Lectures 9 and 10: Constrained optimizationproblems and their optimality conditions

Coralia Cartis, Mathematical Institute, University of Oxford

C6.2/B2: Continuous Optimization

minimize $f(x)$ subject to $x\in\Omega\subseteq\mathbb{R}^n$

- $f:\Omega\to\mathbb{R}$ is (sufficiently) smooth.
- f objective; x variables.

Ω feasible set determined by finitely many (equality and/or
squality) espetraints inequality) constraints.

 x^* global minimizer of f over $\Omega \implies f(x) \geq f(x^*)$ $^{*}),$ $\forall x\in\Omega.$

 x^* local minimizer of f over $\Omega \implies$ $\exists N(x^*,\delta)$ such that $f(x)\geq f(x^*)$ \blacksquare τ (\sim τ τ τ \sim τ \sim τ $\bullet\;N(x^*,\delta):=\{x\in\mathbb{R}^n:\,\|x-x^*\|\leq \delta\}.$ $^{\ast}),$ for all $x\in\Omega\cap N(x^{\ast},\delta).$

Example problem in one dimension

The feasible region Ω is the interval $[a, b]$.
The point said the alshel minimizers in The point x_1 is the (non-global) minimizer; $x=a$ is a constrained local minimizer. $_1$ is the global minimizer; x_2 $_{\rm 2}$ is a local

An example of ^a nonlinear constrained problem

$$
\min_{x \in \mathbb{R}^2} (x_1 - 2)^2 + (x_2 - 0.5(3 - \sqrt{5}))^2 \text{ subject to } -x_1 - x_2 + 1 \ge 0, \ x_2 - x_1^2 \ge 0.
$$

==algebraic characterizations of solutions → suitable for
moutations computations.

provide ^a way to guarantee that ^a candidate point is optimal (sufficient conditions)

indicate when ^a point is not optimal (necessary conditions)

minimize $_{x\in\mathbb{R}^n}$ $f(x)$ subjectito $c_E(x) = 0,$ $c_I(x)\geq0.$ (CP) $f:\mathbb{R}^n\to\mathbb{R},\,c_E:\mathbb{R}^n\to\mathbb{R}^m$ and $c_I:\mathbb{R}^n\to\mathbb{R}^p$ (suff.) smooth; $\bullet \ c_I(x)\geq 0 \Leftrightarrow c_i(x)\geq 0, \, i\in I.$ • $\Omega := \{x : c_E(x) = 0, \ c_I(x) \geq 0\}$ feasible set of the problem.

unconstrained problem $\longrightarrow \hat{x}$ stationary point $(\nabla f(\hat{x}) = 0).$ constrained problem $\;\longrightarrow\;\hat{x}\;$ Karush-Kuhn-Tucker (KKT) point.

Definition: \hat{x} KKT point of (CP) if there exist $\hat{y}\in\mathbb{R}^m$ and $\hat{\lambda}\in\mathbb{R}^{p}_{-}$ such that $(\hat{x},\hat{y},\hat{\lambda})$ satisfies

$$
\nabla f(\hat{x}) = \sum_{j \in E} \hat{y}_j \nabla c_j(\hat{x}) + \sum_{i \in I} \hat{\lambda}_i \nabla c_i(\hat{x}),
$$

\n
$$
c_E(\hat{x}) = 0, \quad c_I(\hat{x}) \ge 0,
$$

\n
$$
\hat{\lambda}_i \ge 0, \quad \hat{\lambda}_i c_i(\hat{x}) = 0, \quad \text{for all } i \in I.
$$

•• Let $A := E \cup \{i \in I : c_i(\hat{x}) = 0\}$ index set of active constraints at $\hat{x};\,c_j(\hat{x})>0$ inactive constraint at $\hat{x}\Rightarrow\hat{\lambda}_j=0.$ Then $\sum_{i\in I}\hat{\lambda}_i \nabla c_i(\hat{x}) = \sum_{i\in I\cap\mathcal{A}}\hat{\lambda}_i \nabla c_i(\hat{x}).$ \bullet $J(x)=\left(\nabla c_i(x)^T \right)_i$ Jacobian n $\sum_{j\in E}\hat{y}_j\nabla c_j(\hat{x})=J_E(x)^T\hat{y}$ and $\sum_{i\in I}\hat{\lambda}_i\nabla c_i(\hat{x})=J_I(x)^T\hat{\lambda}$. $\left(T\right)_{i}$ Jacobian matrix of constraints c . Thus ${}^{\,T}\hat{y}$ and $\sum_{i\in I}\hat{\lambda}_i\nabla c_i(\hat{x})=J_I(x)^T$ $T\hat{\lambda}$.

