
C6.2/B2. Continuous Optimization

Mathematical Background
(brief review)

Optimization draws on a number of key results in analysis and linear algebra. We briefly summarize
some useful notions here. For more details, you may consult Burden, R.L., & Faires, J.D., Numerical

Analysis, 6th edition or later, Brooks/Cole Publishing.

Single valued functions and their derivatives

All the functions f : Rn 7→ R in this course are assumed to be smooth.

• The function l : Rn 7→ R is a linear function iff it is of the form

l(x) = d+ gTx ≡ d+
n
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and d ∈ R and g ∈ R
n are known.

• The function q(x) : Rn 7→ R is a quadratic function iff it is of the form

q(x) = d+ gTx+
1

2
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may be taken to be constant and symmetric. Although a quadratic function is strictly nonlinear,
its properties are such that it is treated separately. Thus the term ‘nonlinear function’ often refers
to a function which is not linear or quadratic.

• For the function f : Rn 7→ R, the vector of first partial derivatives or gradient vector is

g(x) ≡ ∇f(x) =
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(x),

where ∇ denotes the gradient operator (∂/∂x1 ∂/∂x2 . . . ∂/∂xn)
T
.

• For the function f : Rn 7→ R, the matrix of second partial derivatives or Hessian matrix

H(x) ≡ ∇[g(x)]T = ∇[∇f(x)]T = ∇∇T f(x) = ∇2f(x),
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where

∇2f(x) =
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(x).

Note that ∂2f(x)
∂xi∂xj

= ∂2f(x)
∂xj∂xi

, for all i, j ∈ {1, . . . , n}, whenever f ∈ C2(Rn) (i.e., f is twice continuously

differentiable, and so the Hessian exists and is continuous).

Properties of quadratic functions A quadratic function q(x) = d+ gTx+ 1
2x

THx has the following
properties

• ∇q = g +Hx.

• ∇2q = H.

Vector valued functions and their derivatives

All the vector valued functions r : Rn 7→ R
m in this course are assumed to be smooth.

The Jacobian matrix of first partial derivatives of a function r : Rn 7→ R
m is

J(x) = r(x)∇T =
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(x).

Note that the Hessian matrix for a function f : Rn 7→ R may be interpreted as being the Jacobian matrix
of ∇f .

Taylor expansions

Numerical methods for solving nonlinear equation and optimization problems are frequently based on
Taylor expansions. The following expansions are particularly important.

The first-order Taylor expansion of f : Rn 7→ R around x ∈ R
n is

f(x+ h) = f(x) +∇f(x)Th+ ‖h‖2z(h),

where z(h) → 0 as h → 0. This yields the following linear approximation to f which interpolates its
value and gradient at x,

l(h) = f(x) +∇f(x)Th.

We also have the alternative expression for the first-order Taylor expansion

f(x+ h) = f(x) +∇f(ξ)Th,

where ξ ∈ R
n is a point on the line segment determined by x and x+ h.

The second-order Taylor expansion of f : Rn 7→ R around x ∈ R
n is

f(x+ h) = f(x) +∇f(x)Th+
1

2
hT [∇2f(x)]h+ ‖h‖22z(h),

2



where z(h) → 0 as h → 0. This yields the following quadratic approximation to f which interpolates its
value, gradient and Hessian at x, namely,

q(h) = f(x) +∇f(x)Th+
1

2
hT [∇2f(x)]h.

Alternatively, the second-order Taylor expansion of f around x can be expressed as

f(x+ h) = f(x) +∇f(x)Th+
1

2
hT [∇2f(ξ)]h,

where ξ ∈ R
n is a point on the line segment determined by x and x+ h.

The first order Taylor expansion of ∇f : Rn 7→ R
n around x ∈ R

n is

∇f(x+ h) = ∇f(x) +∇2f(x)h+ ‖h‖2z(h),

where z(h) → 0 as h → 0. This yields the following linear approximation to ∇f which interpolates its
value and Jacobian at x, namely,

l(h) = ∇f(x) +∇2f(x)h.

Note that now we only have the following integral alternative expression for the Taylor expansion (as the
function ∇f is vector-valued),

∇f(x+ h) = ∇f(x) +

∫ 1

0

∇2f(x+ th)hdt.

The first order Taylor expansion of r : Rn 7→ R
m about x ∈ R

n is

r(x+ h) = r(x) + J(x)h+ ‖h‖2z(h),

where z(h) → 0 as h → 0. This yields the following linear approximation to r which interpolates its value
and Jacobian at x, namely,

l(h) = r(x) + J(x)h.

Note that now we only have the following integral alternative expression for the Taylor expansion (as the
function r is vector-valued),

r(x+ h) = r(x) +

∫ 1

0

J(x+ th)hdt.

Linear algebra

• Linear independence and bases.

