
An introduction to algorithms for

continuous optimization

Nicholas Gould

Oxford University Computing Laboratory

and

Rutherford Appleton Laboratory

Copyright c© 2006 by Nicholas Ian Mark Gould.

CONTENTS i

Contents

GLOSSARY OF SYMBOLS iii

INTRODUCTION 1

An example—the optimization of a high-pressure gas network 4

Some other application areas . 7

1 OPTIMALITY CONDITIONS AND WHY THEY ARE IMPORTANT 9

1.1 Optimization problems . 11

1.2 Notation . 11

1.3 Lipschitz continuity and Taylor’s theorem . 12

1.4 Farkas’ lemma — the fundamental theorem of linear inequalities 14

1.5 Optimality conditions . 15

1.6 Optimality conditions for unconstrained minimization 16

1.7 Optimality conditions for constrained minimization 16

1.7.1 Optimality conditions for equality-constrained minimization 17

1.7.2 Optimality conditions for inequality-constrained minimization 17

2 LINESEARCH METHODS FOR UNCONSTRAINED OPTIMIZATION 21

2.1 Linesearch methods . 23

2.2 Practical linesearch methods . 24

2.3 Convergence of generic linesearch methods . 27

2.4 Method of steepest descent . 28

2.5 More general descent methods . 29

2.5.1 Newton and Newton-like methods . 29

2.5.2 Modified-Newton methods . 32

2.5.3 Quasi-Newton methods . 33

2.5.4 Conjugate-gradient and truncated-Newton methods 34

2.5.5 Nonlinear conjugate-gradient methods . 35

3 TRUST-REGION METHODS FOR UNCONSTRAINED OPTIMIZATION 39

3.1 Linesearch vs. trust-region methods . 41

3.2 Trust-region models . 41

3.3 Basic trust-region method . 42

3.4 Basic convergence of trust-region methods . 44

3.5 Solving the trust-region subproblem . 48

3.5.1 Solving the `2-norm trust-region subproblem 48

3.6 Solving the large-scale problem . 52

4 ACTIVE-SET METHODS FOR LINEARLY CONSTRAINED OPTIMIZA-

TION 55

4.1 Quadratic programming . 57

ii CONTENTS

4.2 Optimality conditions for quadratic programing 59

4.3 Algorithms for quadratic programing . 61

4.3.1 Equality constrained quadratic programing 61

4.3.2 Active set algorithms . 65

4.4 Non-quadratic objectives . 71

5 PENALTY AND AUGMENTED LAGRANGIAN METHODS FOR EQUAL-

ITY CONSTRAINED OPTIMIZATION 73

5.1 Merit functions for constrained minimization . 75

5.2 Quadratic penalty methods . 77

5.3 Perturbed optimality conditions . 79

5.4 Augmented Lagrangian methods . 80

6 INTERIOR-POINT METHODS FOR INEQUALITY CONSTRAINED OP-

TIMIZATION 83

6.1 The logarithmic barrier function for inequality constraints 85

6.2 A basic barrier-function algorithm . 85

6.3 Potential difficulties . 87

6.3.1 Potential difficulty I: ill-conditioning of the barrier Hessian 87

6.3.2 Potential difficulty II: poor starting points 88

6.4 A different perspective: perturbed optimality conditions 89

6.4.1 Potential difficulty II . . . revisited . 91

6.4.2 Primal-dual barrier methods . 91

6.4.3 Potential difficulty I . . . revisited . 92

6.5 A practical primal-dual method . 93

7 SQP METHODS FOR EQUALITY CONSTRAINED OPTIMIZATION 95

7.1 Newton’s method for first-order optimality . 97

7.2 The Sequential Quadratic Programming iteration 98

7.3 Linesearch SQP methods . 100

7.4 Trust-region SQP methods . 103

7.4.1 The S`pQP method . 104

7.4.2 Composite-step methods . 106

7.4.3 Filter methods . 108

CONCLUSIONS 111

APPENDIX A — SEMINAL BOOKS AND PAPERS 113

APPENDIX B — OPTIMIZATION RESOURCES ON THE INTERNET 121

APPENDIX C — SKETCHES OF PROOFS 129

GLOSSARY OF SYMBOLS iii

GLOSSARY OF SYMBOLS

m number of constraints

n number of variables

x mimimization variables

y Lagrange multipliers

f(x) objective function

g(x) gradient of objective function

H(x) Hessian matrix of the objective function

ci(x) i-th constraint function

ai(x) gradient of the i-th constraint function

Hi(x) Hessian matrix of i-th constraint function

c(x) vector of constraint functions

A(x) Jacobian matrix of constraint functions

`(x, y) Lagrangian function

g(x, y) gradient of the Lagrangian function

H(x, y) Hessian of the Lagrangian function

I identity matrix

ei i-th column of the identity matrix

〈u, v〉 Euclidean inner product between the generic vectors u and v

λi(M) i-th largest eigenvalue of the generic matrix M

γ(x) Lipschitz constant at x

C set of feasible points

A(x) active set at x

I(x) inactive set at x

W working set

N subspace of weak linearized feasible directions

N+ cone of linearized feasible directions

p search direction

α steplength

s step

m(s) step-selection model

q(s) quadratic model

B Hessian approximation

∆ trust-region radius

ρ ratio of actual to predicted reduction

µ penalty/barrier parameter

Φ(x, µ) quadratic penalty/logarithmic barrier function

Φ(x, u, µ) augmented Lagrangian function

y(x, µ) first-order Lagrange multiplier estimate

y(x, u, µ) first-order augmented Lagrange multiplier estimates

Y , C diagonal matrices of entries of vectors y, c

INTRODUCTION

The solution of (nonlinear) optimization problems—that is the minimization or maximization of an

objective function involving unknown parameters/variables in which the variables may be restricted

by constraints—or nonlinear programming as it sometimes known, is one of the core components

of computational mathematics. Nature (and mankind) loves to optimize, and the world is far from

linear. In his book on Applied Mathematics, the eminent mathematician Gil Strang1 opines that

optimization, along with the solution of systems of linear equations, and of (ordinary and partial)

differential equations, is one of the three cornerstones of modern applied mathematics.

Optimization problems can broadly be described as either continuous or discrete, but may be

a mix of both. Discrete optimization is, as its name suggests, concerned with the case where the

variables may only take on discrete (and typically integer) values. Often these problems are very

hard, and only enumeration of all possible points is guaranteed to work. Fortunately, sometimes

the problems are easy, and simple (greedy) heuristics are guaranteed to work. By contrast, the

variables in continuous optimization problems are allowed to take on any values permitted by the

constraints. Here we shall only be concerned with continuous optimization. More especially, we

shall restrict ourselves to problems whose defining functions are differentiable, since then we will be

able to predict how small changes in variable values will affect the objective and constraints. There

are good methods for non-differentiable optimization, but these often rely on estimates of (often

unknown) Lipschitz constants.

1G. Strang, “Introduction to Applied Mathematics”, Wellesley-Cambridge Publishers (1986).

INTRODUCTION 3

This set of notes is partitioned in broadly the same way as the courses on which it was based.

Optimality conditions play a vital role in optimization, both in the identification of optima, and in

the design of algorithms to find them. We consider these in Part 1. Parts 2 and 3 are concerned

with the two main techniques for solving unconstrained optimization problems. Although it can

be argued that such problems arise relatively infrequently in practice (nonlinear fitting being a

vital exception), the underlying linesearch and trust-region ideas are so important that it is best

to understand them first in their simplest setting. The remaining four parts cover the problems

we really wish to solve, those involving constraints. We purposely consider inequality constraints

(alone) in two of the parts and equality constraints (alone) in the other two, since then the key

ideas may be developed without the complication of treating both kinds of constraints at once. Of

course, real methods cope with both, and suitable algorithms will be hybrids of the methods we

have considered.

Courses based on these notes have been given to both undergraduate and graduate students in

Oxford, to graduates in Edinburgh and to attendees on an EPSRC Numerical Analysis Summer

School in Durham. These course have been of different lengths, and each time we have had to

be selective with the material presented. For a 16 lecture undergraduate course, we use most of

the material, although we leave some proofs as homework exercises. For a 10–12 lecture graduate

course, we normally skip the material on linearly-constrained optimization (Part 4) and penalty

and augmented Lagrangian methods (Part 5), although we do need to include Section 5.1 on merit

functions as a precursor to Part 6. If time is tight, conjugate-gradient methods (Sections 2.5.4, 2.5.5

and 3.6) are also sacrificed. Any perspective teacher is more than willing to make use of our slides

and other material if they so wish. See http://www.numerical.rl.ac.uk/nimg/course for details.

We make no apologies for mixing theory in with algorithms, since (most) good algorithms have

good theoretical underpinnings. The results we give are often made, for clarity, under assumptions

that are stronger than absolutely necessary—well-motivated students might if they wish, try to

weaken them; we can assure readers that academic journals are full of just such noble endevours.

So as not to disturb the development in the main text, the proofs of stated theorems have been

relegated to Appendix C. In addition, we do not provide citations in the main text, but have devoted

Appendix A to an annotated bibliography of what we consider to be essential references in nonlinear

optimization. Such a list is, by its nature, selective, but we believe that the given references form a

corpus of seminal work in the area, which should be read by any student interested in pursuing a

career in optimization.

Before we start, we feel that one key development during the last ten years has done more to

promote the use of optimization than possibly any other. This is NEOS, the Network Enabled

Optimization Server, at Argonne National Laboratory and Northwestern University in Chicago,

see http://www-neos.mcs.anl.gov/neos . Here, users are able to submit problems for remote

solution, without charge, by a large (and expanding) collection of the world’s best optimization

solvers, many of them being only available otherwise commercially. Further details of what may be

found on the World-Wide-Web are given in Appendix B.

4 INTRODUCTION

An example—the optimization of a high-pressure gas network

Before we embark on out tour of optimization methods, we first set the scene by considering a

typical “real-world” example. In the UK (and elsewhere in the world), natural gas is extracted from

the (North) sea and pumped to where is needed–the large centers of population—via a network

of high-pressure pipes. This so-called National Transmission System (NTS) is the high pressure

part of the UK National Grid’s transmission system, and consists of more than 6,600 Kilometer’s

of top-quality welded steel pipeline operating at pressures of up to 85 times normal atmospheric

pressure. The gas is pushed through the system using 26 strategically placed compressor stations.

From over 140 off-take points, the NTS supplies gas to 40 power stations, a small number of large

industrial consumers and the twelve Local Distribution Zones that contain pipes operating at lower

pressure which eventually supply the consumer. We illustrate2 the NTS in Figure 1.

Figure 1: The National Grid Gas National Transmission System.

We may view an idealized gas network as a collection of pipes connected at nodes. In order to

understand the basic equations we shall develop, we first note that the main characteristics are that

we shall associate a (gas) pressure pi with each node on the network, and a flow qj along each pipe.

At each node, we will must have a balance equation which says that what flows in must flow out

again. Identical equations occur in other networks—for electrical networks, these are the famous

Kirkoff laws. We illustrate one such equation in Figure 2.

In general, for the whole network, the nodes gives us constraints

Aq − d = 0.

2This figure is reproduced with the kind permission of UK National Grid Gas.

AN EXAMPLE—THE OPTIMIZATION OF A HIGH-PRESSURE GAS NETWORK 5

j

?

j � j��������9���������j

z

q1

q2

q3

d1

Figure 2: A typical node where there are two input flows q1 and q2, one output flow q3 and an

extracted demand d1. The relevant node equation is then q1 + q2 − q3 − d1 = 0.

These are linear equations, they are sparse—each row only involves the pipes entering or leaving

that particular node—and structured—the matrix A has a ±1 and 0 structure typical of network

problems.

For each pipe, we have a different kind of equation. Considerable empirical experience with

thousands of real-life pipes has lead engineers to believe that the square of the pressure loss between

the two end of the pipe is proportional to the 2.8359-th power of the flow along in the pipe. A pipe

equation is illustrated in Figure 3.

In general, for the whole network, the nodes gives us constraints

AT p2 +Kq2.8359 = 0

where we have slightly abuses notation by writing AT p2 to represent the p2
out−p

2
in term, and where

K is a diagonal matrix of pipe properties. Now these are nonlinear equations, they are sparse—each

row only involves the pressures at the ends of that particular pipe—and structured—the matrix AT

has a ±1 and 0 structure typical of network problems, and is the transpose of that occurring in the

j��������9���������j q1

p1

p2

Figure 3: A typical pipe where the pressures at the start and end of the pipe are p1 and p2, and the

flow along the pipe is q1. The relevant pipe equation is then p2
2 − p2

1 + k1q
2.8359
1 = 0, where k1 is a

constant representing properties of the pipe in question.

6 INTRODUCTION

node equations (you might wish to think why this should be the case).

We also need to model the compressors that drive the gas through the network. A compressor

is a machine that is used to boost flow, and without these the flow would gradually grind to a halt.

Compressors are expensive to run, and are usually only operated if they need to be. Without giving

details, the flow through an operational compressor will be boosted by some nonlinear function of

the input/output flows and pressures. If the machine is off, the flow in and out will simply be as if

the machine is a node. We illustrate a typical compressor equation in Figure 4.

· � j�j
p1p2

q1q2

Figure 4: A typical compressor for which the pressures and flows at the entrance and exit of the

machine are (p1, q1) and (p2, q2) and where the zero-one variable z1 is nonzero if the compressor is

switched on. In this case we have q1 − q2 + z1 · c1(p1, q1, p2, q2) = 0, for some nonlinear compressor

function c1.

In general, for the whole network, the compressors gives us constraints

AT2 q + z · c(p, q) = 0.

Again these are nonlinear, often highly so, they are sparse and structured, but now they introduce

the extra ingredient of zero-one (integer) variables, z.

Finally, there will be other, more obvious constraints. In particular there should be simple

bounds
pmin ≤ p ≤ pmax

qmin ≤ q ≤ qmax

on the pressures and flows for safety reasons; low pressures/flows may lead to build up of other,

undesirable gases, high pressures might cause a pipe to fracture, and rapid flows may gradually ware

down the surface of the pipe.

So much for the physics. The equations we have expressed so far have many solutions, and of

these a big company like the UK National Grid will aim to find a solution for which some objective

is best fulfilled. There are many such possibilities, of which minimizing or maximizing—yes conflicts

can arise—the sum of pressures, minimizing compressor fuel costs and minimizing supply have all

been proposed. In practice it is not uncommon to aim to optimize more than one objective, and

sometimes formulations will try to combine these is some way.

In reality, the UK National Grid Gas system comprises roughly 200 nodes and pipes, and 26 ma-

chines. Thus the steady-state problem involves somewhere in the region of 400 unknowns. However,

as the reader is undoubtedly aware, gas demand varies throughout the day and night—the sudden

rush to boil a kettle half-way though a popular soap opera or the more predictable morning and

evening central-heating peaks. If this variable demand is taken into account, and the pressures and

demands required every 10 minutes for a whole 24-hour period, the problem grows dramatically in

SOME OTHER APPLICATION AREAS 7

size to be of the order of 58,000 variables. And the challenge is to be able to solve this in real-time

if, for example, there is a sudden need to redistribute gas to repair a leaking pipe.

This problem is typical of real-world, large-scale applications. It involves simple bounds on the

variables and linear and nonlinear constraints. It is highly structured (this is fortunate, as otherwise

we would have little chance of solving it), and the global solution is “required”—in practice, a 10%

improvement potentially leads to many millions of pound in savings, so this is often deemed good

enough! To cope with variable demands, the problem is actually a discretisation of a continuous

one. And finally, there are integer variables, which makes the problem far harder to solve—even if

we don’t touch on this here.

Some other application areas

It should come as no surprise that similar problems arise in electrical-power scheduling. The variables

there are potential differences and currents. As we have mentioned Kirkoff’s laws constrain currents

at network nodes, while currents flow along connecting cables due to potential differences between

nodes. There are losses due to heat, and obvious simple restrictions on both currents and potential

differences. Minimizing the cost of generation is an obvious objective, but there are often others.

Another important class of optimization problems arises in civil engineering. Structures such

as buildings and bridges tend to assume positions of minimum constrained potential energy. A

typical problem may be to make a structure as light as possible, while being able to satisfy a

variety of unforeseen load conditions such as high winds or heavy snowfall. Energy minimization

is also important in computational physics, chemistry and biology, where for examples molecules

naturally adopt minimum energy configurations. And again, problems that are often considered to

be continuous are frequently written in variational form and an appropriate discretization minimized.

The problem of selecting a balanced portfolio between a set of possible assets so as to maximize

the expected gain, or to minimize risk or both, lies at the heart of computational finance. Indeed, so

important is this problem that Markowitz was awarded the Nobel prize for economics for automating

its solution.

And finally, mathematicians like to build parameterized models of physical phenomena, and then

to try match such models to reality. This “fitting” of data to models occurs everywhere, and the

best fit is, of course, an optimization problem. A good example is image reconstruction where a

“hazy” picture needs to be refocused automatically to reveal hidden detail.

Thus we hope we have convinced that optimization arises in important and diverse ways. So

now on with the job of finding optima.

8 INTRODUCTION

PART 1

OPTIMALITY CONDITIONS

AND WHY THEY ARE

IMPORTANT

1.1. OPTIMIZATION PROBLEMS 11

1.1 Optimization problems

As we have said optimization is concerned with the minimization or maximization of an objective

function, say, f(x). Since

maximum f(x) = − minimum (−f(x))

there is no loss in generality in concentrating here on minimization—throughout, minimization will

take place with respect to an n-vector, x, of real unknowns. A bit of terminology here: the smallest

value of f gives its minimum, while any (there may be more than one) corresponding values of x

are a minimizer .

