

2. Solve (approximately) the (TR) subproblem for

sk with mk(s
k) < f(xk) (“sufficiently”).

Compute ρk := [f(xk) − f(xk + sk)]/[f(xk) −mk(s
k)].

3. If ρk ≥ 0.9, then [very successful step]

set xk+1 := xk + sk and ∆k+1 := 2∆k.

Else if ρk ≥ 0.1, then [successful step]

set xk+1 := xk + sk and ∆k+1 := ∆k.

Else [unsuccessful step]

set xk+1 = xk and ∆k+1 := 1
2
∆k.

4. Let k := k + 1. �
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Trust-region methods

• Other sensible values of the parameters of the GTR are possible.

“Solving” the (TR) subproblem

min
s∈Rn

mk(s) subject to ‖s‖ ≤ ∆k, (TR)

... exactly or even approximately may imply work.

Want “minimal” condition of “sufficient decrease” in the model that
ensures global convergence of the TR method (the Cauchy cond.).
In practice, we (usually) do much better than this condition!

Example of applying a trust-region method: [Sartenaer, 2008].

approximate solution of (TR) subproblem: better than
Cauchy, but not exact.

notation: ∆f/∆mk ≡ ρk.
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The Cauchy point of the (TR) subproblem

• recall the steepest descent method has strong (theoretical)
global convergence properties; same will hold for TR method
with SD direction.

“minimal” condition of “sufficient decrease” in the model: require

mk(s
k) ≤ mk(s

k
c) and ‖sk‖ ≤ ∆k,

where skc := −αk
c∇f(x

k), with

αk
c := arg min

α>0
mk(−α∇f(x

k)) subject to ‖α∇f(xk)‖ ≤ ∆k.

[i.e. a linesearch along steepest descent direction is applied

to mk at xk and is restricted to the trust region.] Easy:

αk
c := arg min

α
mk(−α∇f(x

k)) subject to 0 < α ≤
∆k

‖∇f(xk)‖
.

• ykc := xk + skc is the Cauchy point.
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Global convergence of the GTR method

Theorem 11 (GTR global convergence)

Let f ∈ C2(Rn) and bounded below on R
n. Let ∇f be

Lipschitz continuous on R
n. Let {xk} be generated by the

generic trust region (GTR) method, and let the computation of

sk be such that mk(s
k) ≤ mk(s

k
c) for all k. Then either

there exists k ≥ 0 such that ∇f(xk) = 0

or
limk→∞ ‖∇f(xk)‖ = 0.

We (only) sketch the proof of lim infk→∞ ‖∇f(xk)‖ = 0

(which also implies finite termination of GTR) next.
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Computation of the Cauchy point

Computation of the Cauchy point: find αk
c global solution of

min
α>0

mk(−α∇f(x
k)) subject to ‖α∇f(xk)‖ ≤ ∆k,

where mk(s) = f(xk) + sT∇f(xk) + 1
2
sT∇2f(xk)s, & ∇f(xk) 6= 0.

‖α∇f(xk)‖ ≤ ∆k & α > 0⇔ 0 < α ≤
∆k

‖∇f(xk)‖
:= α.

φ(α) := mk(−α∇f(x
k)) = f(xk) − α‖∇f(xk)‖2 +

α2

2
hk,

where hk := ∇f(xk)T∇2f(xk)∇f(xk).

φ′(0) = −‖∇f(xk)‖2 < 0 so φ decreasing from α = 0 for suff.
small α; thus αk

c > 0.

hk > 0: αmin :=
‖∇f(xk)‖2

hk
= argminα>0 φ(α).

=⇒ αk
c = min(αmin, α).

hk ≤ 0: φ(α) unbounded below on IR and so αk
c = α.
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Proof of global convergence of the GTR method

Lemma 12: (Cauchy model decrease) In GTR with Cauchy
decrease mk(s

k) ≤ mk(s
k
c) for all k, we have the model

decrease for each k,

f(xk) −mk(s
k) ≥ f(xk) −mk(s

k
c)

≥ 1
2
‖∇f(xk)‖min

{

∆k,
‖∇f(xk)‖

1+‖∇2f(xk)‖

}

Proof of Lemma 12. (Recall Computation of the Cauchy point)
If hk ≤ 0, then mk(−α

k
c∇f(x

k)) ≤ f(xk) − αk
c‖∇f(x

k)‖2. In this

case, we also have αk
c = α =

∆k

‖∇f(xk)‖
and so

f(xk) −mk(s
k
c) ≥ ∆k‖∇f(x

k)‖.

