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Problems and solutions

minimize f(x) subject to x ∈ Ω ⊆ R
n.

f : Ω→ R is (sufficiently) smooth.

f objective; x variables.

Ω feasible set determined by finitely many (equality and/or
inequality) constraints.

x∗ global minimizer of f over Ω =⇒ f(x) ≥ f(x∗), ∀x ∈ Ω.

x∗ local minimizer of f over Ω =⇒
∃N(x∗, δ) such that f(x) ≥ f(x∗), for all x ∈ Ω ∩N(x∗, δ).
• N(x∗, δ) := {x ∈ R

n : ‖x− x∗‖ ≤ δ}.
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Example problem in one dimension

Example : min f(x) subject to a ≤ x ≤ b.

x 1x 2x 

f(x)

ba
The feasible region Ω is the interval [a, b].
The point x1 is the global minimizer; x2 is a local

(non-global) minimizer; x = a is a constrained local minimizer.
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An example of a nonlinear constrained problem

min
x∈R2

(x1 − 2)2 + (x2 − 0.5(3−
√
5))2 subject to

−x1 − x2 + 1 ≥ 0, x2 − x2
1 ≥ 0.
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Optimality conditions for constrained problems

== algebraic characterizations of solutions −→ suitable for
computations.

provide a way to guarantee that a candidate point is optimal
(sufficient conditions)

indicate when a point is not optimal
(necessary conditions)

minimizex∈Rn f(x) subject to cE(x) = 0, cI(x) ≥ 0.

(CP)

f : Rn → R, cE : Rn → R
m and cI : Rn → R

p (suff.) smooth;

• cI(x) ≥ 0⇔ ci(x) ≥ 0, i ∈ I.

• Ω := {x : cE(x) = 0, cI(x) ≥ 0} feasible set of the problem.
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Optimality conditions for constrained problems

unconstrained problem −→ x̂ stationary point (∇f(x̂) = 0).

constrained problem −→ x̂ Karush-Kuhn-Tucker (KKT) point.

Definition: x̂ KKT point of (CP) if there exist ŷ ∈ R
m and

λ̂ ∈ R
p such that (x̂, ŷ, λ̂) satisfies

∇f(x̂) =
∑

j∈E

ŷj∇cj(x̂) +
∑

i∈I

λ̂i∇ci(x̂),

cE(x̂) = 0, cI(x̂) ≥ 0,

λ̂i ≥ 0, λ̂ici(x̂) = 0, for all i ∈ I.

• Let A := E∪{i ∈ I : ci(x̂) = 0} index set of active constraints
at x̂; cj(x̂) > 0 inactive constraint at x̂⇒ λ̂j = 0. Then
∑

i∈I λ̂i∇ci(x̂) =
∑

i∈I∩A λ̂i∇ci(x̂).

• J(x) =
(

∇ci(x)
T
)

i
Jacobian matrix of constraints c. Thus

∑

j∈E ŷj∇cj(x̂) = JE(x)T ŷ and
∑

i∈I λ̂i∇ci(x̂) = JI(x)
T λ̂.
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Optimality conditions for constrained problems ...

x̂ KKT point −→ ŷ and λ̂ Lagrange multipliers of the equality
and inequality constraints, respectively.

ŷ and λ̂ −→ sensitivity analysis.

L : Rn × R
m × R

p → R Lagrangian function of (CP),

L(x, y, λ) := f(x)− y⊤cE(x)− λ⊤cI(x), x ∈ R
n.

Thus ∇xL(x, y, λ) = ∇f(x)− JE(x)
⊤y − JI(x)

⊤λ,

and x̂ KKT point of (CP) =⇒ ∇xL(x̂, ŷ, λ̂) = 0

(i. e., x̂ is a stationary point of L(·, ŷ, λ̂)).

• duality theory...
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An illustration of the KKT conditions

min
x∈R2

(x1 − 2)2 + (x2 − 0.5(3−
√
5))2 subject to

−x1 − x2 + 1 ≥ 0, x2 − x2
1 ≥ 0. (∗)

x∗ = 1
2
(−1+

√
5, 3−

√
5)⊤:

• global solution of (∗),
• KKT point of (∗).
∇f(x∗) = (−5 +

√
5, 0)⊤,

∇c1(x
∗) = (1−

√
5, 1)⊤,

∇c2(x
∗) = (−1,−1)⊤.
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c1(x
∗) = c2(x

∗) = 0: constraints are active at x∗.
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An illustration of the KKT conditions ...

min
x∈R2

(x1 − 2)2 + (x2 − 0.5(3−
√
5))2 subject to

−x1 − x2 + 1 ≥ 0, x2 − x2
1 ≥ 0. (∗)

x := (0, 0)⊤

is NOT a KKT point of (∗)!
c1(x) = 0: active at x.

c2(x) = 1: inactive at x.