There are a number of important subclasses of optimization problems. The simplest is uncon-

strained minimization, where we aim to

minimize
x∈IR

n
f(x)

where the objective function f : IRn −→ IR. One level up is equality constrained minimization, where

now we try to

minimize
x∈IR

n
f(x) subject to c(x) = 0

where the constraints c: IRn −→ IRm. For consistency we shall assume that m ≤ n, for otherwise

it is unlikely (but not impossible) that there is an x that satisfies all of the equality constraints.

Another important problem is inequality constrained minimization, in which we aim to

minimize
x∈IR

n
f(x) subject to c(x) ≥ 0

where c: IRn −→ IRm and now m may be larger than n. The most general problem involves both

equality and inequality constraints—some inequalities may have upper as well as lower bounds—and

may be further sub-classified depending on the nature of the constraints. For instance, some of the

ci(x) may be linear (that is ci(x) = aTi x− bi for some vector ai and scalar bi), some may be simple

bounds on individual components of x (for example, ci(x) = xi), or some may result from a network

(“flow in = flow out”).

1.2 Notation

It is convenient to introduce our most common notation and terminology at the outset. Suppose

that f(x) is at least twice continuously differentiable (f ∈ C2). We let ∇xf(x) denote the vector

of first partial derivatives, whose i-th component is ∂f(x)/∂xi. Similarly, the i, j-th component of

the (symmetric) matrix ∇xxf(x) is the second partial derivative ∂2f(x)/∂xi∂xj . We also write the

usual Euclidean inner product between two p-vectors u and v as 〈u, v〉 def
=
∑p

i=1 uivi = uT v (and

mention, for those who care, that some but not all of what we have to say remains true in more

general Hilbert spaces!). We denote the set of points for which all the constraints are satisfied as C,

and say that any x ∈ C (resp. x /∈ C) is feasible (resp. infeasible).

12 PART 1. OPTIMALITY CONDITIONS AND WHY THEY ARE IMPORTANT

With this in mind we define the gradient and Hessian (matrix) of the objective function f to be

g(x)
def
= ∇xf(x) and H(x)

def
= ∇xxf(x), respectively. Likewise, the gradient and Hessian of the i-th

constraint are ai(x)
def
= ∇xci(x) and Hi(x)

def
= ∇xxci(x). The Jacobian (matrix) is

A(x)
def
= ∇xc(x) ≡






aT1 (x)

· · ·
aTm(x)




 .

Finally, if y is a vector (of so-called Lagrange multipliers), the Lagrangian (function) is

`(x, y)
def
= f(x) − 〈y, c(x)〉, (1.1)

while its gradient and Hessian with respect to x are, respectively,

g(x, y)
def
= ∇x`(x, y) ≡ g(x) −

∑

i∈M

yiai(x) ≡ g(x) −AT (x)y and (1.2)

H(x, y)
def
= ∇xx`(x, y) ≡ H(x) −

∑

i∈M

yiHi(x), (1.3)

where M = {1, . . . ,m}.
One last piece of notation: ei is the i-th unit vector, while e is the vector of ones, and I is the

(appropriately dimensioned) identity matrix.

1.3 Lipschitz continuity and Taylor’s theorem

It might be argued that those who understand Taylor’s theorem and have a basic grasp of linear

algebra have all the tools they need to study continuous optimization—of course, this leaves aside

all the beautiful mathematics needed to fully appreciate optimization in abstract settings.

Taylor’s theorem(s) can most easily be stated for functions with Lipschitz continuous derivatives.

Let X and Y open sets, let F : X → Y , and let ‖ · ‖X and ‖ · ‖Y be norms on X and Y respectively.

Then F is Lipschitz continuous at x ∈ X if there exists a function γ(x) such that

‖F (z)− F (x)‖Y ≤ γ(x)‖z − x‖X

for all z ∈ X . Moreover F is Lipschitz continuous throughout/in X if there exists a constant γ such

that

‖F (z)− F (x)‖Y ≤ γ‖z − x‖X

for all x and z ∈ X . Lipschitz continuity relates (either locally or globally) the changes that occur

in F to those that are permitted in x.

Armed with this, we have the following Taylor approximation results. The first suggests how

good (or bad) a first-order (linear) or second-order (quadratic) Taylor series approximation to a

scalar-valued function may be.

1.3. LIPSCHITZ CONTINUITY AND TAYLOR’S THEOREM 13

Theorem 1.1. Let S be an open subset of IRn, and suppose f : S → IR is continuously

differentiable throughout S. Suppose further that g(x) is Lipschitz continuous at x, with

Lipschitz constant γL(x) in some appropriate vector norm. Then, if the segment x + θs ∈ S
for all θ ∈ [0, 1],

|f(x+ s) −mL(x+ s)| ≤ 1
2
γL(x)‖s‖2, where

mL(x+ s) = f(x) + 〈g(x), s〉.

If f is twice continuously differentiable throughout S and H(x) is Lipschitz continuous at x,

with Lipschitz constant γQ(x),

|f(x+ s) −mQ(x+ s)| ≤ 1
6
γQ(x)‖s‖3, where

mQ(x+ s) = f(x) + 〈g(x), s〉 + 1
2
〈s,H(x)s〉.

The second result is a variation on the theme of the first, and is often refereed to as the generalized

mean-value theorem.

Theorem 1.2. Let S be an open subset of IRn, and suppose f : S → IR is twice continuously

differentiable throughout S. Suppose further that s 6= 0, and that the interval [x, x + s] ∈ S.

Then

f(x+ s) = f(x) + 〈g(x), s〉 + 1
2
〈s,H(z)s〉

for some z ∈ (x, x+ s).

The third result compares how bad a first-order Taylor series approximation to a vector valued

function might be.

Theorem 1.3. Let S be an open subset of IRn, and suppose F : S → IRm is continuously

differentiable throughout S. Suppose further that ∇xF (x) is Lipschitz continuous at x, with

Lipschitz constant γL(x) in some appropriate vector norm and its induced matrix norm. Then,

if the segment x+ θs ∈ S for all θ ∈ [0, 1],

‖F (x+ s) −ML(x+ s)‖ ≤ 1
2
γL(x)‖s‖2,

where

ML(x+ s) = F (x) + ∇xF (x)s

14 PART 1. OPTIMALITY CONDITIONS AND WHY THEY ARE IMPORTANT

1.4 Farkas’ lemma — the fundamental theorem of linear in-

equalities

Most readers probably feel comfortable with systems of linear equations, but are less familiar with

linear inequalities. There is a rich theory of the latter, but only one famous result concerns us here.

This is the so-called fundamental theorem of linear inequalities, Farkas’ lemma, which is the basis

for proofs of optimality results for linear and nonlinear optimization.

To set the scene, let A be a given index set, and suppose {ai}i∈A are given vectors. The

(polyhedral) cone

C =

{
∑

i∈A

yiai | yi ≥ 0

}

is the closed1, convex set of all positive linear combinations of our given vectors. The question we

ask is, when does another given vector g lie in C? The answer is, if and only if g is not separated

from the vectors {ai}i∈A by a hyperplane 〈s, v〉 = 0 for some given s (see Figure 1.1).

C
a1

a2 a3

g

s
C

a1

a2

a3

g

cutting plane

Figure 1.1: In the left-hand illustration, g is not in C, and is separated from {ai}i∈A by the hyper-

plane 〈s, v〉 = 0. In the right-hand one, g is a member of C and not separated from C’s support

vectors.

Formally, we have

1The fact that C is closed seems obvious but needs some proof. See e.g., J. Nocedal and S. Wright, “Numerical

Optimization”, Springer Verlag (1999), p357.

1.5. OPTIMALITY CONDITIONS 15

Farkas’ lemma. Given any vectors g and ai, i ∈ A, the set

S = {s | 〈g, s〉 < 0 and 〈ai, s〉 ≥ 0 for i ∈ A}

is empty if and only if

g ∈ C =

{
∑

i∈A

yiai | yi ≥ 0 for all i ∈ A
}

.

An immediate application is to linear programming. If we are interested in minimizing the

linear objective 〈g, x〉 subject to the linear constraints 〈ai, x〉 ≥ bi for i ∈ I, suppose that we have

found a feasible point x, and wish to know if there is a direction s for which we can improve the

objective. Then if A gives the indices of those constraints that are active, S gives us the set of

(locally) improving directions, and Farkas’ lemma tells us that improvement will be possible if and

only if g is not in C. The reader will most likely recall that g ∈ C along with feasibility of x are

the optimality conditions for linear programming, and it should not then be surprising that Farkas’

lemma has an important role to play in the nonlinear case.

1.5 Optimality conditions

Now is the time to come clean. It is very, very difficult to say anything about the solutions to the

optimization problems given in Part 1.1. This is almost entirely because we are considering very

general problems, for which there may be many local, often non-global, minimizers. There are two

possible ways around this. We might choose to restrict the class of problems we allow, so that all

local minimizers are global. But since this would rule out the vast majority of nonlinear problems

that arise in practice, we instead choose to lower our sights, and only aim for local minimizers—there

are methods that offer some guarantee of global optimality, but to date they are really restricted to

small or very specially structured problems.

Formally, we still need to define what we mean by a local minimizer. A feasible point x∗ is a

local minimizer of f(x) if there is an open neighbourhood N of x∗ such that f(x∗) ≤ f(x) for all

x ∈ C⋂N . If there is an open neighbourhood N of x∗ such that f(x∗) < f(x) for all x 6= x∗ ∈ C⋂N ,

it is isolated . For completeness, x∗ ∈ C is a global minimizer if f(x∗) ≤ f(x) for all x ∈ C.

While such definitions agree with our intuition, they are of very little use in themselves. What

we really need are optimality conditions. Optimality conditions are useful for three reasons. Firstly,

the provide a means of guaranteeing that a candidate solution is indeed (locally) optimal—these are

the so-called sufficient conditions . Secondly, they indicate when a point is not optimal—these are

the necessary conditions . Finally they guide us in the design of algorithms, since lack of optimality

indicates when we may improve our objective. We now give details.

16 PART 1. OPTIMALITY CONDITIONS AND WHY THEY ARE IMPORTANT

1.6 Optimality conditions for unconstrained minimization

We first consider what we might deduce if we were fortunate enough to have found a local minimizer

of f(x). The following two results provide first- and second-order necessary optimality conditions

(respectively).

Theorem 1.4. Suppose that f ∈ C1, and that x∗ is a local minimizer of f(x). Then

g(x∗) = 0.

Theorem 1.5. Suppose that f ∈ C2, and that x∗ is a local minimizer of f(x). Then g(x∗) = 0

and H(x∗) is positive semi-definite, that is

〈s,H(x∗)s〉 ≥ 0 for all s ∈ IRn.

But what if we have found a point that satisfies the above conditions? Is it a local minimizer? Yes,

an isolated one, provided the following second-order sufficient optimality conditions are satisfied.

Theorem 1.6. Suppose that f ∈ C2, that x∗ satisfies the condition g(x∗) = 0, and that

additionally H(x∗) is positive definite, that is

〈s,H(x∗)s〉 > 0 for all s 6= 0 ∈ IRn.

Then x∗ is an isolated local minimizer of f .

Notice how slim is the difference between these necessary and sufficient conditions.

1.7 Optimality conditions for constrained minimization

When constraints are present, things get more complicated. In particular, the geometry of the

feasible region at (or near) to a minimizer plays a very subtle role. Consider a suspected minimizer

x∗. We shall say that a constraint is active at x∗ if and only if ci(x∗) = 0. By necessity, equality

constraints will be active, while determining which (if any) of the inequalities is active is probably

the overriding concern in constrained optimization.

In order to say anything about optimality, it is unfortunately necessary to rule out “nasty” local

minimizers such as cusps on the constraint boundary. This requires that we have to ask that so-called

constraint qualifications hold—essentially these say that linear approximations to the constraints

characterize all feasible perturbations about x∗ and that perturbations which keep strongly active

1.7.1. Optimality conditions for equality-constrained minimization 17

constraints strongly active (a strongly active constraint is one that will still be active if the data,

and hence minimizer, is slightly perturbed) are completely characterized by their corresponding

linearizations being forced to be active. Fortunately, such assumptions are automatically satisfied if

the constraints are linear, or if the constraints that are active have independent gradients, and may

actually be guaranteed in far weaker circumstances than these.

1.7.1 Optimality conditions for equality-constrained minimization

Given constraint qualifications, first- and second-order necessary optimality conditions for problems

involving equality constraints are (respectively) as follows.

Theorem 1.7. Suppose that f, c ∈ C1, and that x∗ is a local minimizer of f(x) subject to

c(x) = 0. Then, so long as a first-order constraint qualification holds, there exist a vector of

Lagrange multipliers y∗ such that

c(x∗) = 0 (primal feasibility) and

g(x∗) −AT (x∗)y∗ = 0 (dual feasibility).

Theorem 1.8. Suppose that f, c ∈ C2, and that x∗ is a local minimizer of f(x) subject to

c(x) = 0. Then, provided that first- and second-order constraint qualifications hold, there exist

a vector of Lagrange multipliers y∗ such that

〈s,H(x∗, y∗)s〉 ≥ 0 for all s ∈ N (1.4)

where

N = {s ∈ IRn | A(x∗)s = 0} .

Notice that there are two first-order optimality requirements: primal feasibility (the constraints

are satisfied), and dual feasibility (the gradient of the objective function is expressible as a lin-

ear combination of the gradients of the constraints). It is not hard to anticipate that, just as in

the unconstrained case, sufficient conditions occur when the requirement (1.4) is strengthened to

〈s,H(x∗, y∗)s〉 > 0 for all s ∈ N .

1.7.2 Optimality conditions for inequality-constrained minimization

Finally, when the problem involves inequality constraints, it is easy to imagine that only the con-

straints that are active at x∗ play a role—the inactive constraints play no part in defining the

minimizer—and indeed this is so. First- and second-order necessary optimality conditions are (re-

spectively) as follows.

18 PART 1. OPTIMALITY CONDITIONS AND WHY THEY ARE IMPORTANT

Theorem 1.9. Suppose that f, c ∈ C1, and that x∗ is a local minimizer of f(x) subject to

c(x) ≥ 0. Then, provided that a first-order constraint qualification holds, there exist a vector

of Lagrange multipliers y∗ such that

c(x∗) ≥ 0 (primal feasibility),

g(x∗) −AT (x∗)y∗ = 0 and y∗ ≥ 0 (dual feasibility) and

ci(x∗)[y∗]i = 0 (complementary slackness).

(1.5)

Theorem 1.10. Suppose that f, c ∈ C2, and that x∗ is a local minimizer of f(x) subject

to c(x) ≥ 0. Then, provided that first- and second-order constraint qualifications hold, there

exist a vector of Lagrange multipliers y∗ for which primal/dual feasibility and complementary

slackness requirements hold as well as

〈s,H(x∗, y∗)s〉 ≥ 0 for all s ∈ N+

where

N+ =

{

s ∈ IRn

∣
∣
∣
∣
∣

〈s, ai(x∗)〉 = 0 for all i ∈ M such that ci(x∗) = 0 and [y∗]i > 0 and

〈s, ai(x∗)〉 ≥ 0 for all i ∈ M such that ci(x∗) = 0 and [y∗]i = 0

}

.

(1.6)

See how dual feasibility now imposes an extra requirement, that the Lagrange multipliers be non-

negative—this is where Farkas’ lemma comes into play—while as expected there is an additional

(complementary slackness) assumption that inactive constraints necessarily have zero Lagrange mul-

tipliers. Also notice that N+, the set over which the Hessian of the Lagrangian is required to be

positive semi-definite, may now be the intersection of a linear manifold and a cone, a particularly

unpleasant set to work with. The requirements (1.5) are often know as the Karush-Kuhn Tucker ,

or simply KKT , conditions in honour of their discoverers.

The by-now obvious sufficient conditions also hold:

Theorem 1.11. Suppose that f, c ∈ C2, and that x∗ and a vector of Lagrange multipliers y∗

satisfy (1.5) and

〈s,H(x∗, y∗)s〉 > 0

for all s in the set N+ given in (1.6). Then x∗ is an isolated local minimizer of f(x) subject to

c(x) ≥ 0.

BASIC MATERIAL NOT COVERED IN PART 1 19

Basic material not covered in Part 1

The study of convexity is a beautiful topic in itself. Although we have not chosen to go into details here,

just a few works are in order.

A set C is convex if for any two points x, y ∈ C αx + (1 − α)y ∈ C for all α ∈ [0, 1], i.e., all points on the

line between x and y also lie in C. A function f is convex if its domain C is convex and

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y)

for all α ∈ [0, 1], i.e., the value of f at a point lying between x and y lies below the straight line joining the

values f(x) and f(y). It is strictly convex if

f(αx + (1 − α)y) < αf(x) + (1 − α)f(y)

for all α ∈ (0, 1),

The important features as far as optimality conditions are concerned are firstly that if x∗ is a local

minimizer of the convex function f(x) over the convex set C, then x∗ is actually a global minimizer. Indeed

the set of global minimizers of such a function is convex. If f(x) is strictly convex over C, then x∗ is the

unique global minimizer. Equally as important, as we shall see in Part 4, is that if f(x) = gT x + 1
2
xT Hx is

quadratic, then f(x) is convex if and only if H is positive semi-definite, and it is strictly convex if and only

if H is positive definite.

20 OPTIMALITY CONDITIONS AND WHY THEY ARE IMPORTANT

PART 2

LINESEARCH METHODS FOR

UNCONSTRAINED

OPTIMIZATION

2.1. LINESEARCH METHODS 23

In this and the next parts, we shall concentrate on the unconstrained minimization problem,

minimize
x∈IR

n
f(x),

where the objective function f : IRn −→ IR. We shall assume that f ∈ C1 (sometimes C2) with

Lipschitz continuous derivatives. Often in practice this assumption is violated, but nonetheless the

methods converge (perhaps by good fortune) regardless.