 \hat{x} KKT point $\longrightarrow \hat{y}$ and $\hat{\lambda}$ Lagrange multipliers of the equality and inequality constraints, respectively. \hat{y} and $\hat{\lambda} \longrightarrow$ sensitivity analysis.

 $\mathcal{L}:\mathbb{R}^n\times\mathbb{R}^m\times\mathbb{R}^p$ $P \rightarrow \mathbb{R}$ Lagrangian function of (CP),

$$
\mathcal{L}(x,y,\lambda):=f(x)-y^\top c_E(x)-\lambda^\top c_I(x),\quad x\in\mathbb{R}^n.
$$

Thus $\,\nabla_x \mathcal{L}(x,y,\lambda) = \nabla f(x)$ − $J_E(x)^\top$ $\boldsymbol{y} J_I(x)^\top\lambda,$

- and \hat{x} KKT point of (CP) $\implies \nabla$ (i. e., \hat{x} is a stationary point of $\mathcal{L}(\cdot, \hat{y}, \hat{\lambda})).$ $_{x}\mathcal{L}(\hat{x},\hat{y},\hat{\lambda})=0$
- duality theory...

An illustration of the KKT conditions

$$
\min_{x \in \mathbb{R}^2} (x_1 - 2)^2 + (x_2 - 0.5(3 - \sqrt{5}))^2 \text{ subject to}
$$
\n
$$
-x_1 - x_2 + 1 \ge 0, \ x_2 - x_1^2 \ge 0. \qquad (*)
$$
\n
$$
x^* = \frac{1}{2}(-1 + \sqrt{5}, 3 - \sqrt{5})^\top
$$
\n• global solution of (*),\n• KKT point of (*),\n
$$
\nabla f(x^*) = (-5 + \sqrt{5}, 0)^\top, \quad \begin{matrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{matrix}
$$
\n
$$
\nabla c_1(x^*) = (1 - \sqrt{5}, 1)^\top, \quad \begin{matrix} 0.5 \\ 0.5 \\ 0.5 \end{matrix}
$$
\n
$$
\nabla c_2(x^*) = (-1, -1)^\top.
$$
\n
$$
\nabla f(x^*) = \lambda^* \nabla c_1(x^*) + \lambda^* \nabla c_2(x^*) \quad \text{with } \lambda^* = \lambda^* = \sqrt{5} - 1 \text{ and } \lambda^* = \sqrt{
$$

 $\nabla f(x^*) = \lambda_1^*$ $(a^{*}) = a$ $_1^* \nabla c_1(x^*) + \lambda_2^*$ $= 0.5$ conct $\frac{\ast}{2}\nabla c_2(x^*$ $c_1(x^*)=c_2(x^*)=0$: constraints are active at x^* $^{\ast}),$ with λ_{1}^{\ast} $_1^*=\lambda _2^*$ $_{2}^{\ast}=\sqrt{5}-1>0.$.

An illustration of the KKT conditions ...

$$
\min_{x \in \mathbb{R}^2} (x_1 - 2)^2 + (x_2 - 0.5(3 - \sqrt{5}))^2
$$
 subject to
-x₁ - x₂ + 1 \ge 0, x₂ - x₁² \ge 0. (*)

Contradiction with $\nabla f(x) = (\cdot$ $\nabla c_1(x)=(0,1)^\top$ − $4,\sqrt{5} (-3)^{\top}$ and .

In general, need constraints/feasible set of (CP) to satisf y regularity assumption called constraint qualification in order to derive optimality conditions.

Theorem 16 (First order necessary conditions) Under suitable constraint qualifications,

 x^* local minimizer of (CP) $\implies x^*$ KKT point of (CP).

