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Nonconvex inequality-constrained problems

min
x∈Rn

f(x) subject to c(x) ≥ 0, (iCP)

where f : Rn → R, c = (c1, . . . , cp) : Rn → R
p smooth.

• ignore (linear) equality constraints for simplicity.
• Ω := {x : c(x) ≥ 0} feasible set; let Ωo := {x : c(x) > 0}

Assumption: strictly feasible set Ωo 6= ∅. [SCQ (Slater)]
Attempt to find local solutions (at least KKT points) of (iCP).

For (each) µ > 0, associate the logarithmic barrier subproblem

min
x∈Rn

fµ(x) := f(x) − µ

p
∑

i=1

log ci(x) subject to c(x) > 0. (iCPµ)

• (iCPµ) is essentially an unconstrained problem as each
ci(x) > 0 is enforced by the corresponding log barrier term of fµ.
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The logarithmic barrier function for (iCP)

Assume x(µ) minimizes the barrier problem

min
x∈Rn

fµ(x) = f(x) − µ

n
∑

i=1

log ci(x) subject to c(x) > 0. (iCPµ)

Since (ci(x) → 0 =⇒ − log ci(x) → +∞), x(µ) must be “well
inside” the feasible set Ω, “far” from the boundaries of Ω,
especially when µ > 0 is “large”. Strict feasibility well-ensured!

When µ “small”, µ → 0: the term f(x) “dominates” the log
barrier terms in the objective of (iCPµ) =⇒ x(µ) “close” to the
optimal boundary of Ω. [This also causes ill-conditioning ...]

• Subject to conditions, some minimizers of fµ converge to
local solutions of (iCP), as µ → 0. But fµ may have other
stationary points, useless for our purposes.
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Contours of the barrier function fµ - an example
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Contours of the barrier function fµ - an example...
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Optimality conditions for (iCP) and (iCP µ)

fµ(x) := f(x) − µ
∑p

i=1 log ci(x) =⇒

∇fµ(x) = ∇f(x) −
∑p

i=1
µ

ci(x)
∇ci(x) = ∇f(x) − µJ(x)⊤c−1(x),

where J(x) Jacobian of c(x), c−1(x) := (1/c1(x), . . . , 1/cp(x)).

First-order necessary optimality conditions for (iCPµ): [=uncons.]

x(µ) local minimizer of fµ =⇒ ∇fµ(x(µ)) = 0 ⇐⇒

∇f(x(µ)) =
∑p

i=1
µ

ci(x(µ))
∇ci(x(µ)) with µ

ci(x(µ))
> 0, i = 1, p.

First-order necessary optimality conditions for (iCP): [=KKT]
Assume Ωo 6= ∅. If x∗ local minimizer of (iCP) =⇒
∇f(x∗) =

∑p
i=1 λ

∗
i∇ci(x

∗), λ∗ ≥ 0, λ∗
i ci(x

∗) = 0, i = 1, p.

If x∗ (nondegenerate) local min. of (iCP) (2nd order sufficient
optimality conditions), µ

ci(x(µ))
→ λ∗

i , i = 1, p, as µ → 0.
Moreover ...
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The path of barrier minimizers exists locally

... under second order sufficient optimality conditions at x∗ ∈ Ω,
the central path of fµ-minimizers {x(µ) : µǫ > µ > 0} exists,
for µǫ sufficiently small, and x(µ) → x∗, as µ → 0.
Theorem 27. (Local existence of central path) Assume that
Ωo 6= ∅, and x∗ is a local minimizer of (iCP) s. t.

(a) λ∗
i > 0 if ci(x∗) = 0.

(b) ∇ci(x
∗), i ∈ A := {i ∈ {1, . . . , p} : ci(x

∗) = 0}, are
linearly independent. [LICQ]

(c) ∃α > 0 such that s⊤∇2
xxL(x∗, λ∗)s ≥ α‖s‖2, where s

such that J(x∗)As = 0, and ∇2
xxL is the Hessian of the

Lagragian function of (iCP).

Then a unique, continuously differentiable vector function
x(µ) of minimizers of fµ exists in a neighbourhood of µ = 0

and x(µ) → x∗ as µ → 0. �
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Central path trajectory
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Central path trajectory - nonconvex case
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Basic barrier method (Fiacco-McCormick, 1960s)

Given µ0 > 0, let k = 0. Until “convergence” do:

Choose 0 < µk+1 < µk.

Find xk
0

such that c(xk
0
) > 0 (possibly, xk

0
:= xk).