Despite knowing how to characterise local minimizers of our problem, in practice it is rather

unusual for us to be able to provide or compute an explicit minimizer. Instead, we would normally

expect to fall back on a suitable iterative process. An iteration is simply a procedure whereby a

sequence of points

{xk}, k = 1, 2, . . .

is generated, starting from some initial “guess” x0, with the overall aim of ensuring that (a subse-

quence) of the {xk} has favourable limiting properties. These might include that any limit generated

satisfies first-order or, even better, second-order necessary optimality conditions.

Notice that we will not be able to guarantee that our iteration will converge to a global minimizer

unless we know that f obeys very strong conditions, nor regrettably in general that any limit point

is even a local minimizer (unless by chance it happens to satisfy second-order sufficiency conditions).

What we normally do try to ensure is that, at the very least, the iteration is globally convergent,

that is that (for at least) a subsequence of iterates {g(xk)} converges to zero. And our hope is that

such a sequence converges at a reasonably fast asymptotic rate. These two preoccupations lie at the

heart of computational optimization.

For brevity, in what follows, we shall write fk = f(xk), gk = g(xk) and Hk = H(xk).

2.1 Linesearch methods

Generically, linesearch methods work as follows. Firstly, a search direction pk is calculated from xk.

This direction is required to be a descent direction, i.e.,

〈pk, gk〉 < 0 if gk 6= 0,

so that, for small steps along pk, Taylor’s theorem (Theorem 1.1) guarantees that the objective

function may be reduced. Secondly, a suitable steplength αk > 0 is calculated so that

f(xk + αkpk) < fk.

The computation of αk is the linesearch, and may itself be an iteration. Finally, given both search

direction and steplength, the iteration concludes by setting

xk+1 = xk + αkpk.

Such a scheme sounds both natural and simple. But as with most simple ideas, it needs to be

refined somewhat in order to become a viable technique. What might go wrong? Firstly, consider

the example in Figure 2.1.

24 PART 2. LINESEARCH METHODS FOR UNCONSTRAINED OPTIMIZATION

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3f(x)

x

(x1,f(x1))

(x2,f(x2))

(x3,f(x3))
(x4,f(x4))(x5,f(x5))

Figure 2.1: The objective function f(x) = x2 and the iterates xk+1 = xk + αkpk generated by the

descent directions pk = (−1)k+1 and steps αk = 2 + 3/2k+1 from x0 = 2.

Here the search direction gives a descent direction, and the iterates oscillate from one side of the

minimizer to the other. Unfortunately, the decrease per iteration is ultimately so small that the

iterates converge to the pair ±1, neither of which is a stationary point. What has gone wrong?

Simply the steps are too long relative to the amount of objective-function decrease that they provide.

Is this the only kind of failure? Unfortunately, no. For consider the example in Figure 2.2.

Now the iterates approach the minimizer from one side, but the stepsizes are so small that each

iterate falls woefully short of the minimizer, and ultimately converge to the non-stationary value 1.

So now we can see that a simple-minded linesearch method can fail if the linesearch allows steps

that are either too long or too short relative to the amount of decrease that might be obtained with

a well-chosen step.

2.2 Practical linesearch methods

In the early days, it was often suggested that αk should be chosen to minimize f(xk +αpk). This is

known as an exact linesearch. In most cases, exact linesearches prove to be both very expensive—

they are essentially univariate minimizations—and most definitely not cost effective, and are conse-

quently rarely used nowadays.

Modern linesearch methods prefer to use inexact linesearches, which are guaranteed to pick steps

that are neither too long nor too short. In addition, they aim to pick a “useful” initial “guess” for

each stepsize so as to ensure fast asymptotic convergence—we will return to this when we discuss

Newton’s method. The main contenders amongst the many possible inexact linesearches are the

2.2. PRACTICAL LINESEARCH METHODS 25

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3f(x)

x

(x1,f(x1))

(x2,f(x2))

(x3,f(x3))
(x4,f(x4))

Figure 2.2: The objective function f(x) = x2 and the iterates xk+1 = xk + αkpk generated by the

descent directions pk = −1 and steps αk = 1/2k+1 from x0 = 2.

so-called “backtracking- Armijo” and the “Armijo-Wolfe” varieties. The former are extremely easy

to implement, and form the backbone of most Newton-like linesearch methods. The latter are

particularly important when using secant quasi-Newton methods (see Part 2.5.3), but alas we do

not have space to describe them here.

Here is a basic backtracking linesearch to find αk:

Given αinit > 0 (e.g., αinit = 1),

let α(0) = αinit and l = 0.

Until f(xk + α(l)pk) < fk

set α(l+1) = τα(l), where τ ∈ (0, 1) (e.g., τ = 1
2
)

and increase l by 1.

Set αk = α(l).

Notice that the backtracking strategy prevents the step from getting too small, since the first

allowable value stepsize of the form αinitτ
i, i = 0, 1, . . . is accepted. However, as it stands, there

is still no mechanism for preventing too large steps relative to decrease in f . What is needed is

a tighter requirement than simply that f(xk + α(l)pk) < fk. Such a role is played by the Armijo

condition.

The Armijo condition is that the steplength be asked to give slightly more than simply decrease

26 PART 2. LINESEARCH METHODS FOR UNCONSTRAINED OPTIMIZATION

in f . The actual requirement is that

f(xk + αkpk) ≤ f(xk) + αkβ〈pk, gk〉 (2.1)

for some β ∈ (0, 1) (e.g., β = 0.1 or even β = 0.0001)—this requirement is often said to give sufficient

decrease. Observe that, since 〈pk, gk〉 < 0, the longer the step, the larger the required decrease in

f . The range of permitted values for the stepsize is illustrated in Figure 2.3.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

α

f(xk+αpk)

f(xk)+α〈gk ,pk〉

f(xk)+αβ〈gk,pk〉

Figure 2.3: A steplength of anything up to 1.8 is permitted for this example, in the case where

β = 0.2.

The Armijo condition may then be inserted into our previous backtracking scheme to give the

aptly-named Backtracking-Armijo linesearch:

Given αinit > 0 (e.g., αinit = 1),

let α(0) = αinit and l = 0.

Until f(xk + α(l)pk) ≤ f(xk) + α(l)β〈pk, gk〉
set α(l+1) = τα(l), where τ ∈ (0, 1) (e.g., τ = 1

2
)

and increase l by 1.

Set αk = α(l).

Of course, it is one thing to provide likely-sounding rules to control stepsize selection, but another

to be sure that they have the desired effect. Indeed, can we even be sure that there are points which

satisfy the Armijo condition? Yes, for we have

2.3. CONVERGENCE OF GENERIC LINESEARCH METHODS 27

Theorem 2.1. Suppose that f ∈ C1, that g(x) is Lipschitz continuous with Lipschitz constant

γ(x), that β ∈ (0, 1) and that p is a descent direction at x. Then the Armijo condition

f(x+ αp) ≤ f(x) + αβ〈p, g(x)〉

is satisfied for all α ∈ [0, αmax(x,p)], where

αmax(x, p) =
2(β − 1)〈p, g(x)〉

γ(x)‖p‖2
2

.

Note that since γ(x) is rarely known, the theorem does not provide a recipe for computing αmax(x, p),

merely a guarantee that there is such a suitable value. The numerator in αmax(x, p) corresponds

to the slope and the denominator to the curvature term. It can be interpreted as follows: If the

curvature term is large, then the admissible range of α is small. Similarly, if the projected gradient

along the search direction is large, then the range of admissible α is larger.

It then follows that the Backtracking-Armijo linesearch can be guaranteed to terminate with a

suitably modest stepsize.

Corollary 2.2. Suppose that f ∈ C1, that g(x) is Lipschitz continuous with Lipschitz constant

γk at xk , that β ∈ (0, 1) and that pk is a descent direction at xk. Then the stepsize generated

by the backtracking-Armijo linesearch terminates with

αk ≥ min

(

αinit,
2τ(β − 1)〈pk, gk〉

γk‖pk‖2
2

)

.

Again, since γk is rarely known, the corollary does not give a practical means for computing αk,

just an assurance that there is a suitable value. Notice that the stepsize is certainly not too large,

since it is bounded above by αmax, and can only be small when 〈p, g(x)〉/‖p‖2
2 is. This will be the

key to the successful termination of generic linesearch methods.

2.3 Convergence of generic linesearch methods

In order to tie all of the above together, we first need to state our Generic Linesearch Method:

28 PART 2. LINESEARCH METHODS FOR UNCONSTRAINED OPTIMIZATION

Given an initial guess x0, let k = 0

Until convergence:

Find a descent direction pk at xk .

Compute a stepsize αk using a

backtracking-Armijo linesearch along pk.

Set xk+1 = xk + αkpk, and increase k by 1.

It is then quite straightforward to apply Corollary 2.2 to deduce the following very general conver-

gence result.

Theorem 2.3. Suppose that f ∈ C1 and that g is Lipschitz continuous on IRn. Then, for the

iterates generated by the Generic Linesearch Method,

either

gl = 0 for some l ≥ 0

or

lim
k→∞

fk = −∞

or

lim
k→∞

min

(

|〈pk, gk〉|,
|〈pk, gk〉|
‖pk‖2

)

= 0.

In words, either we find a first-order stationary point in a finite number of iterations, or we encounter

a sequence of iterates for which the objective function is unbounded from below, or the slope (or

a normalized slope) along the search direction converges to zero. While the first two of these

possibilities are straightforward and acceptable consequences, the latter is perhaps not. For one

thing, it certainly does not say that the gradient converges to zero, that is the iterates may not

ultimately be first-order critical, since it might equally occur if the search direction and gradient

tend to be mutually orthogonal. Thus we see that simply requiring that pk be a descent direction

is not a sufficiently demanding requirement. We will return to this shortly, but first we consider the

archetypical globally convergent algorithm, the method of steepest descent.

2.4 Method of steepest descent

We have just seen that the Generic Linesearch Method may not succeed if the search direction

becomes orthogonal to the gradient. Is there a direction for which this is impossible? Yes, when the

2.5. MORE GENERAL DESCENT METHODS 29

search direction is the descent direction

pk = −gk,

the so-called steepest-descent direction—the epithet is appropriate since this direction solves the

problem

minimize
p∈IRn

mL
k (xk + p)

def
= fk + 〈p, gk〉 subject to ‖p‖2 = ‖gk‖2,

and thus gives the greatest possible reduction in a first-order model of the objective function for a

step whose length is specified. Global convergence follows immediately from Theorem 2.3.

Theorem 2.4. Suppose that f ∈ C1 and that g is Lipschitz continuous on IRn. Then, for the

iterates generated by the Generic Linesearch Method using the steepest-descent direction,

either

gl = 0 for some l ≥ 0

or

lim
k→∞

fk = −∞

or

lim
k→∞

gk = 0.

As we mentioned above, this theorem suggests that steepest descent really is the archetypical

globally convergent method, and in practice many other methods resort to steepest descent when

they run into trouble. However, the method is not scale invariant, as re-scaling variables can lead to

widely different “steepest-descent” directions. Even worse, as we can see in Figure 2.4, convergence

may be (and actually almost always is) very slow in theory, while numerically convergence sometimes

does not occur at all as the iteration stagnates. In practice, steepest-descent is all but worthless

in most cases. The figure exhibits quite typical behaviour in which the iterates repeatedly oscillate

from one side of a objective function “valley” to the other. All of these phenomena may be attributed

to a lack of attention to problem curvature when building the search direction. We now turn to

methods that try to avoid this defect.

2.5 More general descent methods

2.5.1 Newton and Newton-like methods

Let Bk be a symmetric, positive definite matrix. Then it is trivial to show that the search direction

pk for which

Bkpk = −gk

30 PART 2. LINESEARCH METHODS FOR UNCONSTRAINED OPTIMIZATION

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

Figure 2.4: Contours for the objective function f(x, y) = 10(y − x2)2 + (x − 1)2, and the iterates

generated by the Generic Linesearch steepest-descent method.

is a descent direction. In fact, this direction solves the direction-finding problem

minimize
p∈IRn

mQ
k (xk + p)

def
= fk + 〈p, gk〉 + 1

2
〈p,Bkp〉, (2.2)

where mQ
k (xk + p) is a quadratic approximation to the objective function at xk.

Of particular interest is the possibility that Bk = Hk, for in this case mQ
k (xk + p) gives a

second-order Taylor’s approximation to f(xk + p). The resulting direction for which

Hkpk = −gk

is known as the Newton direction, and any method which uses it is a Newton method . But notice

that the Newton direction is only guaranteed to be useful in a linesearch context if the Hessian Hk

is positive definite, for otherwise pk might turn out to be an ascent direction.

It is also worth saying that while one can motivate such Newton-like methods from the prospec-

tive of minimizing a local second-order model of the objective function, one could equally argue that

they aim to find a zero of a local first-order model

g(xk + p) ≈ gk +Bkpk

of its gradient. So long as Bk remains “sufficiently” positive definite, we can make precisely the

2.5. MORE GENERAL DESCENT METHODS 31

same claims for these second-order methods as for those based on steepest descent.

Theorem 2.5. Suppose that f ∈ C1 and that g is Lipschitz continuous on IRn. Then, for

the iterates generated by the Generic Linesearch Method using the Newton or Newton-like

direction,

either

gl = 0 for some l ≥ 0

or

lim
k→∞

fk = −∞

or

lim
k→∞

gk = 0

provided that the eigenvalues of Bk are uniformly bounded and bounded away from zero.

Indeed, one can regard such methods as “scaled” steepest descent, but they have the advantage

that they can be made scale invariant for suitable Bk, and crucially, as we see in Figure 2.5, their

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

Figure 2.5: Contours for the objective function f(x, y) = 10(y − x2)2 + (x − 1)2, and the iterates

generated by the Generic Linesearch Newton method.

convergence is often significantly faster than steepest descent. In particular, in the case of the

32 PART 2. LINESEARCH METHODS FOR UNCONSTRAINED OPTIMIZATION

Newton direction, the Generic Linesearch method will usually converge very rapidly indeed.

Theorem 2.6. Suppose that f ∈ C2 and that H is Lipschitz continuous on IRn. Then suppose

that the iterates generated by the Generic Linesearch Method with αinit = 1 and β < 1
2
, in

which the search direction is chosen to be the Newton direction pk = −H−1
k gk whenever Hk is

positive definite, has a limit point x∗ for which H(x∗) is positive definite. Then

(i) αk = 1 for all sufficiently large k,

(ii) the entire sequence {xk} converges to x∗, and

(iii) the rate is Q-quadratic, i.e, there is a constant κ ≥ 0 for which

lim
k→∞

‖xk+1 − x∗‖2

‖xk − x∗‖2
2

≤ κ.

2.5.2 Modified-Newton methods

Of course, away from a local minimizer there is no reason to believe that Hk will be positive definite,

so precautions need to be taken to ensure that Newton and Newton-like linesearch methods, for which

Bk is (or is close to) Hk, satisfy the assumptions of the global convergence Theorem 2.5. If Hk is

indefinite, it is usual to solve instead

(Hk +Mk)pk ≡ Bkpk − gk,

where Mk is chosen so that Bk = Hk +Mk is “sufficiently” positive definite and Mk = 0 when Hk

is itself “sufficiently” positive definite. This may be achieved in a number of ways.

Firstly, if Hk has the spectral (that is eigenvector-eigenvalue) decomposition Hk = QkDkQ
T
k ,

then Mk may be chosen so that

Bk ≡ Hk +Mk = Qk max(εI, |Dk|)QTk

for some “small” ε”. This will shift all the insufficiently positive eigenvalues by as little as possible

as is needed to make the overall matrix positive definite. While such a decomposition may be too

expensive to compute for larger problems, a second, cheaper alternative is to find (or estimate) the

smallest (necessarily real!) eigenvalue, λmin(Hk), of Hk, and to set

Mk = max(0, ε− λmin(Hk))I

so as to shift all the eigenvalues by just enough as to make the smallest “sufficiently” positive. While

this is often tried in practice, in the worst case it may have the effect of over-emphasising one large,

negative eigenvalue at the expense of the remaining small, positive ones, and in producing a direction

which is essentially steepest descent. Finally, a good compromise is instead to attempt a Cholesky

factorization of Hk, and to alter the generated factors if there is evidence that the factorization

2.5.3. Quasi-Newton methods 33

will otherwise fail—the Cholesky factorization!Cholesky—seeCholesky,factorizationactorization of a

symmetric, positive-definite matrix is a decomposition into the product of a lower triangular matrix

and its transpose. There are a number of so-called Modified Cholesky factorizations, each of which

will obtain

Bk ≡ Hk +Mk = LkL
T
k ,

where Mk is zero for sufficiently positive-definite Hk, and “not-unreasonably large” in all other

cases.

2.5.3 Quasi-Newton methods

It was fashionable in the 1960s and 1970s to attempts to build suitable approximations Bk to the

Hessian, Hk. Activity in this area has subsequently died down, possibly because people started to

realize that computing exact second derivatives was not as onerous as they had previously contended,

but these techniques are still of interest particularly when gradients are awkward to obtain (such as

when the function values are simply given as the result of some other, perhaps hidden, computation).

There are broadly two classes of what may be called quasi-Newton methods.

The first are simply based on estimating columns of Hk by finite differences . For example, we

might use the approximation

(Hk)ei ≈ h−1(g(xk + hei) − gk)
def
= (Bk)ei

for some “small” scalar h > 0. The difficulty here is in choosing an appropriate value for h: too large

a value gives inaccurate approximations, while a too small one leads to large numerical cancellation

errors.