Proof of Theorem 16 (for equality constraints only): Let $I=\emptyset$ and so we must show that $c_E(x^*)=0$ (which is trivial as x feasible) and $\nabla f(x^*) = J_E(x^*)^Ty^*$ for some $y^* \in \mathbb{R}^m.$ Cor x^\ast tı ı feasible perturbations/paths $x(\alpha)$ around x^* , whe $^{\ast})^{T}$ ${^T}y^*$ for some y^* $\text{*} \in \mathbb{R}^m$. Consider x^* , where α α (small) scalar, $x(\alpha) \in \mathcal{C}^2$ $^{2}(\mathbb{R}^{n})$ and

$$
x(0) = x^* \text{ and } c(x(\alpha)) = 0^{(\dagger)}.
$$

(†) requires constraint qualifications

Then by Taylor expansion, $x(\alpha)=x^*$ * + αs + $\frac{1}{2}$ $\frac{1}{2}\alpha^2$ $^{2}p+\mathcal{O}(\alpha^{3}% -1)\mathcal{O}(\alpha^{3})=0$ $^{3})$ ^(††).

 $(\dagger\dagger)\ [\alpha^2$ and higher order terms not needed here; only for 2nd order conditions later]

Proof of Theorem 16 (for equality constraints only): (continued)For any $i\in E$, by Taylor's theorem for $c_i(x(\alpha))$ around x^\ast ,

$$
0 = c_i(x(\alpha)) = c_i(x^* + \alpha s + \frac{1}{2}\alpha^2 p + \mathcal{O}(\alpha^3))
$$

= $c_i(x^*) + \nabla c_i(x^*)^T(\alpha s + \frac{1}{2}\alpha^2 p) + \frac{1}{2}\alpha^2 s^T \nabla^2 c_i(x^*) s + \mathcal{O}(\alpha^3)$
= $\alpha \nabla c_i(x^*)^T s + \frac{1}{2}\alpha^2 [\nabla c_i(x^*)^T p + s^T \nabla^2 c_i(x^*) s]^{(*)} + \mathcal{O}(\alpha^3).$

where we used $c_i(x)$ $^{\ast})=0.$ Thus for all $i\in E,$

 $\nabla c_i(x^*)^T s = 0$ and $\nabla c_i(x^*)^T p + s^T$ $I(x^*)$ Ω Ω $^{\ast})^{T}$ ${}^{T}s=0$ and $\nabla c_i(x^*)$ r $^{\ast})^{T}$ ${}^Tp+s^T$ ${}^{T}\nabla^{2}$ $^2c_i(x^*$ and so $J_E(x^*)s=0.$ Now expanding $f,$ we dec $^*)s=0$ ^(*), $^*)s$ $s = 0$. Now expanding f , we deduce

$$
f(x(\alpha)) = f(x^*) + \nabla f(x^*)^T(\alpha s + \frac{1}{2}\alpha^2 p) + \frac{1}{2}\alpha^2 s^T \nabla^2 f(x^*) s + \mathcal{O}(\alpha^3)
$$

= $f(x^*) + \alpha \nabla f(x^*)^T s + \frac{1}{2}\alpha^2 [\nabla f(x^*)^T p + s^T \nabla^2 f(x^*) s]^{(*)} + \mathcal{O}(\alpha^3).$

 (\ast) [these terms are only needed for 2nd order optimality conditions later] As $x(\alpha)$ feasible, f is unconstrained along $f'(x(0)) = \nabla f(x^*)^T s = 0$ since x^* is a local minimizer ($x(\alpha)$ and so $\mathcal{L}(\mathbf{A})$ Thue $x(\alpha)$. Thus $\nabla f(x^*)^Ts=0$ for all s such that $J_E(x^*)s=0^{(1)}$. $^*)^Ts=0$ since x^{\ast} is a local minimizer along $^{\ast})^{T}$ $T_{s} = 0$ for all s s such that $J_E(x^\ast)$ $^*)s$ $s = 0^{(1)}$

Proof of Theorem 16 (for equality constraints only): (continued)If we let Z be a basis for the null space of $J_E(x^*)$), we deducethere exists y^* and s^* such that

$$
\nabla f(x^*) = J_E(x^*)^T y^* + Zs^*.
$$
 (2)