Else, hk > 0; then αk
c = min{αmin, α} where αmin = ‖∇f(xk)‖2/hk.

Assume first that αk
c = α. Then αk

ch
k ≤ ‖∇f(xk)‖2 and

f(xk) − mk(s
k
c ) = αk

c‖∇f(xk)‖2 −
(αk

c
)2

2 hk ≥
αk

c

2 ‖∇f(xk)‖2,
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Proof of global convergence of the GTR method

Proof of Lemma 12 (continued).

and using the expression of α,
f(xk) −mk(s

k
c) ≥ ∆k

2‖∇f(xk)‖
‖∇f(xk)‖2 = 1

2
∆k‖∇f(x

k)‖.

Finally, let αk
c = αmin = ‖∇f(xk)‖2/hk. Replacing this value in

the model decrease we get

f(xk) −mk(s
k
c) = αk

c‖∇f(x
k)‖2 −

(αk
c)

2

2
hk =

‖∇f(xk)‖4

2hk
,

and further, by Cauchy-Schwarz and Rayleigh quotient
inequalities,

‖∇f(xk)‖4

2hk = ‖∇f(xk)‖4

2(∇f(xk))T ∇2f(xk)∇f(xk)

≥ ‖∇f(xk)‖2

2‖∇2f(xk)‖
≥ ‖∇f(xk)‖2

2(1+‖∇2f(xk)‖)
(∗).

Thus f(xk) −mk(s
k
c) ≥ ‖∇f(xk)‖2

2(1+‖∇2f(xk)‖)
. �

[(*) ‘+1’ is only needed to cover the case Hk = 0.]
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Proof of global convergence of the GTR method

Lemma 13: (Lower bound on TR radius) Let f ∈ C2(Rn) and
∇f be Lipschitz continuous on R

n with Lipschitz constant L.
In GTR with Cauchy decrease mk(s

k) ≤ mk(s
k
c) for all k,

suppose that
there exists ǫ > 0 such that ‖∇f(xk)‖ ≥ ǫ for all k.

Then, there exists a constant c ∈ (0, 1) (independent of k)
such that

∆k ≥
c

L
ǫ for all k ≥ 0.

Remarks:
(1) The proof of Lemma 13 relies on first showing that if
∆k ≤ 2c

L
ǫ, then iteration k is successful and ∆k+1 ≥ ∆k.

(2) If GTR takes finitely many successful iterations, then we
can show that the last successful iterate has zero gradient.
[∆k → 0 which contradicts L13 if gradient not zero.]
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Proof of global convergence of the GTR method

Theorem 14: (At least one limit point is stationary) Let
f ∈ C2(Rn) and and bounded below on R

n. Let ∇f be
Lipschitz continuous on R

n with Lipschitz constant L. Let {xk}

be generated by the generic trust region (GTR) method, and
let the computation of sk be such that mk(s

k) ≤ mk(s
k
c) for all

k. Then either there exists k ≥ 0 such that ∇f(xk) = 0 or
lim infk→∞ ‖∇f(xk)‖ = 0.

Proof of Theorem 14. If there exists k such that ∇f(xk) = 0,
then GTR terminates (this includes the case of having finitely
many successful iterations). Assume there exists
ǫ > 0 such that ‖∇f(xk)‖ ≥ ǫ for all k. Then using that there are
infinitely many successful iterations k ∈ S, and def. of GTR/ρk,

f(xk) − f(xk+1) ≥ 0.1(f(xk) −mk(s
k))

≥ 0.1
2
‖∇f(xk)‖min

{

‖∇f(xk)‖
1+‖∇2f(xk)‖

,∆k

}

for all k ∈ S, where we also used Lemma 12.
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Proof of global convergence of the GTR method

Proof of Theorem 14 (continued).