The second sort of quasi-Newton methods are known as secant approximations , and try to ensure

the secant condition

Bk+1sk = yk, where sk = xk+1 − xk and yk = gk+1 − gk,

that would be true if H(x) were constant, is satisfied. The secant condition gives a lot of flexibility,

and among the many methods that have been discovered, the Symmetric Rank-1 method, for which

Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)

T

〈sk, yk −Bksk〉
,

and the BFGS method, for which

Bk+1 = Bk +
yky

T
k

〈sk, yk〉
− Bksks

T
kBk

〈sk, Bksk〉
(2.3)

are the best known (and generally the best). Note that the former may give indefinite approximations

(or even fail), while the latter is guaranteed to generate symmetric and positive definite matrices so

long as B0 is positive definite and 〈sk, yk〉 > 0 (the last condition may be ensured by an appropriate

“Goldstein” linesearch). Since both of these secant methods are based on low-rank updates, it is

possible to keep the per-iteration linear algebraic requirements at a more modest level for such

methods than is generally possible with Newton or finite-difference methods.

34 PART 2. LINESEARCH METHODS FOR UNCONSTRAINED OPTIMIZATION

2.5.4 Conjugate-gradient and truncated-Newton methods

And what if the problem is large and matrix factorization is out of the question? We have already

considered (and rejected) steepest-descent methods. Is there something between the simplicity of

steepest descent and the power (but expense) of Newton-like methods? Fortunately, yes.there is.

Suppose that instead of solving (2.2), we instead find our search direction as

pk = (approximate) arg min
p∈IRn

q(p) = fk + 〈p, gk〉 + 1
2
〈p,Bkp〉, (2.4)

where we assume that Bk is positive definite—the key word here is approximate. Suppose that

instead of minimizing q over all p ∈ IRn, we restrict p to lie in a (much) smaller subspace—of course

if we do this we will not (likely) obtain the optimal value of q, but we might hope to obtain a good

approximation with considerably less effort.

Let Di = (d0 : · · · : di−1) be any collection of i vectors, let

Di = {p | p = Dipd for some pd ∈ IRi}

be the subspace spanned by Di, and suppose that we choose to pick

pi = arg min
p∈Di

q(p).

Then immediately Di T gi = 0, where gi = Bkp
i + gk is the gradient of q at pi. More revealingly,

since pi−1 ∈ Di, it follows that pi = pi−1 +Dipid, where

pid = arg min
pd∈IRi

〈pd, Di T gi−1〉 + 1
2
〈pd, Di TBkD

ipd〉

= −(Di TBkD
i)−1Di T gi−1 = −〈di−1, gi−1〉(Di TBkD

i)−1ei.

Hence

pi = pi−1 − 〈di−1, gi−1〉Di(Di TBkD
i)−1ei. (2.5)

All of this is true regardless of Di. But now suppose that the members of Di are Bk-conjugate, that

is to say that 〈di, Bkdj〉 = 0 for all i 6= j. If this is so (2.5) becomes

pi = pi−1 + αi−1di−1, where αi−1 = − 〈di−1, gi−1〉
〈di−1, Bkdi−1〉 . (2.6)

Thus so long as we can generate Bk-conjugate vectors, we can build up successively improving ap-

proximations to the minimize of q by solving a sequence of one-dimensional minimization problems—

the relationship (2.6) may be interpreted as finding αi−1 to minimize q(pi−1 + αdi−1). But can we

find suitable Bk-conjugate vectors?

Surprisingly perhaps, yes, it is easy. Since Di T gi = 0 and thus gi /∈ Di, let

di = −gi +
i−1∑

j=0

βijdj

for some unknown βij . Then elementary manipulation (and a cool head, see p. 138) shows that if

we choose βij so that di is B-conjugate to Di, we obtain the wonderful result that

βij = 0 for j < i− 1, and βi i−1 ≡ βi−1 =
‖gi‖2

2

‖gi−1‖2
2

.

2.5.5. Nonlinear conjugate-gradient methods 35

That is, almost all of the βij are zero! Summing all of this up, we arrive at the method of conjugate

gradients (CG):

Given p0 = 0, set g0 = gk, d
0 = −gk and i = 0.

Until gi is “small”, iterate:

αi = ‖gi‖2
2/〈di, Bdi〉

pi+1 = pi + αidi

gi+1 = gi + αiBkd
i

βi = ‖gi+1‖2
2/‖gi‖2

2

di+1 = −gi+1 + βidi

and increase i by 1.

Important features are that 〈dj , gi+1〉 = 0 and 〈gj , gi+1〉 = 0 for all j = 0, . . . , i, and most particu-

larly that 〈pi, gk〉 ≤ 〈pi−1, gk〉 < 0 for i = 1, . . . , n, from which we see that any pk = pi is a descent

direction.

In practice the above conjugate gradient iteration may be seen to offer a compromise between

the steepest-descent direction (stopping when i = 1) and a Newton (-like) direction (stopping when

i = n). For this reason, using such a curtailed conjugate gradient step within a linesearch (or trust-

region) framework is often known as a truncated-Newton method. Frequently the size of gi relative

to gk is used as a stopping criteria, a particularly popular rule being to stop the conjugate-gradient

iteration when

‖gi‖ ≤ min(‖gk‖ω, η)‖gk‖,

where η and ω ∈ (0, 1), since then a faster-than-linear asymptotic convergence rate may be achieved

if Bk = Hk.

The reader may well have already encountered the CG method as a good way of (approximately)

solving symmetric, positive linear systems Bx = b. Since as we have already noted that the solution

to (2.4) necessarily satisfies Bkpk = −gk if the symmetric Bk is positive definite, we merely need to

assign Bk as B and −gk to b and apply the CG method to recover increasingly accurate estimates

pk of x. We shall return to this equivalence in Part 4.

2.5.5 Nonlinear conjugate-gradient methods

Although we have only mentioned CG methods in the context of generating search directions, they

may actually be applied (with care) more generally. To see how, suppose f(x) is quadratic and that

we express x = x0 + p as a perturbation p around a given point x0. Then a Taylor expansion gives

f(x) = f(x0 + p) = f(x0) + 〈p, g(x0)〉 + 1
2
〈p,H(x0)p〉,

which we can minimize as a function of p using the CG method. Significantly, if we write xi = x0+pi,

this gives gi = g(x0) + H(x0)pi = g(xi), while it is worth noting that αi = arg min f(xi + αdi).

36 LINESEARCH METHODS FOR UNCONSTRAINED OPTIMIZATION

Thus, we may rewrite the CG algorithm as follows:

Given x0 and g(x0), set d0 = −g(x0) and i = 0.

Until g(xk) “small” iterate

αi = arg min
α

f(xi + αdi)

xi+1 = xi + αidi

βi = ‖g(xi+1)‖2
2/‖g(xi)‖2

2

di+1 = −g(xi+1) + βidi

and increase i by 1

But now, there is no mention of the Hessian of f(x). Indeed, there is no explicit mention that this

method was derived for quadratic functions at all. Variants of this method have been applied to

general non-quadratic f by replacing the calculation of αi by a suitable linesearch and by modifying

βi (as necessary) to ensure that di is a descent direction at xi. The principal advantage of such

nonlinear conjugate gradient methods is that they only requires function and gradient values, and

not Hessians In practice, periodic restarts in the steepest-descent direction prove to be beneficial

and sometimes essential.

Basic material not covered in Part 2

We have concentrated on the Backtracking Armijo linesearch as a means to ensure convergence, but an

equally popular (and slightly more versatile) variant is based upon the Armijo-Wolfe conditions. The idea

is simply that rather than using backtracking as a means for ensuring that the step does not get too short,

we instead insist that

〈pk, g(xk + αkpk)〉 ≥ γ〈pk, g(xk)〉, (2.7)

where 0 < β < γ < 1 and β is the constant associated with the Armijo condition (2.1)—the choice γ = 0.9

is typical. This Wolfe condition (2.7) is then used in conjunction with the Armijo condition, which as the

reader will recall prevents overly long steps. Finding a point for which both (2.1) and (2.7) are satisfied

is not necessarily easy—a complicated iteration may be required, and the test, unlike for the Armijo case

requires that we evaluate the gradient g(x) at each trial point xk + αpk—but a range of suitable values

can be guaranteed. Global convergence results similar to Theorem 2.3 can be easily established. The most

significant result, however, is that the Wolfe condition ensures that

〈yk, sk〉 = (γ − 1)αk〈pk, g(xk)〉 > 0,

and thus that the BFGS secant method (2.3) in Section 2.5.3 always generates positive definite matrices.

We have mentioned Q-quadratic convergence, so let us put this in its general context. A positive scalar

sequence {σk} with limit 0 is said to converge at a Q-rate q if

lim
k→∞

σk+1

σ
q

k

≤ κ

for some constant κ—here “Q” stands for “Quotient”, and the number q is sometimes known as the Q-

factor . The convergence is said to be Q-linear if q = 1 and κ < 1, it is Q-superlinear q > 1 or q = 1 and

BASIC MATERIAL NOT COVERED IN PART 2 37

κ = 0 and Q-quadratic if q = 2. The Q-rate of convergence a vector sequence {xk} to its limit x∗ is that of

the sequence {σk} where σk = ‖xk − x∗‖ for some appropriate norm.

38 LINESEARCH METHODS FOR UNCONSTRAINED OPTIMIZATION

PART 3

TRUST-REGION METHODS

FOR UNCONSTRAINED

OPTIMIZATION

3.1. LINESEARCH VS. TRUST-REGION METHODS 41

In this part, we continue to concentrate on the unconstrained minimization problem, and shall

as before assume that the objective function is C1 (sometimes C2) with Lipschitz continuous deriva-

tives.

3.1 Linesearch vs. trust-region methods

One might view linesearch methods as naturally “optimistic”. Fairly arbitrary search directions are

permitted—essentially 50% of all possible directions give descent from a given point—while unruly

behaviour is held in check via the linesearch. There is, however, another possibility, that more

control is taken when choosing the search direction, with the hope that this will then lead to a

higher probability that the (full) step really is useful for reducing the objective. This naturally

“conservative” approach is the basis of trust-region methods.

As we have seen, linesearch methods pick a descent direction pk, then pick a stepsize αk to

“reduce” f(xk +αpk) and finally accept xk+1 = xk +αkpk. Trust-region methods, by contrast, pick

the overall step sk to reduce a “model” of f(xk + s), and accept xk+1 = xk + sk if the decrease

predicted by the model is realised by f(xk+sk). Since there is no guarantee that this will always be

so, the fall-back mechanism is to set xk+1 = xk, and to “refine” the model when the existing model

produces a poor step. Thus, while a linesearch method recovers from a poor step by retreating

along a parametric (usually linear) curve, a trust-region method recovers by reconsidering the whole

step-finding procedure.

3.2 Trust-region models

It is natural to build a model of f(xk+s) by considering Taylor series approximations. Of particular

interest are the linear model

mL
k (s) = fk + 〈s, gk〉,

and the quadratic model

mQ
k (s) = fk + 〈s, gk〉 + 1

2
〈s,Bks〉,

where Bk is a symmetric approximation to the local Hessian matrix Hk. However, such models are

far from perfect. In particular, the models are unlikely to resemble f(xk + s) if s is large. More

seriously, the models may themselves be unbounded from below so that any attempts to minimize

them may result in a large step. This defect will always occur for the linear model (unless gk = 0),

and also for the quadratic model if Bk is indefinite (and possibly if Bk is only positive semi-definite).

Thus simply using a Taylor-series model is fraught with danger.

There is, fortunately, a simple and effective way around this conundrum. The idea is to prevent

the model mk(s) from being unboundedness by imposing a trust-region constraint

‖s‖ ≤ ∆k,

for some “suitable” scalar radius ∆k > 0, on the step. This is a natural idea, since we know from

Theorem 1.1 that we can improve the approximation error |f(xk + s) − mk(s)| by restricting the

42 PART 3. TRUST-REGION METHODS FOR UNCONSTRAINED OPTIMIZATION

allowable step. Thus our trust-region subproblem is to

approximately minimize
s∈IRn

mk(s) subject to ‖s‖ ≤ ∆k,

and we shall choose sk as approximate solution of this problem. In theory, it does not depend on

which norm ‖ · ‖ we use (at least, in finite-dimensional spaces), but in practice it might!

For simplicity, we shall concentrate on the second-order (Newton-like) model

mk(s) = mQ
k (s) = fk + 〈s, gk〉 + 1

2
〈s,Bks〉

and any (consistent) trust-region norm ‖ · ‖ for which

κs‖ · ‖ ≤ ‖ · ‖2 ≤ κl‖ · ‖

for some κl ≥ κs > 0. Notice that the gradient of mk(s) at s = 0 coincides with the gradient of

f at xk, and also, unlike for linesearch methods, Bk = Hk is always allowed. The vast majority of

models use the `1, `2 or `∞ norms on IRn, and for these we have ‖ · ‖2 ≤ ‖ · ‖2 ≤ ‖ · ‖2 (obviously!!),

n− 1
2 ‖ · ‖1 ≤ ‖ · ‖2 ≤ ‖ · ‖1 and ‖ · ‖∞ ≤ ‖ · ‖2 ≤ n‖ · ‖∞.

3.3 Basic trust-region method

Having decided upon a suitable model, we now turn to the trust-region algorithm itself. As we

have suggested, we shall choose to “accept” xk+1 = xk + sk whenever (a reasonable fraction of) the

predicted model decrease fk−mk(sk) is realized by the actual decrease fk−f(xk+sk). We measure

this by computing the ratio

ρk =
fk − f(xk + sk)

fk −mk(sk)

of actual to predicted decrease, and accepting the trust-region step when ρk is not unacceptably

smaller than 1.0. If the ratio is close to (or larger than) 1.0, there is good reason to believe that

future step computations may well benefit from an increase in the trust-region radius, so we allow

a radius increase in this case. If, by contrast, there is poor agreement between the actual and

predicted decrease (and particularly, if f actually increases), the current step is poor and should be

rejected. In this case, we reduce the trust-region radius to encourage a more suitable step at the

next iteration.

We may summarize the basic trust-region method as follows:

3.3. BASIC TRUST-REGION METHOD 43

Given k = 0, ∆0 > 0 and x0, until “convergence” do:

Build the second-order model m(s) of f(xk + s).

“Solve” the trust-region subproblem to find sk

for which m(sk) “<” fk and ‖sk‖ ≤ ∆k, and define

ρk =
fk − f(xk + sk)

fk −mk(sk)
.

If ρk ≥ ηv [very successful] 0 < ηv < 1

set xk+1 = xk + sk and ∆k+1 = γi∆k. γi ≥ 1

Otherwise if ρk ≥ ηs then [successful] 0 < ηs ≤ ηv < 1

set xk+1 = xk + sk and ∆k+1 = ∆k.

Otherwise [unsuccessful]

set xk+1 = xk and ∆k+1 = γd∆k. 0 < γd < 1

Increase k by 1.

Reasonable values might be ηv = 0.9 or 0.99, ηs = 0.1 or 0.01, γi = 2, and γd = 0.5. In practice,

these parameters might even be allowed to vary (within reasonable limits) from iteration to iteration.

In particular, there would seem to be little justification in increasing the trust region radius following

a very successful iteration unless ‖sk‖ ≈ ∆k, nor in decreasing the radius by less than is required

to “cut off” an unsuccessful sk.

In practice, the trust-region radius is not increased for a very successful iterations, if the step

is much shorter, say less than half the trust-region radius. There are various schemes for choosing

an initial trust-region radius. However, if the problem is well scaled, then ∆0 = O(1) is reasonable.

Poor scaling can affect the performance of trust-region methods. In practice it often suffices that

the variables of the (scaled) problem have roughly the same order of magnitude.

It remains for us to decide what we mean by “solving” the trust-region subproblem. We shall

see in Part 3.5 that (at least in the `2-trust-region norm case) it is possible to find the (global)

solution to the subproblem. However, since this may result in a considerable amount of work, we

first seek “minimal” conditions under which we can guarantee convergence of the above algorithm

to a first-order critical point.

We have already seen that steepest-descent linesearch methods have very powerful (theoretical)

convergence properties. The same is true in the trust-region framework. Formally, at the very least,

we shall require that we achieve as much reduction in the model as we would from an iteration of

steepest descent. That is, if we define the Cauchy point as sC

k = −αC

kgk, where

αC

k = arg min
α>0

mk(−αgk) subject to α‖gk‖ ≤ ∆k

= arg min
0<α≤∆k/‖gk‖

mk(−αgk)
,

44 PART 3. TRUST-REGION METHODS FOR UNCONSTRAINED OPTIMIZATION

we shall require that our step sk satisfies

mk(sk) ≤ mk(s
C

k) and ‖sk‖ ≤ ∆k. (3.1)

Notice that the Cauchy point is extremely easy to find, since it merely requires that we minimize

the quadratic model along a line segment. In practice, we shall hope to—and can—do far better

than this, but for now (3.1) suffices.

Figure 3.1 illustrates the trust-region problem in four different situations. The contours of the

original function are shown as dotted lines, while the contours of the trust-region model appear as

solid lines with the `2 trust-region ball in bold. Clockwise from top left, the plots depict the following

situations: first, a quadratic model with positive definite Hessian, next a linear model about the

same point, the third plot shows a quadratic model with indefinite Hessian and the final plot is a

quadratic model with positive definite Hessian whose minimizers lies outside the trust-region.

−1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1
quadratic TR model about x=(1,−0.5), ∆=1

−1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1
linear TR model about x=(1,−0.5), ∆=1

−1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1
quadratic TR model about x=(0,0), ∆=1

−1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1
quadratic TR model about x=(−0.25,0.5), ∆=1

Figure 3.1: Trust-region models of f(x) = x4
1 + x1x2 + (1 + x2)

2 about different points.

We now examine the convergence of this trust-region method.

3.4 Basic convergence of trust-region methods

The first thing to note is that we can guarantee a reasonable reduction in the model at the Cauchy

point.