From (1), $Z^T \nabla f(x^*) = 0$ a ${}^{T}\nabla f(x^*)=0$ and so from (2),

$$
0 = Z^T J_E(x^*)^T y^* + Z^T Z s^*,
$$

and furthermore, since $J_E(x^\ast)Z=0$ As Z is a basis, it is full rank and so $s^* = 0$. We conclude $Z^T Z s^* = 0$, we must have $Z^T Z s^* = 0$. (2) that $\nabla f(x^*) = J_E(x^*)$ $s^* = 0$. We conclude from $^{\ast})^{T}y^{\ast}$ $\begin{array}{c} \ast \\ \hline \end{array}$

- Let (CP) with equalities only ($\bm{I}=$ direction s at $x \in \Omega$ if $\nabla f(x)^T s < 0$ and $J_E(x)s = 0$. ø). Then feasible descent
- Let (CP). Then feasible descent direction s at $x\in\Omega$ if $\nabla f(x)^T s < 0, J_E(x)s = 0$ and $\nabla c_i(x)^T s \geq 0$ for all i $s\geq 0$ for all $i\in I\cap\mathcal{A}(x)$.

Constraint qualifications

Proof of Th 16: used (first-order) Taylor to linearize f and along feasible paths/perturbations $x(\alpha)$ etc. Only correct if $\boldsymbol{c_i}$ linearized approximation covers the essential geometry of thefeasible set. CQs ensure this is the case.

Examples:

(CP) satisfies the Slater Constraint Qualification (SCQ) \Longleftrightarrow if ∃ x s.t. $c_E(x) = Ax - b = 0$ and $c_I(x) > 0$ (i.e., $c_i(x) > 0$, i $- b = 0$ and $c_I(x)>0$ (i.e., $c_i(x)>0, \, i\in I).$

(CP) satisfies the Linear Independence Constraint Qualification (LICQ) $\iff \nabla c_i(x), i \in \mathcal{A}(x),$ are linearly independent (at relevant x).

Both SCQ and LICQ fail for $\Omega = \{(x_1, x_2) : c_1(x) = 1$ $- x²$ 1− $(x_2-\,$ $\, - \, 1)^2$ $z^2 \geq 0; \ c_2(x) =$ $-x_2\geq 0\}.$ $T_{\Omega}(x) = \{(0,0)\}$ and $\mathcal{F}(x) = \{(s_1, 0) : s_1 \in \mathbb{R}\}$. Thus $T_{\Omega}(x) \neq \mathcal{F}(x)$.

Constraint qualifications...

Tangent cone to Ω at x : $T_{\Omega}(x)=\{s: \text{limiting direction of feasible sequence}\} \quad \text{ [`geometry' of Ω] }$ [See Chapter 12, Nocedal & Wright] $s=\lim\limits_{k\rightarrow\infty}$ z \boldsymbol{k} − \pmb{x} $\boldsymbol{t^k}$ $\frac{w}{k}$ where z \boldsymbol{k} $\lq\lq\in$ $\Omega,\,t$ \boldsymbol{k} $^{\kappa} > 0, \, t$ \boldsymbol{k} ${}^k \rightarrow 0$ and z \boldsymbol{k} ${}^k\rightarrow x$ as $k\rightarrow\infty$. Set of linearized feasible directions: ['algebra' of Ω] $\mathcal{F}(x) = \{s : s^T$ $^{T}\nabla c_{i}(x)=0,i\in E;\,s^{T}% \in\mathbb{C}^{3}\text{,} \label{eq-cov}%$ $\{^T\nabla c_i(x)\geq 0, i\in I\cap\mathcal{A}(x)\}$

Want $T_{\Omega}(x) = \mathcal{F}(x) \longleftarrow$ [ensured if a CQ holds]

 $\min_{(\pmb{x_1},\pmb{x_2})}x_1+x_2$ S.t. $x_1^2+x_2^2-2=$ $\frac{2}{1}+x_2^2$ $\frac{2}{2}-2=0.$

If the constraints of (CP) are linear in the variables, no constraint qualification is required.