∇f Lipschitz cont. with Lips const L =⇒ ‖∇2f(x)‖ ≤ L ∀x.

Thus since ‖∇f(xk)‖ ≥ ǫ for all k, we have for all k ∈ S that

f(xk) − f(xk+1) ≥ 0.05ǫmin

{

ǫ

1 + L
,∆k

}

≥ 0.05ǫmin

{

ǫ

1 + L
,
c

L
ǫ

}

,

where we also used Lemma 13. Thus

for all k ∈ S: f(xk) − f(xk+1) ≥ 0.05c
1+L

ǫ2. (*)

Since f(xk) ≥ flow for all k, we deduce
f(x0) − flow ≥ f(x0) − limk→∞ f(xk) ≥

∑∞
i=0(f(x

i) − f(xi+1))

=
∑

i∈S(f(x
i) − f(xi+1)) ≥ |S|0.05c

1+L
ǫ2 (**)

where in ’=’ we used f(xk) = f(xk+1) on all unsuccessful k,
and in the last ’≥’, we used (*) and |S| =no. of success-
ful iterations. But LHS of (**) is finite while RHS of (**) is infinite
since |S| = ∞. Thus there must exist k such that ‖∇f(xk)‖ < ǫ.�
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Solving the (TR) subproblem

On each TR iteration we compute or approximate the solution of

min
s∈Rn

mk(s) = f(xk) + s⊤∇f(xk) +
1

2
s⊤∇2f(xk)s

subject to ‖s‖ ≤ ∆k.

also, sk must satisfy the Cauchy condition mk(s
k) ≤ mk(s

k
c),

where skc := −αk
c∇f(x

k), with

αk
c := arg min

α>0
mk(−α∇f(x

k)) subject to ‖α∇f(xk)‖ ≤ ∆k.

[Cauchy condition ensures global convergence]

• solve (TR) exactly (i.e., compute global minimizer of TR)
=⇒ TR akin to Newton-like method.

• solve (TR) approximately (i.e., an approximate global
minimizer) =⇒ large-scale problems.
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Solving the (TR) subproblem exactly

For h ∈ R, ∆ > 0, g ∈ R
n, H n× n symm. matrix, consider

min
s∈Rn

m(s) := h+ s⊤g +
1

2
s⊤Hs, s. t. ‖s‖ ≤ ∆. (TR)

Characterization result for the solution of (TR):

Theorem 15

Any global minimizer s∗ of (TR) satisfies the equation

(H + λ∗I)s∗ = −g,

where H + λ∗I is positive semidefinite, λ∗ ≥ 0,

λ∗(‖s∗‖ − ∆) = 0 and ‖s∗‖ ≤ ∆.

If H + λ∗I is positive definite, then s∗ is unique.

• The above Theorem gives necessary and sufficient global
optimality conditions for a nonconvex optimization problem!
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Solving the (TR) subproblem exactly

Computing the global solution s∗ of (TR):

Case 1. If H is positive definite and Hs = −g satisfies ‖s‖ ≤ ∆

=⇒ s∗ := s (unique), λ∗ := 0 (by Theorem 15).

Case 2. If H is positive definite but ‖s‖ > ∆,

or H is not positive definite, Theorem 15 implies s∗ satisfies

(H + λI)s = −g, ‖s‖ = ∆, (∗)

for some λ ≥ max{0,−λmin(H)} := λ.

Let s(λ) = −(H + λI)−1g, for any λ > λ. Then s∗ = s(λ∗)

where λ∗ ≥ λ solution of
‖s(λ)‖ = ∆, λ ≥ λ.

−→ nonlinear equation in one variable λ. Use Newton’s
method to solve it. We discuss the system (*) in detail next.
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Solving the (TR) subproblem exactly ...