3.4. BASIC CONVERGENCE OF TRUST-REGION METHODS 45

Theorem 3.1. If mk(s) is the second-order model and sC

k is its Cauchy point within the trust-

region ‖s‖ ≤ ∆k, then

fk −mk(s
C

k) ≥ 1
2
‖gk‖2 min

[‖gk‖2

1 + ‖Bk‖2
, κs∆k

]

.

Observe that the guaranteed reduction depends on how large the current gradient is, and is also

affected by the size of both the trust-region radius and the (inverse) of the Hessian.

Since our algorithm requires that the step does at least as well as the Cauchy point, we then

have the following immediate corollary.

Corollary 3.2. If mk(s) is the second-order model, and sk is an improvement on the Cauchy

point within the trust-region ‖s‖ ≤ ∆k,

fk −mk(sk) ≥ 1
2
‖gk‖2 min

[‖gk‖2

1 + ‖Bk‖2
, κs∆k

]

.

This is a typical trust-region result, in that it relates the model reduction to a measure of the

distance to optimality, in this case measured in terms of the norm of the gradient.

It is also necessary to say something about how much the model and the objective can vary.

Since we are using a second-order model for which the first-two terms are exactly those from the

Taylor’s approximation, it is not difficult to believe that the difference between model and function

will vary like the square of the norm of sk, and indeed this is so.

Lemma 3.3. Suppose that f ∈ C2, and that the true and model Hessians satisfy the bounds

‖H(x)‖2 ≤ κh for all x and ‖Bk‖2 ≤ κb for all k and some κh ≥ 1 and κb ≥ 0. Then

|f(xk + sk) −mk(sk)| ≤ κd∆
2
k,

where κd = 1
2
κ2
l (κh + κb), for all k.

Actually the result is slightly weaker than necessary since, for our purposes, we have chosen to

replace ‖sk‖ by its (trust-region) bound ∆k. Moreover, rather than requiring a uniform bound on

H(x), all that is actually needed is a similar bound for all x between xk and xk + sk.

Armed with these bounds, we now arrive at a crucial result, namely that it will always be possible

to make progress from a non-optimal point (gk 6= 0).

46 PART 3. TRUST-REGION METHODS FOR UNCONSTRAINED OPTIMIZATION

Lemma 3.4. Suppose that f ∈ C2, that the true and model Hessians satisfy the bounds

‖Hk‖2 ≤ κh and ‖Bk‖2 ≤ κb for all k and some κh ≥ 1 and κb ≥ 0, and that κd = 1
2
κ2
l (κh+κb).

Suppose furthermore that gk 6= 0 and that

∆k ≤ ‖gk‖2 min

(
1

κs(κh + κb)
,
κs(1 − ηv)

2κd

)

.

Then iteration k is very successful and

∆k+1 ≥ ∆k.

This result is fairly intuitive, since when the radius shrinks the model looks more and more like its

first-order Taylor’s expansion (provided Bk is bounded) and thus ultimately there must be good

local agreement between the model and objective functions.

The next result is a variation on its predecessor, and says that the radius is uniformly bounded

away from zero if the same is true of the sequence of gradients, that is the radius will not shrink to

zero at non-optimal points.

Lemma 3.5. Suppose that f ∈ C2, that the true and model Hessians satisfy the bounds

‖Hk‖2 ≤ κh and ‖Bk‖2 ≤ κb for all k and some κh ≥ 1 and κb ≥ 0, and that κd = 1
2
κ2
l (κh+κb).

Suppose furthermore that there exists a constant ε > 0 such that ‖gk‖2 ≥ ε for all k. Then

∆k ≥ κε
def
= εγdmin

(
1

κs(κh + κb)
,
κs(1 − ηv)

2κd

)

for all k.

We may then deduce that if there are only a finite number of successful iterations, the iterates

must be first-order optimal after the last of these.

Lemma 3.6. Suppose that f ∈ C2, and that both the true and model Hessians remain

bounded for all k. Suppose furthermore that there are only finitely many successful itera-

tions. Then xk = x∗ for all sufficiently large k and g(x∗) = 0.

Having ruled out this special (and highly unlikely) case, we then have our first global convergence

result, namely that otherwise (and so long as our objective is bounded from below) there is at least

one sequence of gradients that converge to zero.

3.4. BASIC CONVERGENCE OF TRUST-REGION METHODS 47

Theorem 3.7. Suppose that f ∈ C2, and that both the true and model Hessians remain

bounded for all k. Then either

gl = 0 for some l ≥ 0

or

lim
k→∞

fk = −∞

or

lim inf
k→∞

‖gk‖ = 0.

Is this all we can show? Is it possible for a second sub-sequence of gradients to stay bounded

away from zero? Fortunately, no.

Corollary 3.8. Suppose that f ∈ C2, and that both the true and model Hessians remain

bounded for all k. Then either

gl = 0 for some l ≥ 0

or

lim
k→∞

fk = −∞

or

lim
k→∞

gk = 0.

Thus we have the highly-satisfying result that the gradients of the sequence {xk} generated by our

algorithm converge to, or are all ultimately, zero so longs as f is bounded below. This does not

mean that a subsequence of {xk} itself converges, but if it does, the limit is first-order critical.

It is also possible to show that an enhanced version of our basic algorithm converges to points

satisfying second-order necessary optimality conditions. To do so, we need to ensure that the Hessian

of the model converges to that of the objective (as would obviously be the case if Bk = Hk), and that

the step sk has a significant component along the eigenvector corresponding to the most negative

eigenvalue of Bk (if any). It is also possible to show that if Bk = Hk, if {xk} has a limit x∗ for

which H(x∗) is positive definite, and if sk is chosen to

minimize
s∈IRn

mk(s) subject to ‖s‖ ≤ ∆k, (3.2)

the step ∆k stays bounded away from zero, and thus the iteration ultimately becomes Newton’s

method (c.f. (2.2)).

In conclusion, we have seen that trust-region methods have a very rich underlying convergence

theory. But so much for theory. We now turn to the outstanding practical issue, namely how one

might hope to find a suitable step sk. We will consider two possibilities, one that aims to get a

48 PART 3. TRUST-REGION METHODS FOR UNCONSTRAINED OPTIMIZATION

very good approximation to (3.2), and a second, perhaps less ambitious method that is more geared

towards large-scale computation.

3.5 Solving the trust-region subproblem

For brevity, we will temporarily drop the iteration subscript, and consider the problem of

(approximately) minimize
s∈IRn

q(s) ≡ 〈s, g〉 + 1
2
〈s,Bs〉 subject to ‖s‖ ≤ ∆. (3.3)

As we have already mentioned, our aim is to find s∗ so that

q(s∗) ≤ q(sC) and ‖s∗‖ ≤ ∆,

where sC is the Cauchy point. We shall consider two approaches in this part. The first aims to solve

(3.3) exactly, in which case our trust-region method will be akin to a Newton-like method. The

second aims for an approximate solution using a conjugate-gradient like method. For simplicity, we

shall only consider the `2-trust region ‖s‖ ≤ ∆, mainly because there are very powerful methods in

this case, but of course other norms are possible and are sometimes preferred in practice.

3.5.1 Solving the `2-norm trust-region subproblem

There is a really powerful solution characterisation result for the `2-norm trust-region subproblem.

Theorem 3.9. Any global minimizer s∗ of q(s) subject to ‖s‖2 ≤ ∆ satisfies the equation

(B + λ∗I)s∗ = −g,

where B + λ∗I is positive semi-definite, λ∗ ≥ 0 and λ∗(‖s∗‖2 − ∆) = 0. If B + λ∗I is positive

definite, s∗ is unique.

This result is extraordinary as it is very unusual to be able to give necessary and sufficient global

optimality conditions for a non-convex optimization problem (that is, a problem which might have

a number of local minimizers). Even more extraordinary is the fact that the necessary and sufficient

conditions are identical. But most crucially, these optimality conditions also suggest how we might

solve the problem.

There are two cases to consider. If B is positive definite and the solution s to

Bs = −g (3.4)

satisfies ‖s‖2 ≤ ∆, then it immediately follows that s∗ = s (λ∗ = 0 in Theorem 3.9)—this potential

solution may simply be checked by seeing if B has Cholesky factors and, if so, using these factors

to solve (3.4) Bs = −g and subsequently evaluate ‖s‖2. Otherwise, either B is positive definite but

3.5. SOLVING THE TRUST-REGION SUBPROBLEM 49

the solution to (3.4) satisfies ‖s‖2 > ∆ or B is singular or indefinite. In these cases, Theorem 3.9

then says that s∗ satisfies

(B + λI)s = −g and 〈s, s〉 = ∆2, (3.5)

which is a nonlinear (quadratic) system of algebraic equations in the n+1 unknowns s and λ. Thus,

we now concentrate on methods for solving this system.

Suppose B has the spectral decomposition

B = UTΛU ;

here U is a matrix of (orthonormal) eigenvectors while the diagonal matrix Λ is made up of eigen-

values λ1 ≤ λ2 ≤ . . . ≤ λn. Theorem 3.9 requires that B + λI be positive semi-definite, and so the

solution (s, λ) to (3.5) that we seek necessarily satisfies λ ≥ −λ1. The first part of (3.5) enables us

to write s explicitly in terms of λ, that is

s(λ) = −(B + λI)−1g;

we will temporarily disregard the possibility that the theorem permits a singular B + λI . Notice

that once we have found λ,

(B + λI)s = −g (3.6)

is a linear system. In this case, we may substitute s(λ) into the second part of (3.5) to reveal that

ψ(λ)
def
= ‖s(λ)‖2

2 = ‖UT (Λ + λI)−1Ug‖2
2 =

n∑

i=1

γ2
i

(λi + λ)2
= ∆2, (3.7)

where γi = 〈ei, Ug〉 = 〈UT ei, g〉. Thus to solve the trust-region subproblem, it appears that all we

have to do is find a particular root of a univariate nonlinear equation.

We illustrate this in Figures 3.2–3.4.

The first shows a convex example (B positive definite). For ∆2 larger than roughly 1.15, the

solution to the problem lies in the interior of the trust region, and may be found directly from (3.4).

When ∆ is smaller than this, the solution lies on the boundary of the trust region, and can be found

as the right-most root of (3.7). The second example is non-convex (B indefinite). Now the solution

must lie on the boundary of the trust region for all values of ∆, and again can be found as the

right-most root of (3.7), to the right of −λ1.

In both Figures 3.2 and 3.3 everything seems easy, and at least a semblance of an algorithm is

obvious. But now consider the example in Figure 3.4. This example is especially chosen so that the

coefficient γ1 in (3.7) is zero, that is g is orthogonal to the eigenvector u1 of B corresponding to the

eigenvalue λ1 = −2. Remember that Theorem 3.9 tells us that λ ≥ 2 = −λ1. But Figure 3.4 shows

that there is no such root of (3.7) if ∆2 is larger than (roughly) 0.09.

This is an example of what has become known as the hard case, which always arises when λ1 < 0,

〈u1, g〉 = 0 and ∆ is too big. What is happening? Quite simply, in the hard case λ = −λ1 and (3.6)

is a singular (but consistent) system—it is consistent precisely because 〈u1, g〉 = 0. But this system

has other solutions s+ αu1 for any α, because

(B + λI)(s+ αu1) = −g,

50 PART 3. TRUST-REGION METHODS FOR UNCONSTRAINED OPTIMIZATION

ψ(λ)

λ−8 −6 −4 −2 0 2 4

0

1

2

3

6

-

B =






1 0 0

0 3 0

0 0 5






g =






1

1

1






∆2 = 1.151

solution curve as ∆ varies@
@

@
@@I

�
�

�
�

�
�

��

?

Figure 3.2: A plot of ψ(λ) as λ varies from −8 to 6. Note the poles at the negatives of the eigenvalues

of H . The heavy curve plots λ against ∆; the dashed vertical component corresponds to interior

solutions which occur for all ∆2 larger than roughly 1.15, while the remaining segment indicates

boundary solutions.

ψ(λ)

λ−8 −6 −4 −2 0 2 4
0

1

2

6

-

minus leftmost eigenvalue�

B =






−1 0 0

0 3 0

0 0 5






g =






1

1

1






Figure 3.3: A plot of ψ(λ) as λ varies from −8 to 6. Again, note the poles at the negatives of the

eigenvalues of H .

and u1 is an eigenvector of B + λI . The solution we require is that for which ‖s + αu1‖2
2 = ∆2,

which is a quadratic equation for the unknown α, and either root suffices.

In the easy (that is not “hard”) case, it remains to see how best to solve |s(λ)‖2 = ∆. The answer

is blunt. Don’t! At least, not directly, since as the previous figures showed, ψ(λ) is an unappealing

3.5. SOLVING THE TRUST-REGION SUBPROBLEM 51

ψ(λ)

λ−8 −6 −4 −2 0 2 4
0

1

2

6

-

minus leftmost eigenvalue�

B =






−1 0 0

0 3 0

0 0 5






g =






0

1

1






∆2 = 0.0903

Figure 3.4: A plot of ψ(λ) for the modified model as λ varies from −8 to 6. Note that there is no

solution with to the equation ψ(λ) = ∆2 with λ ≥ 1 for ∆2 larger than roughly 0.09.

function with many poles. It is far better to solve the equivalent secular equation

φ(λ)
def
=

1

‖s(λ)‖2
− 1

∆
= 0,

as this has no poles, indeed it is an analytic function, and thus ideal for Newton’s method. We

illustrate the secular equation in Figure 3.5.

0

φ(λ)

0 −λ1 λ∗ λ

6

-

Figure 3.5: A plot of φ(λ) against λ for the problem of minimizing − 1
4
s21 + 1

4
s22 + 1

2
s1 + s2 subject

to ‖s‖2 ≤ 4.

52 PART 3. TRUST-REGION METHODS FOR UNCONSTRAINED OPTIMIZATION

Without giving details (for these, see the appendix, page 146), Newton’s method for the secular

equation is as follows

Let λ > −λ1 and ∆ > 0 be given.

Until “convergence” do:

Factorize B + λI = LLT .

Solve LLT s = −g.
Solve Lw = s.

Replace λ by

λ+

(‖s‖2 − ∆

∆

)(‖s‖2
2

‖w‖2
2

)

.

This is globally and ultimately quadratically convergent when started in the interval [−λ1, λ∗] except

in the hard case, but needs to be safeguarded to make it robust for the hard and interior solution

cases. Notice that the main computational cost per iteration is a Cholesky factorization of B + λI ,

and while this may be reasonable for small problems, it may prove unacceptably expensive when

the number of variables is large. We consider an alternative for this case next.

3.6 Solving the large-scale problem

Solving the large-scale trust-region subproblem using the above method is likely out of the question

in all but very special cases. The obvious alternative is to use an iterative method to approximate

its solution. The simplest approximation that is consistent with our fundamental requirement that

we do as least as well as we would at the Cauchy point is to use the Cauchy point itself. Of course,

this is simply the steepest descent method, and thus unlikely to be a practical method. The obvious

generalization is the conjugate-gradient method, since the first step of CG is in the steepest-descent

direction and, as subsequent CG steps further reduce the model, any step generated by the method

is allowed by our theory. However, there are a number of other issues we need to address first. In

particular, what about the interaction between conjugate gradients and the trust region? And what

if B is indefinite?

The conjugate-gradient method to find an approximation to a minimizer of q(s) may be sum-

3.6. SOLVING THE LARGE-SCALE PROBLEM 53

marised as follows.

Given s0 = 0, set g0 = g, d0 = −g and i = 0.

Until “breakdown” or gi “small”, iterate:

αi = ‖gi‖2
2/〈di, Bdi〉

si+1 = si + αidi

gi+1 = gi + αiBdi

βi = ‖gi+1‖2
2/‖gi‖2

2

di+1 = −gi+1 + βidi

and increase i by 1.

Notice that we have inserted a termination statement concerning “breakdown”. This is intended to

cover the fatal case when 〈di, Bdi〉 = 0 (or, in practice, is close to zero), for which the iteration is

undefined, and the non-fatal case when 〈di, Bdi〉 < 0 for which q(s) is unbounded from below along

the so-called direction of negative curvature di.

But what of the trust-region constraint? Here we have a crucial result.

Theorem 3.10. Suppose that the conjugate gradient method is applied to minimize q(s) start-

ing from s0 = 0, and that 〈di, Bdi〉 > 0 for 0 ≤ i ≤ k. Then the iterates sj satisfy the

inequalities

‖sj‖2 < ‖sj+1‖2

for 0 ≤ j ≤ k − 1.

Simply put, since the norm of the approximate solution generated by the conjugate gradients

increases in norm at each iteration, if there is an iteration for which ‖sj‖2 > ∆, it must be that

the solution to the trust-region subproblem lies on the trust-region boundary. That is ‖s∗‖2 = ∆.

This then suggests that we should apply the basic conjugate-gradient method above but terminate

at iteration i if either (a) 〈di, Bdi〉 ≤ 0, since this implies that q(s) is unbounded along di, or (b)

‖si + αidi‖2 > ∆, since this implies that the solution must lie on the trust-region boundary. In

both cases, the simplest strategy is to stop on the boundary at s = si + αBdi, where αB chosen as

positive root of the quadratic equation

‖si + αBdi‖2
2 = ∆2.

Crucially this s satisfies

q(s) ≤ q(sC) and ‖s‖2 ≤ ∆

and thus Corollary 3.8 shows that the overall trust-region algorithm converges to a first-order critical

point.

54 PART 3. TRUST-REGION METHODS FOR UNCONSTRAINED OPTIMIZATION

How good is this truncated conjugate-gradient strategy? In the convex case, it turns out to be

very good. Indeed, no worse than half optimal!

Theorem 3.11. Suppose that the truncated conjugate gradient method is applied to approx-

imately minimize q(s) within ‖s‖2 ≤ ∆, and that B is positive definite. Then the computed

and actual solutions to the problem, s and s∗, satisfy the bound q(s) ≤ 1
2
q(s∗).