Theorem 17 (First order necessary conditions for linearly ${\sf constrained\, problems})\quad {\sf Let}\ (c_E,c_I)(x):=Ax-b\ {\sf in}\ ({\sf CP}).$ T x^* local minimizer of (CP) $\implies x^*$ KKT point of (CP). $\displaystyle{ \begin{aligned} &I)(x):=Ax \ &\text{if } &V \end{aligned} }$ $-\,b$ in (CP). Then

Let $A = (A_E, A_I)$ and $b = (b_E, b_I)$ corresponding to equality and inequality constraints.

KKT conditions for linearly-constrained (CP): x^* KKT point \Leftrightarrow there exists $(y^*,\lambda^*$) such that

$$
\nabla f(x^*) = A_E^T y^* + A_I^T \lambda^*,
$$

\n
$$
A_E x^* - b_E = 0, \quad A_I x^* - b_I \ge 0,
$$

\n
$$
\lambda^* \ge 0, \quad (\lambda^*)^T (A_I x^* - b_I) = 0.
$$

Optimality conditions for convex problems

 (CP) is a convex programming problem if and only if $f(x)$ is a convex function. $f(x)$ is a convex function, $i \in I$ and $c_i(x)$ is a concave function for all $c_E(x) = Ax$ $-\ b.$

- $\bullet\hspace{1mm} c_i$ is a concave function \Leftrightarrow ($-c_i)$ is a convex function.
- \bullet (CP) convex problem $\Rightarrow \Omega$ is • (CP) convex problem $\Rightarrow \Omega$ is a convex set.
- \bullet (CP) convex problem \bullet \bullet (CP) convex problem \Rightarrow any local minimizer of (CP) is global.

First order necessary conditions are also sufficient for optimality when (CP) is convex.

Theorem 18. (Sufficient optimality conditions for convexproblems: Let (CP) be ^a convex programming problem. \hat{x} KKT point of (CP) $\implies \hat{x}$ is a (global) minimizer of (CP). \Box

Optimality conditions for convex problems

Proof of Theorem 18. f convex $\Longrightarrow f(x) \geq f(\hat{x}) + \nabla f(\hat{x})^\top (x - \hat{x})$, for all $x \in \mathbb{R}^n$. (1) (1) + $[\bm{\nabla} f(\hat{x}) = A^\top \hat{y} + \sum_{i \in I} \hat{\lambda}_i \bm{\nabla} c_i(\hat{x})] \implies$] $f(x)\geq f(\hat x) + (A^\top \hat y)^\top (x-\hat x) + \sum_{i\in I} \hat \lambda$ $\hat{x}) + \sum_{i\in I} \hat{\lambda}_i (\nabla c_i(\hat{x})^\top(x-\hat{x}))$ $\hat{x})), \$ $f(x)\geq f(\hat x)+\hat y^\top A(x-\$ $\hat{x}) + \sum_{i\in I} \hat{\lambda}_i (\nabla c_i(\hat{x})^\top(x-\hat{x}))$ $\hat{x}))$ $(2).$ Let $x \in \Omega$ arbitrary $\Longrightarrow Ax = b$ and $Ax=b$ and $A\hat{x}=b \Longrightarrow A(x-\hat{x})=0$. (3) $c(x)\geq 0.$ $\hat{x})=0\quad \left(3\right)$ c_i concave $\Longrightarrow c_i(x)\leq c_i(\hat x) +\nabla c_i(\hat x)^\top (x-\hat x).$ $\implies \nabla c_i(\hat{x})^\top (x-\hat{x}) \geq c_i(x) - c_i$ $\implies \hat{\lambda}_i(\nabla c_i(\hat{x})^\top (x-\hat{x})) \geq \hat{\lambda}_i$ $- \, c_i(\hat x).$ since $\hat{\lambda} \ge 0$, $\hat{\lambda}_i c_i(x) = 0$ and $c(x) \ge 0$ $(\hat{x}))\geq \hat{\lambda}_i(c_i(x))$ $-c_i(\hat x)) = \hat\lambda_i c_i(x)$ $\ge 0,$ Thus, from (2), $\hspace{0.1 cm} f(x) \geq f(\hat x) \hspace{0.5 cm} \Box$ $c(x)\geq 0.$

• When (CP) is not convex, the KKT conditions are not ingeneral sufficient for optimality—→ need positive definite Hessian of the Lagrangian function
along "feasible" directions along "feasible" directions.