(H + λI)s = −g, s⊤s = ∆2. (∗)

H symmetric =⇒ spectral decomposition: H = U⊤ΛU ,

with U orthonormal matrix of the eigenvectors of H and Λ

diagonal mat. of eigenvalues of H, λ1 ≤ λ2 ≤ ... ≤ λn; λ1 = λmin(H)

Th. 15 =⇒ H + λI = U⊤(Λ + λI)U positive semidefinite =⇒

λ1 + λ ≥ 0 =⇒ λ ≥ −λ1 =⇒ λ ≥ max{0,−λ1}.

λ −→ s(λ) := −(H + λI)−1g, provided H + λI nonsingular.

ψ(λ) := ‖s(λ)‖2 = ‖U⊤(Λ + λI)−1Ug‖2 = g⊤U⊤(Λ + λI)−2Ug

• g = U⊤γ, for some γ = (γ1, . . . , γn) ∈ R
n. As UU⊤ = U⊤U = I,

ψ(λ) =γ⊤(Λ + λI)−2γ =

n
∑

i=1

γ2
i

(λ+ λi)2
(∗)
= ∆2.
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The secular equation

Consider
ψ(λ) := ‖s(λ)‖2 = ∆2

for λ ∈ (max{0,−λ1},∞). [see Pb Sheet 3]

‘Easy’ cases: Plots of λ vs. ψ(λ); H ≻ 0 (LHS) and H indef (RHS).
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The secular equation

DON’T solve ψ(λ) := ‖s(λ)‖2 = ∆2.

Solve instead the secular equation

φ(λ) :=
1

‖s(λ)‖
−

1

∆
= 0 for λ ∈ (max{0,−λ1},∞). (†)

• φ has no poles; it is analytic on (−λ1,∞)

=⇒ ideal for Newton’s mthd (exc. in the ‘hard’ case).
[globally convergent and locally quadratic if λ0 ∈ [−λ1, λ∗]; else safeguard with linesearch]

0

φ(λ)

0 −λ1 λ∗ λ

✻

✲

min− 1

4
s2

1
+ 1

4
s2

2
+ 1

2
s
1

+ s
2

subject to‖s‖2 ≤ 4
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Solving the (TR) subproblem for large-scale problems

• Newton’s mthd for (†): Cholesky factorization of H + λI for
various λ −→ expensive or impossible for large problems.

No computation of the complete eigenvalue decomposition of H!

Solving the large-scale (TR) subproblem:

• Use iterative methods to approximate the global minimizer
of (TR).

Use the Cauchy point (i.e. steepest descent):
impractical.

Use conjugate-gradient or Lanczos method (as the first
step is a steepest descent, and thus our requirement of
“sufficient decrease” in mk will be satisfied).
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Nonlinear least-squares/inverse problems

r : Rn → R
m with m ≥ n; r smooth.

minx∈Rn f(x) := 1
2

∑m
j=1[rj(x)]

2 = 1
2
‖r(x)‖2. (NLS)

The Levenberg-Marquardt method: replace linesearch in
Gauss-Newton with trust-region

=⇒ mins∈Rn
1
2
‖J(xk)s+ r(xk)‖2 subject to ‖s‖ ≤ ∆k.

useful when J(xk) is rank-deficient (i.e., not full-rank);
overcomes weakness of Gauss-Newton.

sk solves TR subproblem iff ∃λk ≥ 0 such that

(J(xk)TJ(xk) + λkI)sk = −J(xk)T r(xk)

and λk(‖sk‖ − ∆k) = 0.
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Linesearch vs. trust-region methods

Quasi-Newton methods/approximate derivatives also possible
in the trust-region framework; no need for positive definite
updates for the Hessian! Replace ∇2f(xk) with approximation
Bk in the quadratic local model mk(s).

Conclusions: state-of-the-art software for unconstrained
problems implements linesearch or TR methods; both
approaches have been made competitive (more heuristics
needed by linesearch methods to deal with negative curvature).
Choosing between the two is mostly a matter of “taste”.

Information on existing software can be found at the NEOS
Center: http://www.neos-guide.org

−→ look under Optimization Guide and Optimization Tree, etc.

State-of-the-art NLO software: KNITRO, IPOPT, GALAHAD,...
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