In the non-convex (Bk indefinite) case, however, the strategy may be rather poor. For example, if

g = 0 and B is indefinite, the above truncated conjugate-gradient method will terminate at s = 0,

while the true solution lies on the trust-region boundary.

What can we do in the non-convex case? The answer is quite involved, but one possibility

is to recall that conjugate-gradients is trying to solve the overall problem by successively solving

the problem over a sequence of nested subspaces. As we saw, the CG method uses B-conjugate

subspaces. But there is an equivalent method, the Lanczos method, that uses instead orthonormal

bases. Essentially this may be achieved by applying the Gram-Schmidt procedure to the CG basis

Di to build the equivalent basis Qi = {s | s = Qisq for some sq ∈ IRi}. It is easy to show that for

this Qi,

Qi TQi = I and Qi TBQi = T i,

where T i is tridiagonal, and Qi T g = ‖g‖2 e1, and it is trivial to generate Qi from the CG Di. In

this case the trust-region subproblem (3.3) may be rewritten as

siq = arg min
sq∈Ri

‖g‖2 〈e1, sq〉 + 1
2
〈sq , T isq〉 subject to ‖sq‖2 ≤ ∆,

where si = Qisiq. Since T i is tridiagonal, T i + λI has very sparse Cholesky factors, and thus we

can afford to solve this problem using the earlier secular equation approach. Moreover, since we

will need to solve a sequence of related problems over nested subspaces, it is easy to imagine that

one can use the solution for one problem to initialize the next. In practice, since the approach is

equivalent to conjugate gradients, it is best to use CG until the trust-region boundary is reached

and then to switch to the Lanczos method at that stage. Such a method has turned out to be most

effective in practice.

PART 4

ACTIVE-SET METHODS FOR

LINEARLY CONSTRAINED

OPTIMIZATION

4.1. QUADRATIC PROGRAMMING 57

We now leave the world of unconstrained optimization behind, and move to one involving con-

straints. We do this gently, by first considering the important class of problems for which the

constraints are linear. In its most general form, the linearly-constrained optimization problem is to

minimize
x∈IRn

f(x) subject to Ax

{

≥
=

}

b, (4.1)

where the feasible set is a polytope, made up from a finite number of linear equations and/or

inequalities. The particularly famous special case of linear programming (LP) occurs when f(x) =

〈g, x〉; there are very special (and very efficient) methods for LP, some of which are based on the

observation that for this problem the solution must lie at a vertex of the feasible region. However,

LP is perhaps too specialised for a general discussion. More interesting is the quadratic programming

(QP) case where f(x) = 〈g, x〉 + 1
2
xTHx for some given symmetric H . Almost all of the central

ideas for the general problem (4.1) may be seen for QP, and so we need not apologise for devoting

the overwhelming part of this partto this special case.

4.1 Quadratic programming

So, we now concentrate on the quadratic programming problem

minimize
x∈IRn

q(x) = 〈g, x〉 + 1
2
〈x,Hx〉 subject to Ax ≥ b (4.2)

where H is a given n by n symmetric matrix, g is an n vector,

A =







aT1
...

aTm







and b =







[b]1
...

[b]m






.

In practice, the constraints may have both lower and upper bounds, bl ≤ Ax ≤ bu, might include

equalities, Aex = be, may involve simple bounds, xl ≤ x ≤ xu, and could have other structurally-

significant components, such as those that arise from networks. While good implementations would

invariably aim to cope with specially-structured constraints, the essential ideas may be conveyed

just by looking at the generic form given in (4.2).

Traditionally quadratic programs are classified according to the properties of their Hessian ma-

trices. A QP is convex if H is positive semi-definite (i.e., 〈x,Hx〉 ≥ 0 for all x). For such problems,

any local minimizer is a global one, and of course linear programming is the special case for which

H = 0. More specifically, a QP is strictly convex if H is positive definite (i.e., 〈x,Hx〉 > 0 for all

x 6= 0), and for these the minimizer will be unique, if there is a solution at all—it is of course entirely

possible that the constraints Ax ≥ b have no feasible points; such problems are said to be infeasible.

The third class of QP are the non-convex ones for which H may be indefinite (i.e., 〈x,Hx〉 < 0

for some x). These may have (exponentially) many local minimizers, and indeed the problem may

be unbounded from below if the feasible set C = {x | Ax ≥ b} is unbounded. In any event, for

non-convex QPs we will often have to be content with finding a local minimizer. We illustrate both

convex and non-convex problems in Figure 4.1

58 PART 4. ACTIVE-SET METHODS FOR LINEARLY CONSTRAINED OPTIMIZATION

−1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

2

−1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

2

Figure 4.1: Contours of the objective function for (left) a strictly convex problem: (x1 − 1)2 +(x2 −
0.5)2 and (right) a non-convex problem −2(x1 − 0.25)2 + 2(x2 − 0.5)2, and the feasible region for

the constraints x1 + x2 ≤ 1, 3x1 + x2 ≤ 1.5 and (x1, x2) ≥ 0. Note that the convex problem has a

unique minimizer, while the non-convex one has two local minimizers.

Convexity is just one of the issues that affects our ability to solve quadratic programs. Another

is size. We say a problem is small if the values/structure of the matrix data H and A is irrelevant.

Currently problems for which min(m, n) = O(102) are small. By contrast, the problem is large if

exploiting the structure of H and A is important when solving the problem. By today’s standards,

problems for which min(m, n) ≥ O(103) might be though of as large. One stage worse, a problem

is huge if factorizations involving H and A are unrealistic, and currently general problems for which

min(m, n) ≥ O(105) are in this category. Clearly the size is vital, for as we shall see some methods

depend crucially on factorizations, while others may (to a certain extent) avoid them.

The reader might wonder if QP is really important, or merely an academic excuse to analyse a

rather idealized problem. To this, we might point to the myriad of applications (in, for example,

portfolio or structural analysis, VLSI design, discrete-time stabilization, optimal and fuzzy control,

finite impulse response design, optimal power flow and economic dispatch; there are currently at

least 500 application papers on the subject). Just as importantly, and the reason we gave in the

introduction for our interest, they provide in many senses the prototypical nonlinear programming

problem—-the only essential thing they lack is constraint curvature. And finally, they provide the

basic subproblem in constrained optimization. For if we are really interested in solving

minimize
x∈IRn

f(x) subject to c(x) ≥ 0

then a simple-minded quadratic approximation to the objective and linearizations of the constraints

4.2. OPTIMALITY CONDITIONS FOR QUADRATIC PROGRAMING 59

for perturbations s around x reveal the QP

minimize
s∈IRn

f(x) + 〈g(x), s〉 + 1
2
〈s,Hs〉 subject to A(x)s + c(x) ≥ 0

for some suitable Hessian H . This forms the basis of what are known as sequential quadratic

programming (SQP) methods, and we will return to this last point in Part 7.

4.2 Optimality conditions for quadratic programing

Having convinced the reader that QP is a worthwhile problem, we now turn to ways of solving the

problem. As always, our first concern must be to examine optimality conditions, both so that we

are able to recognise a solution if found by deign or by accident, and more importantly to guide our

development of algorithms.

The optimality conditions are simply a direct application of Theorems 1.9–1.11. Any point x∗

that satisfies the conditions

Ax∗ ≥ b (primal feasibility)

Hx∗ + g −AT y∗ = 0 and y∗ ≥ 0 (dual feasibility)

[Ax∗ − b]i · [y∗]i = 0 for all i ∈ M (complementary slackness)

(4.3)

for some vector of Lagrange multipliers y∗ is a first-order critical or Karush-Kuhn-Tucker (KKT)

point for (4.2); these conditions are necessary for x∗ to solve a QP (Theorem 1.9), and notice that

no constraint qualification is needed as the constraints are linear. When [Ax∗− b]i = 0 if and only if

[y∗]i > 0 for all 1 ≤ i ≤ m, the solution is said to be strictly complementary . Any first-order critical

point x∗ for which additionally

〈s,Hs〉 ≥ 0 (respectively > 0) for all s ∈ N+,

where

N+ =

{

s

∣
∣
∣
∣
∣

〈ai, s〉 = 0 for all i ∈ M such that 〈ai, x∗〉 = [b]i and [y∗]i > 0 and

〈ai, s〉 ≥ 0 for all i ∈ M such that 〈ai, x∗〉 = [b]i and [y∗]i = 0

}

,

is a second-order (respectively strong second-order) critical point for (4.2). A solution to QP must

be a second-order critical point (Theorem 1.10), while any strong second-order critical point will be

an isolated solution to QP (Theorem 1.11). Since (by definition) there are no third (or higher) order

terms in QP, it is perhaps not so surprising that the second-order necessary optimality conditions

turn out also to be sufficient:

Theorem 4.1. Suppose that q(x) = 〈g, x〉 + 1
2
〈x,Hx〉. Then x∗ is a local minimizer of q(x)

within Ax ≥ b if and only if x∗ is a second-order critical point. It is an isolated local minimizer

if and only if x∗ is a strong second-order critical point.

As we have already hinted, checking that a point is (strong) second-order critical is very hard

because the set N+ is awkward. With this in mind, we say that any first-order critical point x∗ for

60 PART 4. ACTIVE-SET METHODS FOR LINEARLY CONSTRAINED OPTIMIZATION

which additionally

〈s,Hs〉 ≥ 0 for all s ∈ N

where

N = {s | 〈ai, s〉 = 0 for all i ∈ M such that 〈ai, x∗〉 = [b]i} ,

is a weak second-order critical point. Although a weak second-order critical point may be a maxi-

mizer, checking for weak second-order criticality turns out to be easy, and of course weak and strong

criticality coincide if all the active Lagrange multipliers are strictly positive. We illustrate this in

Figure 4.2 where H is positive definite along either of the constraints emanating from the origin (a

first-order critical point), but not over the set N+.

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

Figure 4.2: Another non-convex problem: contours of the objective function x2
1 +x2

2−6x1x2 and the

feasible region for the constraints x1 + x2 ≤ 1, 3x1 + x2 ≤ 1.5 and (x1, x2) ≥ 0. Note that escaping

from the origin may be difficult!

For convex QP, recall that any first-order critical point is a global minimizer. In the strictly

convex case, the problem

maximize
y∈IRm, y≥0

− 1
2
〈g,H−1g〉 + 〈y,AH−1g + b〉 − 1

2
〈y,AH−1AT y〉 (4.4)

is known as the dual of (4.2)—by analogy, (4.2) is the primal . The importance of duality is that

the primal and dual share optimality conditions. If the primal is feasible, the optimal value of the

primal is the same as that of the dual. In some circumstances, such as for example where H (and

thus its inverse) are diagonal, it may be more convenient to solve the dual as its constraint set y ≥ 0

is simpler. The dual (4.4) may be generalized for the convex, as opposed to strictly convex, case,

but of course cannot be represented using the inverse of H .

4.3. ALGORITHMS FOR QUADRATIC PROGRAMING 61

4.3 Algorithms for quadratic programing

We now consider algorithms for solving QP. Essentially there are two classes of methods, although

this is actually a slight simplification. The first are known as active set methods , and may be sub-

categorized as primal active set methods, which aim to achieve dual feasibility while maintaining

primal feasibility and complementary slackness, and dual active set methods, which aim to achieve

primal feasibility while maintaining dual feasibility and complementary slackness. Primal active-set

methods will be the subject of this part. The other class of important algorithms are interior-point

methods , and these aim to achieve complementary slackness while maintaining primal and dual

feasibility. We will examine this kind of method in some detail in Part 6, but note that specially

tailored and highly-efficient interior-point methods for QP have been developed.

4.3.1 Equality constrained quadratic programing

The basic subproblem in all of the active-set (and other) methods we will consider is the equality-

constrained quadratic program (EQP), whose aim is to

minimize
x∈IRn

〈g, x〉 + 1
2
〈x,Hx〉 subject to Ax = 0. (4.5)

Notice that, as the name suggests, all the constraints are equalities, and note that we are considering

the case where the constraints are homogeneous, that is the right-hand sides are zero—this is all we

need for what follows, but is actually easy to consider general constraints Ax = b so long as there is

some easy way to find x0 satisfying Ax0 = b since then the solution to the general problem is x+x0

provided we add Hx0 to the linear term g before solving.

We shall assume in what follows that A is of full-rank, but in practice this may mean that

we need to pre-process the problem to ensure that this is so. When solving (4.5), there are four

possibilities. Firstly, if H is second-order sufficient over A, which is to say that 〈s,Hs〉 > 0 for all

s 6= 0 for which As = 0, the unique minimizer to (4.5) satisfies the first-order optimality conditions

(

H AT

A 0

)(

x

−y

)

=

(

−g
0

)

(4.6)

for some Lagrange multipliers y. Secondly, if x and y satisfy (4.6) and if H is second-order necessary

over A, which is to say that 〈s,Hs〉 ≥ 0 for all s for which As = 0, but there is a vector s such that

Hs = 0 and As = 0, then there is a family of weak minimizers x + αs for all α ∈ IR. Thirdly, if

there is a direction of linear infinite descent s for which As = 0, Hs = 0 and 〈g, s〉 < 0, q(x+αs) is

unbounded from below as α increases to infinity. Lastly, if there is direction of negative curvature

s for which As = 0 and 〈s,Hs〉 < 0, q(x + αs) is unbounded from below as α approaches plus or

minus infinity. The first of these possibilities is, of course, the only possible outcome if the problem

is strict convex, while the last is impossible if the problem is convex.

4.3.1.1 Solving equality-constrained quadratic programs by direct methods

Thus the key to solving (4.5) is really in solving the linear system (4.6) when H is second-order

sufficient. The ideal method would be one that can verify the latter while solving the former. We

62 PART 4. ACTIVE-SET METHODS FOR LINEARLY CONSTRAINED OPTIMIZATION

now examine to what extent this is possible. Traditionally there have been three basic approaches—

full-space, range-space and null-space—for solving structured indefinite linear systems of the form

(4.6), while generic methods for linear systems are usually classified as either direct (factorization)

or iterative (e.g., conjugate gradients) based.

The full-space (or, as it is sometimes known, KKT or augmented system) approach treats the

system matrix

K =

(

H AT

A 0

)

(4.7)

as a generic symmetric, indefinite matrix, and typically solves (4.6) using a factorization of K. The

best-known factorization is of the Bunch-Parlett type, and decomposes K = PLBLTP T where P

is a permutation, L is unit lower-triangular and B is block diagonal with 1 by 1 and 2 by 2 blocks.

This is simply a stable generalization of the Cholesky factorization for indefinite matrices. There

are efficient variants (e.g., within LAPACK) for small problems and effectives ones (e.g. SBLKKT,

MA27/MA57, PARDISO or SPOOLES) for large ones. The following result shows that it is easy to

check for second-order sufficiency.

Theorem 4.2. Suppose that the m by n matrix A is of full rank. Then H is second-order

sufficient over A if and only if the matrixK in (4.7) is non-singular and has preciselym negative

eigenvalues.

A strong advantage of the above factorization is that Sylvester’s law of inertia tells us that K has

B have the same number of negative eigenvalues, and counting these for the latter is trivial.

The range-space approach is aimed at problems for which H is (easily) invertible. Simply, x is

eliminated from the first block equation in (4.6) and substituted in the second block to determine y

from

AH−1AT y = AH−1g (4.8)

followed by x from

Hx = −g +AT y.

This is a typical Schur complement approach—the (negative of) AH−1AT is known as the Schur

complement of H in K—in which one solution block of a structured linear system is eliminated to

reveal a condensed (Schur complement) system for the remaining solution block. In the strictly

convex case, both H and AH−1AT are positive definite, so that Cholesky factorizations of both are

possible. More generally, it is again easy to check for second-order sufficiency.

Theorem 4.3. Suppose that the m by n matrix A is of full rank and the n by n symmetric

matrix H is non-singular . Then H is second-order sufficient over A if and only if the matrices

H and AH−1AT have the same number of negative eigenvalues.

4.3. ALGORITHMS FOR QUADRATIC PROGRAMING 63

Notice that unless H is diagonal, AH−1AT will almost inevitably be dense, which suggests that a

factorization is only appropriate for small m.

By contrast, the null-space approach is most appealing when n −m is small. The idea here is

simply to note that the second block equation in (4.6) requires that x lies in the null-space of A.

So, if S is an n by n −m basis for the null-space of A, and thus AS = 0, x may be expressed as

SxN for some xN . But then the pre-multiplying the first block equation in (4.6) by ST implies that

STHSxS = −ST g. (4.9)

Once again it is easy to check for second-order sufficiency.

Theorem 4.4. Suppose that the m by n matrix A is of full rank and that the columns of S

give a basis for the null-space of A. Then H is second-order sufficient over A if and only if the

matrix STHS is positive definite .

Thus one may anticipate using a Cholesky factorization of the reduced Hessian STHS when H is

second-order sufficient. The main challenge is to find a suitable null-space basis. There are two

main approaches. In the first, suppose that we may permute the columns of A so that the first

m are linearly independent. Equivalently, suppose that A = (A1 A2)P where P is a permutation

matrix and A1 is non-singular. Then trivially

S = P T

(

−A−1
1 A2

I

)

gives a non-orthonormal basis . This approach is useful for large problems, as the flexibility in select-

ing A1 allows choice on sparsity grounds—A1 will need to be factorized to use S effectively. Since

non-orthomal bases may worsen the conditioning of (4.9), our second approach uses an orthonormal

basis To do this, let

A = (L 0)Q = (L 0)

(

Q1

Q2

)

= LQ1

be an LQ factorization of A, in which Q is orthonormal and L lower triangular—the reader may

well be more familiar with the QR factorization of a matrix, but the LQ factorization of A is simply

the QR factorization of AT . Since then A(QT1 QT2) = (L 0), immediately AQT2 = 0, where Q2 has

orthonormal columns, and thus S = QT2 gives a possible null-space basis. This is generally a more

stable approach, but may be unsuitable for large problems because of the cost of finding the LQ

factors. Notice that given x, the required Lagrange multipliers from (4.6) satisfy

AT1 y = P1(Hx+ g),

where P1 are the first m rows of P , with our non-orthonormal basis approach, and

LT y = Q1(Hx+ g)

for our orthonormal version.