=⇒ λ2 = 0 and
∇f(x) = λ1∇c1(x),
with λ1 ≥ 0.

⇓
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√
5− 3)⊤ and

∇c1(x) = (0, 1)⊤.
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Optimality conditions for constrained problems ...

In general, need constraints/feasible set of (CP) to satisfy
regularity assumption called constraint qualification in order
to derive optimality conditions.
Theorem 16 (First order necessary conditions) Under
suitable constraint qualifications,
x∗ local minimizer of (CP) =⇒ x∗ KKT point of (CP).

Proof of Theorem 16 (for equality constraints only): Let I = ∅
and so we must show that cE(x∗) = 0 (which is trivial as x∗

feasible) and ∇f(x∗) = JE(x∗)Ty∗ for some y∗ ∈ R
m. Consider

feasible perturbations/paths x(α) around x∗, where α (small)
scalar, x(α) ∈ C2(Rn) and

x(0) = x∗ and c(x(α)) = 0(†).
(†) requires constraint qualifications

Then by Taylor expansion, x(α) = x∗ + αs + 1
2
α2p +O(α3)(††).

(††) [α2 and higher order terms not needed here; only for 2nd order conditions later]
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Optimality conditions for constrained problems ...

Proof of Theorem 16 (for equality constraints only): (continued)
For any i ∈ E, by Taylor’s theorem for ci(x(α)) around x∗,

0 = ci(x(α)) = ci(x
∗ + αs + 1

2
α2p +O(α3))

= ci(x
∗) +∇ci(x

∗)T (αs + 1
2
α2p) + 1

2
α2sT∇2ci(x

∗)s +O(α3)

= α∇ci(x
∗)T s + 1

2
α2

[

∇ci(x
∗)Tp + sT∇2ci(x

∗)s
](∗)

+O(α3).

where we used ci(x
∗) = 0. Thus for all i ∈ E,

∇ci(x
∗)T s = 0 and ∇ci(x

∗)Tp + sT∇2ci(x
∗)s = 0(∗),

and so JE(x∗)s = 0. Now expanding f , we deduce

f(x(α)) = f(x∗) +∇f(x∗)T (αs + 1
2
α2p) + 1

2
α2sT∇2f(x∗)s +O(α3)

= f(x∗) + α∇f(x∗)T s + 1
2
α2

[

∇f(x∗)Tp + sT∇2f(x∗)s
](∗)

+O(α3).

(∗)[these terms are only needed for 2nd order optimality conditions later]

As x(α) feasible, f is unconstrained along x(α) and so
f ′(x(0)) = ∇f(x∗)T s = 0 since x∗ is a local minimizer along
x(α). Thus ∇f(x∗)T s = 0 for all s such that JE(x∗)s = 0(1).
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Optimality conditions for constrained problems ...

Proof of Theorem 16 (for equality constraints only): (continued)

If we let Z be a basis for the null space of JE(x∗), we deduce
there exists y∗ and s∗ such that

∇f(x∗) = JE(x∗)Ty∗ + Zs∗. (2)

From (1), ZT∇f(x∗) = 0 and so from (2),

0 = ZTJE(x∗)Ty∗ + ZTZs∗,

and furthermore, since JE(x∗)Z = 0, we must have ZTZs∗ = 0.
As Z is a basis, it is full rank and so s∗ = 0. We conclude from
(2) that ∇f(x∗) = JE(x∗)Ty∗. �

Let (CP) with equalities only (I = ∅). Then feasible descent
direction s at x ∈ Ω if ∇f(x)T s < 0 and JE(x)s = 0.

Let (CP). Then feasible descent direction s at x ∈ Ω if
∇f(x)T s < 0, JE(x)s = 0 and ∇ci(x)

T s ≥ 0 for all i ∈ I ∩ A(x).
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Constraint qualifications

Proof of Th 16: used (first-order) Taylor to linearize f and ci

along feasible paths/perturbations x(α) etc. Only correct if
linearized approximation covers the essential geometry of the
feasible set. CQs ensure this is the case.

Examples:

(CP) satisfies the Slater Constraint Qualification (SCQ)⇐⇒
if ∃x s.t. cE(x) = Ax− b = 0 and cI(x) > 0 (i.e., ci(x) > 0, i ∈ I).

(CP) satisfies the Linear Independence Constraint
Qualification (LICQ) ⇐⇒ ∇ci(x), i ∈ A(x), are linearly
independent (at relevant x).