Starting from xk
0
, use an unconstrained minimization

algorithm to find an “approximate” minimizer xk+1

of fµk+1 . Let k := k + 1.

Must have µk → 0, k → 0. µk+1 := 0.1µk, µk+1 := (µk)2, etc.

Algorithms for minimizing fµ: take Newton steps inside
• Linesearch methods: use special linesearch to cope with
singularity of the log.
• Trust region methods: “shape” trust region to cope with
contours of the singularity of the log. Reject points for which
c(xk + sk) is not positive.
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A convergence result for the barrier algorithm

Theorem 28. (Global convergence of barrier algorithm)
Apply the basic barrier algorithm to the (iCP). Assume that

f, c ∈ C2, λk
i =

µk

ci(xk)
, i = 1, p, and

‖∇fµk(xk)‖ ≤ ǫk, where ǫk → 0, k → ∞

and also that µk → 0 as k → ∞. Moreover, assume that
xk → x∗, where ∇ci(x

∗), i ∈ A, are linearly independent,
where A := {i : ci(x

∗) = 0} (ie LICQ).

Then x∗ is a KKT point of (iCP) and λk → λ∗, where λ∗ is the
vector of Lagrange multipliers of x∗. �
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A convergence result for the barrier algorithm

Proof of Theorem 28. Let A = {i : ci(x
∗) = 0} (active

constraints) and I = {1, . . . , p} \A (inactive). Let JA(x) denote
the Jacobian of the active constraints and its pseudo-inverse

JA(x)+ = (JA(x)JA(x)T )−1JA(x).

JA(x∗) is full rank (it is pa × n where pa = |A| and so pa ≤ n)
=⇒ JA(x∗)+ well-defined and JA(xk)+ well-defined and
continuous for all k sufficiently large, due also to xk → x∗.
Define λ∗

A
= JA(x∗)+∇f(x∗) and λ∗

I
= 0.

xk → x∗ =⇒ ci(x
k) → ci(x

∗) and so for i ∈ I, ci(xk) ≥ 1

2
ci(x

∗)

for all k sufficiently large. Furthermore, for all k sufficiently
large,

‖λk
I
‖ =

√

√

√

√

∑

i∈I

(µk)2

ci(xk)2
≤

2µk
√

|I|

mini∈I ci(x∗)
:= µkǫ∗. (♦)
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A convergence result for the barrier algorithm

Proof of Theorem 28. (continued)
Note that J(xk)T = (JA(xk)T JI(x

k)T ) and λk = (λk
A

λk
I
) and

so J(xk)Tλk = JA(xk)Tλk
A

+ JI(x
k)Tλk

I
.

‖∇f(xk) − JA(xk)Tλk
A
‖ ≤ ‖∇f(xk) − J(xk)Tλk‖ + ‖JI(x

k)Tλk
I
‖

= ‖∇fµk(xk)‖ + ‖JI(x
k)Tλk

I
‖ ≤ ‖∇fµk(xk)‖ + 2‖JI(x

∗)‖ · ‖λk
I
‖

≤ ǫk + 2ǫ∗‖JI(x
∗)‖µk := ǫk, (♦♦)

where in the penultimate inequality, we used
‖JI(x

k)T ‖ ≤ ‖JI(x
k) − JI(x

∗)‖ + ‖JI(x
∗)‖ ≤ 2‖JI(x

∗)‖ since
xk → x∗ and J continuous; in the last inequality, we used (♦)
and the termination condition for the inner minimization of the
barrier subproblem. Thus
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A convergence result for the barrier algorithm

Proof of Theorem 28. (continued)

‖JA(xk)+∇f(xk) − λk
A
‖ = ‖JA(xk)+(∇f(xk) − JA(xk)Tλk

A
)‖

≤ 2‖JA(x∗)+‖ · ‖∇f(xk) − JA(xk)Tλk
A
‖ ≤ 2‖JA(x∗)+‖ǫk.

Finally,
‖λk

A
− λ∗

A
‖ ≤ ‖λk

A
− JA(xk)+∇f(xk)‖

+‖JA(xk)+∇f(xk) − JA(x∗)+∇f(x∗)‖

≤ 2‖JA(x∗)+‖ǫk + αk −→ 0,

since µk → 0, ǫk → 0, xk → x∗, J+ and ∇f are continuous.
From (♦) and µk → 0, λk

I
→ 0 = λ∗

I
.