64 PART 4. ACTIVE-SET METHODS FOR LINEARLY CONSTRAINED OPTIMIZATION

4.3.1.2 Solving equality-constrained quadratic programs by iterative methods

While matrix factorization is often an excellent way to solve symmetric linear systems of equations

Bx = b, we have already seen in Section 2.5.4 that an alternative is to use an iterative approach, in

which increasingly accurate estimates of the solution are generated as the iteration proceeds. The

best-known methods are based on finding approximate solutions from the Krylov space

K = {r0, Br0, B(Br0), B(B(Br0)), . . .},

where r0 = b − Bx0 is the residual at some initial estimate x0 of the solution. When B is posi-

tive definite, this leads to the conjugate-gradient (CG) method, while there is an equally powerful

method, MINRES, for the indefinite case. As we saw in the case of unconstrained minimization, it

often suffices to find an approximate rather than exact solution to the system under consideration,

and usually it pays to accelerate convergence by (explicitly or implicitly) preconditioning the system,

i.e., to solve

C−1Bx = C−1b,

where solution with C is easy and ideally C−1B ≈ I . Notice that the power and flexibility of

preconditioned Krylov methods is derived from only requiring matrix-vector products involving B,

and solutions involving the preconditioner C.

Returning to our three basic approaches for solving (4.6), if H is positive definite and H−1

is available (either directly or implicitly via factorization), the range-space approach can simply

use the CG method to solve (4.8). Notice that the required matrix-vector product AH−1AT di =
(
A
(
H−1(AT di)

))
may be performed as a sequence of simpler products. The main concern is that any

preconditioner will need to approximate the (likely dense) matrix AH−1AT . If H−1 not available,

it is sometimes possible to use what is known as Urzawa’s method, iterating both on solutions to

AH−1AT y = AH−1g and Hx = −g +AT y

at the same time, but convergence is not necessarily guaranteed.

So long as a null-space basis is easy to compute, the null-space equation (4.9) is equally suited to

the CG method. Again the matrix vector product STHSdi
N

=
(
ST
(
H(Sdi

N
)
))

may be performed

as a sequence of simpler products, but again preconditioning can be tricky as there is a need to

approximate the likely dense STHS. The null-space CG method has an additional advantage,

namely that if the CG method encounters di
N

for which di T
N

(STHS)di
N
< 0, then s = Ndi

N
is a

direction of negative curvature since As = 0 and 〈s,Hs〉 < 0. Moreover, any CG approximation xi

automatically satisfies the constraint Axi = 0.

Since (4.7) is indefinite, a full-space iterative method would seen condemned to use algorithms

like MINRES. Since these methods rely on positive-definite preconditioners, the best hope would be

to precondition with a matrix of the form

(

M 0

0 AN−1AT

)

where M and N approximate H . Aside from it being far from obvious in general how to choose

suitable M and N , MINRES and its rivals also suffer because Axi may not be zero for approximate

4.3.2. Active set algorithms 65

solutions xi. Although CG may fail if applied to general indefinite problems, in our case it is

fortunate that CG is possible provide the preconditioner

(

M AT

A 0

)

, (4.10)

for some second-order sufficient approximation M to H , is used. This may actually be viewed as

an implicit null-space approach, and shares the advantage that Axi = 0 for any preconditioned CG

iterate xi. The main obstacles to this approach are the choice of M and the need to solve with

(4.10), but in many cases factorization of (4.10) is possible for a variety of useful M .

4.3.2 Active set algorithms

Armed with the knowledge of how to solve equality-constrained problems, we now return to our

main concern, problem (4.2). A fundamental quantity at any point x is the active set

A(x) = {i | 〈ai, x〉 = [b]i}.

Most significantly, if x∗ solves QP, we have

x∗ = argmin q(x) subject to Ax ≥ b ≡ arg min q(x) subject to 〈ai, x〉 = [b]i for all i ∈ A(x∗),

and the remaining, inactive, constraints are irrelevant—by analogy, the inactive set is

I(x) = {i | 〈ai, x〉 6= [b]i} = M\A(x).

Just as importantly, a working set W(x) at x is a subset of the active set for which the vectors {ai},
i ∈ W(x), are linearly independent

The basic idea behind active set algorithms is to pick a subset Wk of M for which {ai}, i ∈ Wk

are linearly independent, and then to find

xk+1 = arg min q(x) subject to 〈ai, x〉 = [b]i for all i ∈ Wk.

If xk+1 does not solve (4.2), simply adjust Wk to form Wk+1 and repeat the process—notice that

Wk = W(xk+1) is thus a working set. In principle this is a natural and simple strategy, but the

crucial issues are to know when xk+1 solves (4.2), and, if it isn’t, how to pick the next Wk+1. For

clarity, we shall let Ak denote the rows of A that are indexed by Wk, and similarly the components

of bk are those of b indexed by Wk.

4.3.2.1 Primal active set algorithms

An important feature of primal active set algorithms is that all iterates are required to be (primal)

feasible, i.e., Axk ≥ b. Suppose that this is true for iterate xk, and that the working set Wk ⊆ A(xk).

This then implies that Akxk = bk and Akxk+1 = bk, and thus that xk+1 = xk + sk, where sk solves

the equality-constrained QP

minimize
s∈IRn

q(xk + s) subject to Aks = 0, (4.11)

66 PART 4. ACTIVE-SET METHODS FOR LINEARLY CONSTRAINED OPTIMIZATION

a problem we are by now very familiar with. But what if xk + sk is not feasible? Then it must be

that a currently inactive constraint, say constraint j, becomes active at xk +αksk for some αk < 1;

if more than one becomes active, we pick the smallest such αk. Then rather than moving to the

infeasible xk + sk, we move instead to the feasible point xk+1 = xk + αksk, and add constraint j

to the working set by assigning Wk+1 = Wk + {j}. Hence iterate xk+1 will be feasible if xk is, and

thus for this to be a workable algorithm, we need to find need an initial feasible point x0—we will

return to this shortly. Notice that Wk+1 is a working set because the columns of the full-rank Ak

and aj must be linearly independent since Aksk = 0 while 〈aj , sk〉 < 0. The observant reader will

have noticed that if there is an active constraint, say constraint j, that is not in Wk, then αk = 0 if

〈aj , sj〉 < 0. Again this needs clarification, and we shall deal with this shortly.

Now suppose that xk+1 = xk + sk is feasible. There are then three possibilities. Firstly, it may

be that q(xk+1) = −∞, which is only possible if the problem is not strictly-convex case—we shall

discount such a possibility at this stage. Otherwise,

xk+1 = argmin q(x) subject to 〈ai, x〉 = [b]i for all i ∈ Wk

is finite, and first-order necessary optimality conditions (Theorem 1.7) give that

(

H ATk
Ak 0

)(

xk+1

−yk+1

)

=

(

−g
bk

)

, (4.12)

or equivalently
(

H ATk
Ak 0

)(

sk

−yk+1

)

=

(

−gk
0

)

(4.13)

with gk = g + Hxk, for some Lagrange multipliers yk+1. The second, happy, outcome is that

yk+1 ≥ 0, from which it follows immediately from (4.3) that (x∗, y∗) = (xk+1, (yk+1, 0)) is a first-

order critical point—here (yk+1, 0) simply means the vector whose components are [yk+1]i if i ∈ Wk

and zero otherwise. Thirdly, if [yk+1]i < 0 for some i, we can improve the objective function by

deleting constraint j from Wk, where j is the i-th member of Wk, and thus set Wk+1 = Wk \ {j}.
To see this, consider the direction s for which Aks = ei and hence 〈aj , s〉 = 1, and let α be a small

positive scalar. Then if follows from the definition of q(x) and (4.12) that

q(xk+1 + αs) − q(xk+1) = α〈s, g +Hxk+1〉 + 1
2
α2〈s,Hs〉 = −α〈s, ATk yk+1〉 + 1

2
α2〈s,Hs〉

= −α〈Aks, yk+1〉 + 1
2
α2〈s,Hs〉 = −α[yk+1]i + 1

2
α2〈s,Hs〉 < 0

and

〈aj , xk+1 + αs〉 = 〈aj , xk+1〉 + α〈aj , s〉 = [b]j + α > [b]j

for all sufficiently small α. Thus the objective can be improved without violating constraint j if we

remove the constraint from Wk.

We illustrate the behaviour of the primal active-set method in Figure 4.3. Those with a working

knowledge of the Simplex method for linear programming should recognise the basic elements just

described, although for this famous algorithm a single iteration combines two of ours: a step followed

by the exchange of a constraint encountered with one no longer needed.

4.3. ALGORITHMS FOR QUADRATIC PROGRAMING 67

−1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

2

0
1

2

3

0’

1’

A

B

Figure 4.3: Progress of an active-set method on the problem of minimizing (x1 − 1)2 + (x2 − 0.5)2

subject to constraints A: x1 +x2 ≤ 1, B: 3x1 +x2 ≤ 1.5 and (x1, x2) ≥ 0. Key: 0: starting point; 0’:

unconstrained minimizer; 1: encounter constraint A; 1’: minimizer on constraint A; 2: encounter

constraint B, evaluate Lagrange multipliers, move off constraint A; 3: minimizer on constraint B =

required solution.

4.3.2.2 Exploiting the linear algebra—updating factors

Now that we understand the basic mechanics of the primal active-set method, there is one further

issue that is vital to its computational efficiency. As we have described it, every iteration requires

the solution of an equality-constrained quadratic program (4.11) or equivalently (when H is second-

order sufficient over Ak) the linear system (4.13). But the sequence of EQPs/linear systems are

closely related in the sense that

either (i) Wk+1 = Wk + {j} in which case Ak+1 =

(

Ak

aTj

)

or (ii) Wk+1 = Wk \ {j} in which case Ak =

(

Ak+1

aTj

)

,

(4.14)

that is, at the end of each iteration the matrix Ak is changed by adding or removing a single row.

Because of this gradual evolution in working sets, our aim is then to update factorizations relating to

Ak rather than computing them afresh, since this usually results in a significant saving in algebraic

costs.

For the matrices H and AkH
−1ATk required by range-space methods this is relatively easy. We

assume that we have factorization of H , or some other means of inverting it—clearly H does not

change from iteration to iteration. For the other matrix involved, we need Cholesky factors of

Lk+1L
T
k+1 = Ak+1H

−1ATk+1 given those of LkL
T
k = AkH

−1ATk . When adding a constraint to the

68 PART 4. ACTIVE-SET METHODS FOR LINEARLY CONSTRAINED OPTIMIZATION

working set, we have

Ak+1H
−1ATk+1 =

(

AkH
−1ATk AkH

−1aj
aTj H

−1ATk aTj H
−1aj

)

,

from which it follows immediately that

Lk+1 =

(

Lk 0

lT λ

)

, where Lkl = AkH
−1aj and λ =

√

aTj H
−1aj − lT l.

Removing a constraint essentially reverses this process.

For null-space methods, the matrices of concern are the null-space basis matrix Sk and the

reduced Hessian STk HSk. If we focus on the orthonormal-basis approach, our first need is thus for

factors of Ak+1 = (Lk+1 0)Qk+1 given

Ak = (Lk 0)Qk = (Lk 0)

(

Q1 k

Q2 k

)

for triangular Lk and orthonormal Qk. To add a constraint (removal is similar), we see that

Ak+1 =

(

Ak

aTj

)

=

(

Lk 0

aTj Q
T
1 k aTj Q

T
2 k

)

Qk

=

(

Lk 0

aTj Q
T
1 k aTj Q

T
2 k

)(

I 0

0 UTk

)(

I 0

0 Uk

)

Qk

=

[(

Lk 0

aTj Q
T
1 k σeT1

)]

︸ ︷︷ ︸

(Lk+1 0)

[(

I 0

0 Uk

)

Qk

]

︸ ︷︷ ︸

Qk+1

where the Householder matrix Uk reduces Q2 kaj to σe1—a Householder matrix is an orthonormal

matrix of the form U = I−2uuT/‖u‖2
2, and may be used to reduce a given vector a to Ua = ±‖a‖2e1

by picking u = a± ‖a‖2e1 where the ± sign is chosen to guarantee good numerical behaviour. The

other matrix we need to factorize is Q2 k+1HQ
T
2 k+1 given known Cholesky factors of Q2 kHQ

T
2 k.

Since Q2 k+1 is simply UkQ2 k with its first row removed, and as Uk has such special (Householder)

structure, it should come as no surprise to the reader that the new required Cholesky factors are

cheap to compute—the details are slightly complicated, so we omit them here.

Finally, for the full-space approach, the sole matrix of interest is

Kk =

(

H ATk
Ak 0

)

.

To motivate how we might exploit changes in the working set, consider iterations k and ` > k, and

suppose that

Ak =

(

AC

AD

)

and A` =

(

AC

AA

)

,

that is, that rows AD have been deleted and AA added between the two iterations. In this case,

solving
(

H AT`
A` 0

)(

s`

−y`

)

=

(

−g`
0

)

(4.15)

4.3. ALGORITHMS FOR QUADRATIC PROGRAMING 69

is the same as solving











H AT
C

AT
D

AC 0 0

AD 0 0

AT
A

0

0

0

0

I

AA 0 0

0 0 I

0

0

0

0






















s`

−yC

−yD

−yA

u`











=











−g`
0

0

0

0











to get y` =

(

yC

yA

)

. (4.16)

But notice that the leading sub-matrix in (4.16) is precisely Kk. Thus we can solve (4.16) using

factors of Kk and the Schur complement

S` = −
(

AA 0 0

0 0 I

)(

H ATk
Ak 0

)−1





AT
A

0

0 0

0 I




 . (4.17)

This suggests that we organize the computation into major iterations. If a major iteration starts

at (ordinary) iteration k, a factorization of Kk will be required. For subsequent iterations ` within

the current major iteration, (4.15) will be solved using the factors of Kk and the ` − k by ` − k

Schur complement S`. Crucially, as Wk changes gradually to W`, the factorization of S` should

be updated not recomputed; the matrix grows by appending one row and column per iteration, so

updating is straightforward. Once the dimension of S` exceeds a given threshold, or it is cheaper to

factorize/use K` than to maintain/use Kk and S`, this should signal the end of the current major

iteration.

4.3.2.3 Other issues

There are three other important issues we have alluded to in our general presentation of the (primal)

active-set approach. The first is that these methods need to start from a feasible point. To find

an initial feasible point x0 such that Ax0 ≥ b, we could simply use a traditional Simplex phase-one

procedure as used for linear programming—this and the remaining methods we shall mention also

correctly report when the given problem is infeasible. A related alternative is to guess a suitable

point, xguess, set r = min(b−Axguess, 0), and then solve the linear program

minimize
x∈IRn, ξ∈IR

ξ subject to Ax+ ξr ≥ b and ξ ≥ 0 (4.18)

starting from (x, ξ) = (xguess, 1), which is feasible for (4.18). As soon as (x0, ξ0) is found for which

ξ0 = 0, the corresponding x0 will be feasible for the original problem. However, neither of these

approaches pays attention to the true objective function. Two other possibilities which do are single

phase methods. The first of these simply aims to

minimize
x∈IRn, ξ∈IR

q(x) +Mξ subject to Ax+ ξr ≥ b and ξ ≥ 0

for some sufficiently large constant M—naturally this is known the big-M , and it is possible to show

that it will succeed in most cases. The last of our possibilities is to try to

minimize
x∈IRn

q(x) + ρ‖max(b−Ax, 0)‖

70 PART 4. ACTIVE-SET METHODS FOR LINEARLY CONSTRAINED OPTIMIZATION

for some sufficiently large ρ. Although this looks at first sight to be a non-differentiable problem, it

may actually be reformulated as a QP and solved as such. We illustrate the contours of this function

in Figure 4.4.

−1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

2

−1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

2

Figure 4.4: Contours of penalty function q(x) + ρ‖max(b − Ax, 0)‖ (left, (with ρ = 2) for the

convex problem min(x1 − 1)2 + (x2 − 0.5)2 and (right, with ρ = 3) for the non-convex problem

min−2(x1 − 0.25)2 + 2(x2 − 0.5)2, subject to x1 + x2 ≤ 1, 3x1 + x2 ≤ 1.5 and (x1, x2) ≥ 0

The second issue we need to consider is convergence of the active-set approach. For a given

feasible point, it will only take at most n iterations to find an EQP with a feasible solution, since

constraints are only added to the working set until this is so and this requirement is definitely satisfied

when the working set contains n constraints. Moreover there are only a finite (but admittedly large)

number, 2m, of possible EQPs with feasible solutions. Finally, so long as a strictly positive step is

taken when moving away from the solution to a given EQP, a point with a value objective lower than

its optimal will be attained, and thus the EQP will never be revisited. Hence, these methods are

finite so long as. αk > 0. If xk is degenerate, that is the active constraints are dependent there, it

is possible that αk = 0. If this happens infinitely often, the algorithm might may make no progress,

but cycle) indefinitely. Various anti-cycling rules—Wolfe’s and lexicographic perturbations, Bland’s

least-index rule and Fletcher’s robust method to name a few—have been proposed, and all ensure

that the primal active-set method will terminate successfully.