Both SCQ and LICQ fail for
Ω = {(x1, x2) : c1(x) = 1− x2

1 − (x2 − 1)2 ≥ 0; c2(x) = −x2 ≥ 0}.

TΩ(x) = {(0, 0)} and F(x) = {(s1, 0) : s1 ∈ R}. Thus TΩ(x) 6= F(x).
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Constraint qualifications...

Tangent cone to Ω at x: [See Chapter 12, Nocedal & Wright]

TΩ(x) = {s : limiting direction of feasible sequence} [‘geometry’ of Ω]

s = lim
k→∞

zk − x

tk
where zk ∈ Ω, tk > 0, tk → 0 and zk → x as k→∞.

Set of linearized feasible directions: [‘algebra’ of Ω]

F(x) = {s : sT∇ci(x) = 0, i ∈ E; sT∇ci(x) ≥ 0, i ∈ I ∩ A(x)}
Want TΩ(x) = F(x)←−[ensured if a CQ holds]

min(x1,x2) x1 + x2

s.t. x2
1 + x2

2 − 2 = 0.
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Optimality conditions for constrained problems ...

If the constraints of (CP) are linear in the variables, no constraint

qualification is required.

Theorem 17 (First order necessary conditions for linearly
constrained problems) Let (cE, cI)(x) := Ax− b in (CP). Then
x∗ local minimizer of (CP) =⇒ x∗ KKT point of (CP).

Let A = (AE, AI) and b = (bE, bI) corresponding to equality
and inequality constraints.
KKT conditions for linearly-constrained (CP): x∗ KKT point⇔
there exists (y∗, λ∗) such that

∇f(x∗) = AT
Ey∗ + AT

I λ
∗,

AEx∗ − bE = 0, AIx
∗ − bI ≥ 0,

λ∗ ≥ 0, (λ∗)T (AIx
∗ − bI) = 0.
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Optimality conditions for convex problems

(CP) is a convex programming problem if and only if
f(x) is a convex function, ci(x) is a concave function for all
i ∈ I and cE(x) = Ax− b.

• ci is a concave function⇔ (−ci) is a convex function.

• (CP) convex problem⇒ Ω is a convex set.

• (CP) convex problem⇒ any local minimizer of (CP) is global.

First order necessary conditions are also sufficient for optimality

when (CP) is convex.

Theorem 18. (Sufficient optimality conditions for convex
problems: Let (CP) be a convex programming problem.
x̂ KKT point of (CP) =⇒ x̂ is a (global) minimizer of (CP). �
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Optimality conditions for convex problems

Proof of Theorem 18.
f convex =⇒ f(x) ≥ f(x̂) +∇f(x̂)⊤(x− x̂), for all x ∈ R

n. (1)

(1)+[∇f(x̂) = A⊤ŷ +
∑

i∈I λ̂i∇ci(x̂)] =⇒

f(x) ≥ f(x̂) + (A⊤ŷ)⊤(x− x̂) +
∑

i∈I λ̂i(∇ci(x̂)
⊤(x− x̂)),

f(x) ≥ f(x̂) + ŷ⊤A(x− x̂) +
∑

i∈I λ̂i(∇ci(x̂)
⊤(x− x̂)) (2).

Let x ∈ Ω arbitrary =⇒ Ax = b and c(x) ≥ 0.

Ax = b and Ax̂ = b =⇒ A(x− x̂) = 0. (3)

ci concave =⇒ ci(x) ≤ ci(x̂) +∇ci(x̂)
⊤(x− x̂).

=⇒ ∇ci(x̂)
⊤(x− x̂) ≥ ci(x)− ci(x̂).

=⇒ λ̂i(∇ci(x̂)
⊤(x− x̂)) ≥ λ̂i(ci(x)− ci(x̂)) = λ̂ici(x)≥ 0,

since λ̂ ≥ 0, λ̂ici(x) = 0 and c(x) ≥ 0.

Thus, from (2), f(x) ≥ f(x̂). �
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Optimality conditions for nonconvex problems

•When (CP) is not convex, the KKT conditions are not in
general sufficient for optimality
−→ need positive definite Hessian of the Lagrangian function
along “feasible” directions.

• More on second-order optimality conditions later on.
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Example: Optimality conditions for QP problems

A Quadratic Programming (QP) problem has the form

minimizex∈Rn c⊤x + 1
2
x⊤Hx s. t. Ax = b, Ãx ≥ b̃. (QP)

H symm. pos. semidefinite =⇒ (QP) convex problem.

The KKT conditions for (QP):

x̂ KKT point of (QP) ⇐⇒ ∃ (ŷ, λ̂) ∈ R
m × R

p such that

Hx̂ + c = A⊤ŷ + Ã⊤λ̂,

Ax̂ = b, Ãx̂ ≥ b̃,

λ̂ ≥ 0, λ̂⊤(Ãx̂− b̃) = 0.