Passing to the limit in (♦♦), we deduce
∇f(x∗) − JA(x∗)Tλ∗

A
= 0. Since c(xk) > 0, then c(x∗) ≥ 0; from

λk > 0, we deduce λ∗ ≥ 0. λ∗
i ci(x

∗) = 0 for all i by
construction.
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Minimizing the barrier function fµ

Use Newton’s method with linesearch or trust-region.
fµ(x) := f(x) − µ

∑p
i=1 log ci(x) =⇒

∇fµ(x) = ∇f(x) −
∑p

i=1
µ

ci(x)
∇ci(x) = ∇f(x) − µJ(x)⊤c−1(x),

where J(x) is the Jacobian of c(x). Let Cj(x) := diag(cj(x)).

∇2fµ(x) = ∇2f(x) −

p
∑

i=1

µ

ci(x)
∇2ci(x) +

p
∑

i=1

µ

ci(x)2
∇ci(x)∇ci(x)

⊤

= ∇2f(x) −

p
∑

i=1

µ

ci(x)
∇2ci(x) + µJ(x)⊤C−2(x)J(x).

Given x such that c(x) > 0, the Newton direction for fµ solves

∇2fµ(x)s = −∇fµ(x) [µ = µk+1]

Estimates of the Lagrange multipliers: λi(x) := µ/ci(x), i = 1, p.

Lecture 13 and 14: Interior point methods for inequality constrained optimization – p. 15/24



Minimizing the barrier function fµ ...

=⇒ ∇fµ(x) = ∇f(x) − J(x)Tλ(x)

=⇒ gradient of Lagrangian of (iCP) at (x, λ(x)).

Recall: the Lagragian function of (iCP)

L(x, λ) := f(x) −

p
∑

i=1

λici(x).

=⇒ ∇2fµ(x) = ∇2L(x, λ(x)) + µJ(x)⊤C−2(x)J(x),

As µ → 0,
µ

ci(x)2
→ 0 for all i ∈ A (active),

and so µJ(x)⊤C−2(x)J(x) → ∞ as µ → 0.
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Potential difficulties

I. Ill-conditioning of the Hessian of fµ
Asymptotic estimates of the eigenvalues of ∇2fµk(xk):

’Fact’ (Th 5.2, Gould Ref.) =⇒

• pa = |A| eigenvalues of ∇2fµk(xk) tend to infinity as
k → ∞.
• the condition number of ∇2fµk(xk) is O(1/µk)

=⇒ it blows up as k → ∞.
=⇒ may not be able to compute xk accurately.

This is the main reason for the barrier methods falling out of
favour with the nonlinear optimization community in the
1960s.
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Potential difficulties ...

II. Poor starting points

Recall we need xk
0 starting point for the (approximate)

minimization of fµk+1 , after the barrier parameter µk has been
decreased to µk+1.
It can be shown that the current computed iterate xk appears
to be a very poor choice of starting point xk

0, in the sense that
the full Newton step xk + sk will be asymptotically infeasible
(i. e., c(xk + sk) < 0) whenever µk+1 < 0.5µk (i. e., for any
meaningful decrease in µk). Thus the barrier method is
unlikely to converge fast.

Solution to troubles I & II: use primal-dual IPMs.
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Perturbed optimality conditions

Recall first order necessary conditions for (iCPµ):

x(µ) local minimizer of fµ =⇒ ∇fµ(x(µ)) = 0 ⇐⇒

∇f(x(µ)) = µJ(x(µ))⊤c−1(x(µ)). Let λ(µ) := µc−1(x(µ)).

Thus (x(µ), λ(µ)) satisfy:
{

∇f(x) − J(x)⊤λ = 0,

ci(x)λi = µ, i = 1, p, (OPTµ)

c(x) > 0, λ > 0.

Compare with the KKT system for (iCP):
{

∇f(x) − J(x)⊤λ = 0,

ci(x)λi = µ, i = 1, p, (KKT)

c(x) ≥ 0, λ ≥ 0.
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Primal-dual path-following methods (1990s)

Satisfy c(x) > 0 and λ > 0, and use Newton’s method to
solve the system e := (1, . . . , 1)T

{

∇f(x) − J(x)⊤λ = 0,

C(x)λ = µe, (OPTµ)

i. e., the Newton direction (dx, dλ) satisfies
(

∇2L(x, λ) −J(x)⊤

ΛJ(x) C(x)

)(

dx

dλ

)

= −

(

∇f(x) − J(x)⊤λ

C(x)λ − µe

)

,

where Λ := diag(λ). Eliminating dλ, we deduce

(∇2L(x, s)+J(x)⊤C−1(x)ΛJ(x))dx = −(∇f(x)−µJ(x)⊤c−1(x)).
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Primal-dual versus primal methods

Primal-dual:

(∇2L(x, λ) + J(x)⊤C−1(x)ΛJ(x))dxpd = −∇L(x, λ(x)).