The set of vectors {xi}mi=1 ⊂ R
n is linearly independent iff

m
∑

i=1

αixi = 0 ⇒ αi = 0, i = 1, . . . ,m.

A set of n linearly independent vectors {xi}ni=1 in R
n forms a basis for Rn and any vector x ∈ R

n

can be expressed as x =

n
∑

i=1

αixi.

• Matrix definiteness.

The matrix A is positive (negative) definite ⇐⇒ xTAx > 0 (xTAx < 0) ∀ x ∈ R
n, x 6= 0.

The matrix A is positive (negative) semi-definite ⇐⇒ xTAx ≥ 0 (xTAx ≤ 0) ∀ x ∈ R
n.

A matrix which is not positive/negative definite or positive/negative semi-definite is indefinite.

• Eigenvalues and eigenvectors.

If the matrix H is symmetric then there exists an orthogonal matrix Q and diagonal matrix Λ such
that H = QΛQT .

– The entries λ1, . . . , λn of Λ are the eigenvalues of H.
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– The columns (vectors) q1, . . . , qn of Q are the eigenvectors of H.

Any vector x ∈ R
n can be expressed as x =

n
∑

i=1

αiqi, where αi = xT qi. Also H =

n
∑

i=1

λiqiq
T
i .

If λ is an eigenvalue of a nonsingular matrix H then 1/λ is an eigenvalue of H−1 so H−1 =
∑n

i=1
1
λi
qiq

T
i .

Vector norms

The Euclidean (also called l2) measure of the magnitude of the vector x = (x1 . . . xn)
T ∈ R

n is the value

‖x‖ =
√

x2
1 + · · ·+ x2

n.

This is an example of a vector norm.

A norm on the space of vectors Rn is a function, ‖ · ‖ : Rn 7→ R, such that for all vectors x, y ∈ R
n and

scalars α ∈ R,

i) ‖x‖ ≥ 0;

ii) ‖x‖ = 0 ⇐⇒ x = 0;

iii) ‖αx‖ = |α| · ‖x‖;

iv) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

The most commonly-used vector norms are referred to as the lp-norms (or simply as the p-norms),
namely,

‖x‖p =

(

n
∑

i=1

|xi|p
)

1

p

,

and so, in particular,
‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|
‖x‖2 =

√

x2
1 + x2

2 + · · ·+ x2
n ≡

√
xTx

‖x‖∞ = max{|x1|, |x2|, . . . , |xn|}.

Matrix norms

When y = Ax, the magnitude of y clearly depends on the magnitudes of A and x. In order to estimate
this, without computing y explicitly, it is necessary to have a measure of the magnitude of A. This is
achieved by using a matrix norm.

A norm on the space of square matrices Rn×n is a function, ‖ · ‖ : Rn×n 7→ R, such that for all matrices
A,B ∈ R

n×n and scalars α ∈ R,

i) ‖A‖ ≥ 0;

ii) ‖A‖ = 0 ⇐⇒ A = 0;

iii) ‖αA‖ = |α|‖A‖;

iv) ‖A+B‖ ≤ ‖A‖+ ‖B‖;

v) ‖AB‖ ≤ ‖A‖‖B‖.

The most commonly-used matrix norms are p-norms. These are given by the corresponding vector
p-norms according to the definition

‖A‖p = max
x 6=0

‖Ax‖p
‖x‖p

or equivalently, ‖A‖p = max
‖x‖p=1

‖Ax‖p,
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and so, in particular,

‖A‖1 = max
‖x‖1=1

‖Ax‖1 ≡ maxj {
∑n

i=1 |aij |}

‖A‖2 = max
‖x‖2=1

‖Ax‖2 ≡
√

maxi λi(ATA)

‖A‖∞ = max
‖x‖∞=1

‖Ax‖∞ ≡ maxi

{

∑n
j=1 |aij |

}

.

where λi(A
TA), for i = 1, . . . , n, are the eigenvalues of ATA. Note that although the matrix 2-norm has

useful theoretical properties it may be too difficult to compute in practice.

Two particularly important properties of the matrix p-norms (which follow directly from their definition)
are that for all vectors x,

‖Ax‖p ≤ ‖A‖p‖x‖p
and, given any A ∈ R

n×n, there exists x 6= 0 such that

‖Ax‖p = ‖A‖p‖x‖p.

When referring to (p-) norms in general, it is convenient to drop the subscript.

The sequence of matrices {A(k)}∞n=1 in R
n×n is said to converge to A with respect to the norm ‖ · ‖ if,

given any ǫ > 0, there exists an integer K(ǫ) such that

‖A(k) −A‖ < ǫ for all k ≥ K(ǫ).

If the matrix A satisfies ‖A‖ < 1 for some norm ‖ · ‖, then Ak → 0 as k → ∞.
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