• More on second-order optimality conditions later on.

Example: Optimality conditions for QP problems

A Quadratic Programming (QP) problem has the formminimiz $\mathrm{e}_{x\in\mathbb{R}^n}\,c$ ⊤ $x+\frac{1}{2}$ $\frac{1}{2}x^\top Hx$ s.t. $Ax =$ $b, \ \tilde{A}x \geq \tilde{b}.$ (QP) H symm. pos. semidefinite \implies (QP) convex problem. The KKT conditions for (QP): \hat{x} KKT point of (QP) $\iff \exists (\hat{y}, \hat{\lambda}) \in \mathbb{R}^m \times \mathbb{R}^p$ such that

$$
H\hat{x} + c = A^{\top}\hat{y} + \tilde{A}^{\top}\hat{\lambda},
$$

\n
$$
A\hat{x} = b, \ \tilde{A}\hat{x} \ge \tilde{b},
$$

\n
$$
\hat{\lambda} \ge 0, \ \hat{\lambda}^{\top}(\tilde{A}\hat{x} - \tilde{b}) = 0.
$$

 \blacksquare "An example of a nonlinear constrained problem" is convex; removing the constraint x_2-x 2 $_1^2\geq 0$ makes it a convex (QP).

Example: Duality theory for QP problems

For simplicity, let $A := 0$ and $H \succ 0$ in (QP): primal problem: minimize $_{x\in\mathbb{R}^{n}}c^{\top}x+\frac{1}{2}$ $\frac{1}{2}x^\top H x$ s.t. $\tilde{A}x\geq \tilde{b}.$ $\left(\textsf{QP}\right)$

The KKT conditions for (QP):

$$
\begin{aligned} & H\hat{x}+c=\tilde{A}^\top\hat{\lambda},\\ & \tilde{A}\hat{x}\geq \tilde{b},\\ & \hat{\lambda}\geq 0,\ \hat{\lambda}^\top(\tilde{A}\hat{x}-\tilde{b})=0. \end{aligned}
$$

Dual problem:

maximize $_{(x,\lambda)}$ – 1 $\frac{1}{2}x^THx+\tilde{b}^T$ $T\lambda$ s.t. $-Hx + \tilde{A}^\top \lambda = c \text{ and } \lambda \geq 0.$ Optimal value of primal pb=optimal value of dual pb (providedthey exist).

Second-order optimality conditions

- When (CP) is not convex, the KKT conditions are not ingeneral sufficient for optimality.
- Assume some CQ holds. Then at a given point x^{\ast} : the set of feasible directions for (CP) at x^\ast :

$$
\mathcal{F}(x^*) = \left\{s: J_E(x^*)s = 0, \, s^T \nabla c_i(x^*) \geq 0, i \in \mathcal{A}(x^*) \cap I \right\}.
$$

- If x^* is a KKT point, then for any $s\in\mathcal{F}(x^*)$ $s^T \nabla f(x^*$), either ${}^T\nabla f(x^*$ $^{\ast})>0$
- the control of the Control of → so f can only increase and stay feasible along s
or $s^T\nabla f(r^*)=0$

$$
\text{or} \ \ s^T \nabla f(x^*) = 0
$$

→ cannot decide from 1st order info if f increases or not
along such *s* along such $s.$

 $F(\lambda^*) = \{s \in \mathcal{F}(x^*) : s$ $uhora \times in \cap I$ \bm{T} $T\nabla c_i(x^*)=0, \,\forall i\in\mathcal{A}(x^*)$ multiplier of the in quality conotrointe $^{\ast})\cap I$ with λ_{i}^{\ast} $_{i}^{\ast}>0\},$ where λ^* is a Lagrange multiplier of the inequality constraints. Then note that s \bm{T} $^{T}\nabla f(x^{\ast})=0$ for all $s\in F(\lambda^{\ast}%)$ $^{\ast}).$

Second-order optimality conditions ...