Primal:

(∇2L(x, λ(x))+J(x)⊤C−1(x)Λ(x)J(x))dxp = −∇L(x, λ(x)),

where λ(x) := µc−1(x).

=⇒ In PD methods, changes to the estimates s of the
Lagrange multipliers are computed explicitly on each iteration.
In primal methods, they are updated from implicit information.
Makes a huge difference!

• For PD IPMs, xk
0 := xk is a good starting point for the

subproblem solution. Ill-conditioning of the Hessian can be
‘overlooked’ by solving in the right subspaces.
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Ill-conditioning revisited (non-examinable)

Ill-conditioning does not imply can’t solve equations accurately!
Assume λ∗

i > 0 if c(x∗) = 0. Let I = {i : ci(x
∗) > 0}. Drop x.





∇2L −J⊤

ΛJ⊤ C









dx

dλ



 = −





∇f − J⊤λ

Cλ − µe



 =⇒





∇
2
L + J⊤

I C
−1

I
ΛIJI −J⊤

A

JA CAΛ−1

A









dx

dλA



 = −





∇f − J⊤
AsA − µJIc

−1

I

cA(x) − µλ
−1

A





Note C−1

I (x) and Λ−1

A bounded above (as x → x∗). Thus, in the limit,




∇2L −J⊤
A

J⊤
A

0









dx

dλA



 = −





∇f − J⊤
A
λA − µJIc

−1

I

0



 .

Note that this approach needs an accurate prediction of the
active A and inactive I sets ‘asymptotically’ during the run of
a primal-dual algorithm (not so easy!)
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Primal-dual path-following methods

Choice of barrier parameter: µk+1 = O((µk)2)

=⇒ Fast (superlinear) asymptotic convergence!

Several Newton iterations are performed for each value of µ
(with linesearch or trust-region).

In implementations, it is essential to keep iterates away from
boundaries early in the algorithm (else iterates may get
trapped near the boundary ⇒ slow convergence!)

The computation of initial starting point x0 satisfying
c(x0) > 0 is nontrivial. Various heuristics exist.

Powerful software available: IPOPT, KNITRO etc.

Linear Programming (LP): IPMs solve LP in polynomial time!

Lecture 13 and 14: Interior point methods for inequality constrained optimization – p. 23/24



The simplex versus interior point methods for LP

worst-case complexity: exponential versus polynomial for
LP (in problem dimension/length of input);

the Klee-Minty example (1972): the simplex method
has exponential running time in the worst-case; linear
polynomial in the average case
IPMs: Karmarkar (1984), A New Polynomial-Time
Algorithm for Linear Programming, Combinatorica.
Khachiyan (the ellipsoid method, 1979).
Renegar (best-known worst-case complexity bound).
Central path is unique and global; Newton’s method
for barrier function can be precisely quantified.

IPMs solve very large-scale LPs;
numerically-observed average complexity:
log(LP dimension) iterations.

each IPM iteration more expensive than the simplex one.

Lecture 13 and 14: Interior point methods for inequality constrained optimization – p. 24/24


	Nonconvex inequality-constrained problems
	The logarithmic barrier function for (iCP)
	Contours of the barrier function $f_{mu }$ - an example
	Contours of the barrier function $f_{mu }$ - an example...
	Optimality conditions for (iCP)
and (iCP$_{mu }$)
	The path of barrier minimizers exists locally
	Central path trajectory
	Central path trajectory - nonconvex case
	Basic barrier method (Fiacco-McCormick, 1960s)
	A convergence result for the barrier algorithm
	A convergence result for the barrier algorithm
	A convergence result for the barrier algorithm
	A convergence result for the barrier algorithm
	Minimizing the barrier function $f_{mu }$
	Minimizing the barrier function $f_{mu }$ ...
	Potential difficulties
	Potential difficulties ...
	Perturbed optimality conditions
	Primal-dual path-following methods (1990s)
	Primal-dual versus primal methods
	Ill-conditioning revisited (non-examinable)
	Primal-dual path-following methods
	The simplex versus interior point methods for LP