“An example of a nonlinear constrained problem” is convex;
removing the constraint x2 − x2

1 ≥ 0 makes it a convex (QP).
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Example: Duality theory for QP problems

For simplicity, let A := 0 and H ≻ 0 in (QP): primal problem:

minimizex∈Rn c⊤x + 1
2
x⊤Hx s. t. Ãx ≥ b̃. (QP)

The KKT conditions for (QP):

Hx̂ + c = Ã⊤λ̂,

Ãx̂ ≥ b̃,

λ̂ ≥ 0, λ̂⊤(Ãx̂− b̃) = 0.

Dual problem:

maximize(x,λ) − 1
2
xTHx + b̃Tλ s.t. −Hx + Ã⊤λ = c and λ ≥ 0.

Optimal value of primal pb=optimal value of dual pb (provided
they exist).
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Second-order optimality conditions

•When (CP) is not convex, the KKT conditions are not in
general sufficient for optimality.

Assume some CQ holds. Then at a given point x∗: the set of
feasible directions for (CP) at x∗:

F(x∗) =
{

s : JE(x
∗)s = 0, sT∇ci(x

∗) ≥ 0, i ∈ A(x∗) ∩ I
}

.

If x∗ is a KKT point, then for any s ∈ F(x∗), either

sT∇f(x∗) > 0

−→ so f can only increase and stay feasible along s

or sT∇f(x∗) = 0

−→ cannot decide from 1st order info if f increases or not
along such s.

F (λ∗) = {s ∈ F(x∗) : sT∇ci(x
∗) = 0, ∀i ∈ A(x∗) ∩ I with λ∗

i > 0},
where λ∗ is a Lagrange multiplier of the inequality constraints.

Then note that sT∇f(x∗) = 0 for all s ∈ F (λ∗).
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Second-order optimality conditions ...

Theorem 19 (Second-order necessary conditions)
Let some CQ hold for (CP). Let x∗ be a local minimizer of
(CP), and (y∗, λ∗) Lagrange multipliers of the KKT conditions
at x∗. Then

sT∇2
xxL(x∗, y∗, λ∗)s ≥ 0 for all s ∈ F (λ∗),

where L(x, y, λ) = f(x)− yT cE(x)− λT cI(x) is the
Lagrangian function.

Theorem 20 (Second-order sufficient conditions)
Assume that x∗ is a feasible point of (CP) and (y∗, λ∗) are
such that the KKT conditions are satisfied by (x∗, y∗, λ∗). If

sT∇2
xxL(x∗, y∗, λ∗)s > 0 for all s ∈ F (λ∗), s 6= 0,

then x∗ is a local minimizer of (CP).
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Second-order optimality conditions ...

Proof of Theorem 19 (for equality constraints only) [NON-EXAMINABLE]:
Let I = ∅ and so F(x∗) = F (λ∗). We have to show that

sT∇2
xxL(x∗, y∗, λ∗)s ≥ 0 for all s such that JE(x∗)s = 0.

Recall the proof of Theorem 16: along any feasible path of
the form x(α) = x∗ + αs + 1

2
α2p +O(α3) (for any s and p), we

showed that

JE(x∗)s = 0 and ∇ci(x
∗)Tp + sT∇2ci(x

∗)s = 0, i ∈ E,

and that
f(x(α)) = f(x∗) + 1

2
α2

[

∇f(x∗)Tp + sT∇2f(x∗)s
]

+O(α3).

As x∗ is a local minimizer, we must have that

∇f(x∗)Tp + sT∇2f(x∗)s ≥ 0. (*)

From the KKT conditions, ∇f(x∗) = JE(x∗)Ty∗ and so
∇f(x∗)Tp = (y∗)TJE(x∗)p = −∑

i∈E y∗
i s

T∇2ci(x
∗)s. (**)
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Second-order optimality conditions ...

Proof of Theorem 19 (for equality constraints only):(continued)

From (*) and (**), we deduce

0 ≤ sT∇2f(x∗)s−∑

i∈E y∗
i s

T∇2ci(x
∗)s

= sT [∇2f(x∗)−∑

i∈E∇2ci(x
∗)]s

= sT∇2
xxL(x∗, y∗)s. �
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Some simple approaches for solving (CP)

Equality-constrained problems: direct elimination (a simple
approach that may help/work sometimes; cannot be
automated in general)

Method of Lagrange multipliers: using the KKT and second
order conditions to find minimizers (again, cannot be
automated in general)

[see Pb Sheet 4]
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