Theorem 19 (Second-order necessary conditions) Let some CQ hold for (CP). Let x^\ast be a local minimizer of (CP), and (y^*,λ^*) Lagrange mu at $x^*.$ Then) Lagrange multipliers of the KKT conditions

> s \bm{T} ${}^{T}\nabla_{a}^{2}$ $\frac{2}{xx}\mathcal{L}(x^*,y^*,\lambda^*)$ $^{*})s\geq0$ for all $s\in F(\lambda ^{*})$ $^{\ast})$,

where $\mathcal{L}(x, y, \lambda) = f(x)$ Lagrangian function. y \bm{T} $^{T}c_{E}(x)$ $-\ \lambda^T$ $^{T}c_{I}(x)\,$ is the

Theorem 20(Second-order sufficient conditions)Assume that x^* is a feasible point of (CP) and $(y^*,\lambda^*$ such that the KKT conditions are satisfied by $(x^*, y^*, \lambda^*).$) are). If

s \bm{T} $T\boldsymbol{\nabla}_q^2$ e a local minimizor $\frac{2}{xx}\mathcal{L}(x^*,y^*,\lambda^*)$ $(s > 0 \text{ for all } s \in F(\lambda^*)$ $^{\ast}),\,s\neq0,$ then x^* is a local minimizer of (CP).

Second-order optimality conditions ...

Proof of Theorem 19 (for equality constraints only)[**NON-EXAMINABLE**]:Let $I=\emptyset$ and so $\mathcal{F}(x^*) = F(\lambda^*)$). We have to show that

 $s^T \nabla^2 {\cal L}(x^*, y^*, \lambda^*) s$ ${}^{T}\nabla_{x}^{2}$ $\frac{2}{xx}\mathcal{L}(x^*,y^*,\lambda^*)$ $^{*})s\geq0$ for all s s such that $J_E(x^\ast)$ $^*)s=0.$

Recall the proof of Theorem 16: along any feasible path of the form $x(\alpha)=x^*$ showed that $^* + \alpha s + \frac{1}{2}$ $\frac{1}{2}\alpha^2$ $^{2}p+\mathcal{O}(\alpha^{3}% -1)\mathcal{O}(\alpha^{3})=0$ $^3)$ (for any s s and p), we

$$
J_E(x^*)s = 0
$$
 and $\nabla c_i(x^*)^T p + s^T \nabla^2 c_i(x^*)s = 0, i \in E$,

and that

$$
f(x(\alpha))=f(x^*)+\tfrac{1}{2}\alpha^2\left[\nabla f(x^*)^Tp+s^T\nabla^2f(x^*)s\right]+{\cal O}(\alpha^3).
$$

As x^{\ast} is a local minimizer, we must have that

$$
\nabla f(x^*)^T p + s^T \nabla^2 f(x^*) s \geq 0. \quad (*)
$$

From the KKT conditions, $\nabla f(x^*) = J_E(x^*)$ $\nabla f(x^*)^T p = (y^*)^T J_E(x^*) p = - \sum_{i \in E} y^*_i s^T \nabla^2 c_i(x^*) s$ $^{\ast})^{T}y^{\ast}$ and so $^{\ast})^{T}$ ${}^T p = (y^*$ $^{\ast})^{T}$ ${}^T J_E(x^*$ $^*)p= \sum_{\bm{i} \in \bm{E}} \bm{y}^*_{\bm{i}}$ $_i^\ast s^T$ ${}^{T}\nabla^{2}$ $^2c_i(x^*$ $(*)s.$ $(**)$

Second-order optimality conditions ...

Proof of Theorem 19 (for equality constraints only):(continued)From (*) and (**), we deduce

$$
0 \leq s^T \nabla^2 f(x^*) s - \sum_{i \in E} y_i^* s^T \nabla^2 c_i(x^*) s
$$

$$
= s^T [\nabla^2 f(x^*) - \sum_{i \in E} \nabla^2 c_i(x^*)] s
$$

$$
= s^T \nabla_{xx}^2 \mathcal{L}(x^*, y^*) s. \qquad \Box
$$

Some simple approaches for solving (CP)

Equality-constrained problems: direct elimination (a simpleapproach that may help/work sometimes; cannot beautomated in general)

Method of Lagrange multipliers: using the KKT and secondorder conditions to find minimizers (again, cannot beautomated in general)

[see Pb Sheet 4]