The final issue is how to adapt the methods to cope with non-convexity. Actually, non-convexity

causes little extra difficulty so long as suitable factorizations are possible. The main additional

idea is inertia control. Briefly, inertia-controlling methods tolerate at most one negative eigenvalue

in the reduced Hessian STk HSk. The idea is start from working set on which the EQP is strictly

convex (for example, a vertex). If a negative eigenvalue subsequent appears as the working sets

changes—only one negative eigenvalue can appear per iteration as the working set changes, and

4.4. NON-QUADRATIC OBJECTIVES 71

this only for iterations for which a constraint is deleted—no further constraint deletions are allowed

until convexity is restored. Moreover, for iterations for which there is a negative eigenvalue in the

reduced Hessian, it is easy to find a direction of negative curvature in which the EQP decreases.

Thus convexity will ultimately be restored, perhaps, but not necessarily, at a (lower) vertex. We

note that the latest methods are not inertia controlling, and this allows them to be more flexible

with the same convergence guarantees.

Although we have concentrated here on active-set methods, they are no longer necessarily consid-

ered to be the best approaches. In particular, when the problem is convex, there are (interior-point)

algorithms (see Part 6) that will solve QP in a polynomial number of iterations. To date, there

are no known polynomial active-set algorithms. When the problem is non-convex, it is unlikely

that there are polynomial algorithms; technically speaking, the problem is NP complete, and even

verifying that a proposed solution is locally optimal is NP hard.

4.4 Non-quadratic objectives

We do not plan to say much about the general case for which f(x) is not quadratic. Clearly the main

difficulty is that the Hessian now depends on x. The appropriate generic active-set subproblem is

to find xk+1 to approximately

minimize
x∈IRn

f(x) subject to 〈ai, x〉 = [b]i for all i ∈ Wk (4.19)

for some working set Wk. Some (inner) iteration will now be required to solve (4.19), but crucially

each step satisfies Aks = 0 and thus many of the linear algebraic tricks we learned earlier are still

valid. It is usual to aim to solve (4.19) inaccurately because to do otherwise for a potentially large

number of different active sets would likely be too expensive. But this raises issues of when when

to stop each inner iteration and how to compute Lagrange multiplier (estimates) in this case. And

stopping early does not prevent the current working set reappearing later on, a phenomenon known

colourfully as zig-zagging . Zig-zagging is also a possibility for another reason, namely that (4.19)

may have many local minimizers.

72 PART 4. ACTIVE-SET METHODS FOR LINEARLY CONSTRAINED OPTIMIZATION

PART 5

PENALTY AND AUGMENTED

LAGRANGIAN METHODS FOR

EQUALITY CONSTRAINED

OPTIMIZATION

5.1. MERIT FUNCTIONS FOR CONSTRAINED MINIMIZATION 75

Having given a break-neck description of methods for unconstrained and linearly-constrained

minimization, we now turn our attention to the real problems of interest, namely those involving

constraints. This part(and Part 7) will focus on problems involving equality constraints, while its

successor will be concerned with inequalities. But before we start, we need to discuss the conflicting

nature of general constrained optimization problems, and how we might deal with them.

Unconstrained minimization is “simple” because there is but one goal, namely to minimize the

objective. This is not so for constrained minimization because there is now a conflict of requirements,

the aforementioned objective minimization but at the same time a requirement of feasibility of the

solution. While in some instances (such as we have seen for linear equality constraints and, to a

certain extent, all inequality constraints) it may be possible to generate feasible iterates, and thus

to regain the advantages of having a single goal, this is not usually true for general constrained

optimization.

5.1 Merit functions for constrained minimization

Most (but not all, see Part 7.4.3) nonlinearly constrained optimization techniques overcome this

dichotomy by introducing a merit function to try to balance the two conflicting requirements of

minimization and feasibility. Given parameters p, a composite function Φ(x, p) is a merit function

if (some) minimizers of Φ(x, p) with respect to x approach those of f(x) subject to the constraints

as p approaches some set P . Thus a merit function combines both optimality requirements into a

single “artificial” objective function. In principal, it then only remains to use the best unconstrained

minimization methods to solve the constrained problem. If only life were that simple!

In this section, we consider the case of equality constrained minimization, that is finding x∗ to

minimize
x∈IR

n
f(x) subject to c(x) = 0. (5.1)

A suitable merit function in this case is the quadratic penalty function

Φ(x, µ) = f(x) +
1

2µ
‖c(x)‖2

2, (5.2)

where µ is a positive scalar penalty parameter . It is easy to believe that if µ is small and we try

to minimize Φ(x, µ) much of the effort will be concentrated on making the second objective term
1
2µ‖c(x)‖2

2 small, that is in forcing c(x) to be small. But as f has a slight presence in the merit

function, any remaining energy will be diverted to making f(x) small amongst all of the values for

which c(x) is. Formally, as we shall see, it is easy to show that, under modest conditions, some

minimizers of Φ(x, µ) converge to solutions of (5.1) as µ approaches the set {0} from above. We

illustrate the appearance of the quadratic penalty function as µ shrinks in Figure 5.1.

Unfortunately, it is possible that Φ(x, µ) may have other stationary points that are not solutions

of (5.1)—indeed this must be the case if c(x) = 0 are inconsistent. Nevertheless, quadratic penalty

and related methods are an interesting early development, and we examine them in more detail in

this part.

76 PART 5. PENALTY AND AUGMENTED LAGRANGIAN METHODS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

µ = 100 µ = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

µ = 0.1 µ = 0.01

Figure 5.1: The quadratic penalty function for minx2
1 + x2

2 subject to x1 + x2
2 = 1. Notice how

the contours become increasingly steep either side of the constraint (red line) as µ shrinks, but rise

modestly for points which satisfy it.

5.2. QUADRATIC PENALTY METHODS 77

5.2 Quadratic penalty methods

Having observed the effect of decreasing the penalty parameter on the minimizers of Φ(x, µ), we

now make use of this by defining a basic quadratic penalty algorithm.

Given µ0 > 0, set k = 0

Until “convergence” iterate:

Starting from xS

k, use an unconstrained

minimization algorithm to find an

“approximate” minimizer xk of Φ(x, µk)

Compute µk+1 > 0 smaller than µk such

that limk→∞ µk+1 = 0 and increase k by 1

In practice it is common to choose µk+1 = 0.1µk or even µk+1 = µ2
k, while the obvious choice for a

subsequent starting point is xS

k+1 = xk .

Fortunately, as we have hinted, basic convergence of this algorithm is easily established. To do

so, we define what are known as first-order Lagrange multiplier estimates for the quadratic penalty

function,

y(x, µ)
def
= −c(x)

µ
.

Then we have following global convergence result.

Theorem 5.1. Suppose that f , c ∈ C2, that

‖∇xΦ(xk, µk)‖2 ≤ εk, (5.3)

where εk and µk converge to zero as k increases, that yk = y(xk, µk) and that xk converges to x∗

for which A(x∗) is full rank. Then x∗ satisfies the first-order necessary optimality conditions for

the equality-constrained problem (5.1) and {yk} converge to the associated Lagrange multipliers

y∗.

Thus we see that, so long as the limiting constraint Jacobian is well behaved, it suffices to

(approximately) minimize Φ(x, µ)—if ever the full-rank assumption is violated at x∗, it is easy to

show that x∗ (locally) minimizes the infeasibility ‖c(x)‖2, so a locally closest feasible point is found.

Since Φ(x, µ) is a smooth function, we can immediately appeal to the methods we derived in Parts 2

and 3. But as the illustrations in Figure 5.1 might have already suggested, some care is needed.

One thing is immediately apparent from the figure; as µ becomes small, the contours elongate

in directions tangential to the (gradients of the) constraints or, alternatively, the function becomes

very steep normal to the constraints. Thus increasingly rapid change is more likely for steps in

78 PART 5. PENALTY AND AUGMENTED LAGRANGIAN METHODS

normal rather than tangential directions. This has particularly serious implications for trust-region

methods, where the shape of the trust-region needs to recognise that any reasonable model of Φ(x, µ)

will reflect this behaviour. We shall return to this shortly.

It is instructive to consider the derivatives of Φ(x, µ). We have

∇xΦ(x, µ) = g(x, y(x, µ)) and

∇xxΦ(x, µ) = H(x, y(x, µ)) +
1

µ
AT (x)A(x), (5.4)

where g(x, y) and H(x, y) are the gradient (1.2) and Hessian (1.3) of the Lagrangian function (1.1).

As µ shrinks, the first term in (5.4) is usually well behaved, but the second term clearly diverges

and ultimately dominates the Hessian, at least in the subspace spanned by the columns of AT (x).

More formally we can show the following.

Theorem 5.2. Suppose that the assumptions of Theorem 5.1 are satisfied. Then the Hessian

matrix of the quadratic penalty function, ∇xxΦ(xk , µk), for the equality-constrained problem

(5.1) involving m constraints has m eigenvalues

λi(A(x∗)A
T (x∗)/µk +O(1) for i = 1, . . . ,m

and the remaining n−m eigenvalues

λi(S
TH(x∗, y∗)S) +O(µk) for i = 1, . . . , n−m

as k → ∞, where λi(.) denotes the i-th eigenvalue of its matrix argument and S is an orthogonal

basis for the null-space of A(x∗).

Thus as our pictures suggested, the Hessian matrix becomes increasingly and inevitably ill condi-

tioned as the quadratic penalty algorithm converges, in all but the exceptional cases where m = 0

or n—by ill conditioning , here we mean simply that the ratio of smallest to largest eigenvalue of

∇xxΦ(xk, µk) = O(1/µk) is large. Since ultimately we would naturally hope to use some variant of

Newton’s method

∇xxΦ(x, µ)s = −∇xΦ(x, µ) (5.5)

when finding a correction s to a current estimate x of x∗, we might be concerned that the ill condi-

tioning might thwart our efforts to solve (5.5) accurately. After all, aren’t we taught in numerical

analysis classes that even stable factorization methods produce inaccurate results for ill-conditioned

linear systems? Only if we aren’t paying enough attention! In particular, such results are typically

true for general right-hand side of the linear system under consideration, but there are specific

right-hand sides that do not suffer. And (5.5) is just such an example.

One way of seeing this is to write (5.5) as

(

H(x, y(x, µ)) +
1

µ
AT (x)A(x)

)

s = −
(

g(x) +
1

µ
AT (x)c(x)

)

(5.6)

5.3. PERTURBED OPTIMALITY CONDITIONS 79

and to define auxiliary variables w for which

w =
1

µ
(A(x)s+ c(x)) .

This then implies
(

H(x, y(x, µ)) AT (x)

A(x) −µI

)(

s

w

)

= −
(

g(x)

c(x)

)

. (5.7)

But this equation is essentially independent of µ for small µ and thus cannot suffer for ill-conditioning

inherited from µ. Thus it is possible to find s accurately by solving (5.6)—a more sophisticated

analysis is needed to show that the same is true for the original formulation (5.5).

Nonetheless, the ill-conditioning of ∇xxΦ(x, µ) is an inevitable fact, and globally Φ(x, µ) will be

hard to minimize for small µ if started from an arbitrary point. It is the fact that the iterate xk

described in our algorithmic sketch is already close to xk+1 which makes a sequential minimization

a far more appealing process than a one-off minimization of Φ(x, µ) with a small µ from an arbitrary

starting point x. Of course, what “small” means is problem dependent, and for early minimizations

in our algorithmic framework we still need to be concerned that our unconstrained minimization

algorithm can cope with poorly conditioned Hessians. To combat this, trust-region methods should

aim to encourage equal model decreases in all allowed directions, and this is best accomplished by

using a weighted norm ‖v‖B =
√

〈v,Bv〉 for some approximation B to ∇xxΦ(x, µ) which reflects the

ill-conditioned terms. This has the effect of prohibiting relatively large steps in directions normal

to the constraint gradients.

5.3 Perturbed optimality conditions

It is worth considering a seemingly alternative method for solving our problem at this stage. We

know from Theorem (1.7) that the first order optimality conditions for (5.1) are that there are

Lagrange multipliers y for which

g(x) −AT (x)y = 0 dual feasibility

c(x) = 0 primal feasibility
(5.8)

Now consider the “perturbed” problem

g(x) −AT (x)y = 0 dual feasibility

c(x) + µy = 0 perturbed primal feasibility
(5.9)

where µ > 0. Although it is possible simply to apply a (safeguarded) Newton method to (5.8)—and

indeed this is the theme of Part 7—here we consider doing the same to (5.9).

Given an approximation (x, y) to a root of (5.9), the Newton correction (s, v) satisfies
(

H(x, y) −AT (x)

A(x) µI

)(

s

v

)

= −
(

g(x) −AT (x)y

c(x) + µy

)

If we eliminate w from these equations, we see that
(

H(x, y) +
1

µ
AT (x)A(x)

)

s = −
(

g(x) +
1

µ
AT (x)c(x)

)

. (5.10)

80 PART 5. PENALTY AND AUGMENTED LAGRANGIAN METHODS

But a quick comparison of (5.6) with (5.10) reveals that the only difference is that the former is

constrained to pick y(x,mu) as Lagrange multiplier estimates in the Hessian of Lagrangian, while

the latter may use arbitrary y. Thus there is a very strong connection between following paths of

the perturbed optimality conditions and the quadratic penalty function method. This observation

may be made for other merit-function based methods, and will be crucial in Part 6.

5.4 Augmented Lagrangian methods

A second, related, merit function for the equality-constrained problem (5.1) is the augmented La-

grangian function

Φ(x, u, µ) = f(x) − uT c(x) +
1

2µ
‖c(x)‖2

2

where both u and µ are auxiliary parameters. This function can be viewed either as a convexification

of the Lagrangian function —hence the name—or as a shifted quadratic penalty function. Although

there are strong arguments from duality theory to support the former interpretation, it is the latter

that we prefer here. Our aim, as before, is to adjust µ and u to encourage convergence.

In the case of the augmented Lagrangian function,

y(x, u, µ)
def
= u− c(x)

µ
.

give suitable first-order Lagrange multiplier estimates. For then

∇xΦ(x, u, µ) = g(x, y(x, u, µ)) and

∇xxΦ(x, u, µ) = H(x, y(x, u, µ)) +
1

µ
AT (x)A(x) (5.11)

Clearly we recover the quadratic penalty function when u = 0, but, as the following result shows,

there may be more suitable choices.

Theorem 5.3. Suppose that f , c ∈ C2, that

‖∇xΦ(xk , uk, µk)‖2 ≤ εk,

where εk converges to zero as k increases, that yk = y(xk, uk, µk) for given {uk} and {µk}, and

that xk converges to x∗ for which A(x∗) is full rank. Then {yk} converge to some y∗ for which

g(x∗) = AT (x∗)y∗.

If additionally either µk converges to zero for bounded uk or uk converges to y∗ for bounded

µk, x∗ and y∗ satisfy the first-order necessary optimality conditions for the equality-constrained

problem (5.1).

Thus there are now two ways to encourage convergence to a solution to our problem, one mimicing

the quadratic penalty function but, more significantly, another by encouraging the parameters uk to

approach the desired Lagrange multipliers without forcing µk to zero. This latter approach is highly

5.4. AUGMENTED LAGRANGIAN METHODS 81

desirable, as then the Hessian (5.11) will not inevitably become ill-conditioned. We illustrate this

new approach in Figure 5.2.

Since y∗ is not known in advance, It is not immediately obvious how we might choose suitable

uk, but a moment’s reflection indicates that the algorithm itself provides suitable estimates. We

know that convergence is guaranteed if uk is fixed while µk decreases to zero, and in this case yk

will converge to y∗ and c(xk) to zero. Thus if both c(xk) and ∇xΦ(xk, uk, µk) are small, there is

good reason to believe that (xk, yk) are close to (x∗, y∗), and thus reasonable to assign uk+1 = yk.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u = 0.5 u = 0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u = 0.99 u = 1

Figure 5.2: The augmented Lagrangian function for min x2
1 +x2

2 subject to x1 +x2
2 = 1 with µ fixed

at 1 as u varies. Now notice that the contours are modest, and how the minimizer of the augmented

Lagrangian function moves towards x∗ = (1
2
,

√
3

2
) as u approaches y∗ = 1.

82 PART 5. PENALTY AND AUGMENTED LAGRANGIAN METHODS

Formally, we might check if ‖c(xk)‖ ≤ ηk where {ηk} is a positive sequence with limit zero, and if so

set uk+1 = yk and µk+1 = µk. If this test fails, then we may not yet be close enough to believe that

yk is a good estimate of y∗, and our only recourse is to try to move closer by reducing µ without

changing u. We summarize this in the following augmented Lagrangian algorithm.

Given µ0 > 0 and u0, set k = 0

Until “convergence” iterate:

Starting from xS

k, use an unconstrained minimization

algorithm to find an “approximate” minimizer xk of

Φ(x, uk, µk) for which ‖∇xΦ(xk , uk, µk)‖ ≤ εk

If ‖c(xk)‖ ≤ ηk, set uk+1 = yk and µk+1 = µk

Otherwise set uk+1 = uk and µk+1 ≤ τµk

Set suitable εk+1 and ηk+1 and increase k by 1

In practice suitable values for these tolerances might be

εk = µjk and ηk = µ0.1+0.9j
k ,

where j iterations have passed since µ was last decreased, while τ = min(0.1,
√
µk) is suitable for

encouraging fast linear convergence. Significantly, under rules like these, it can be shown that the

penalty parameter will ultimately remain unchanged if xk converges to a single limit point. One

other important issue is that, even under second-order sufficiency conditions, the Hessian (5.11) of

Φ(x, u, µ) is only guaranteed to be positive definite for sufficiently small µ, but that our augmented

Lagrangian algorithm does not explicitly guarantee this. Thus in practice extra precautions may be

required to reduce µ more than simply as described in our algorithm.

PART 6

INTERIOR-POINT METHODS

FOR INEQUALITY

CONSTRAINED

OPTIMIZATION

6.1. THE LOGARITHMIC BARRIER FUNCTION FOR INEQUALITY CONSTRAINTS 85

6.1 The logarithmic barrier function for inequality constraints

For the inequality constrained problem

minimize
x∈IR

n
f(x) subject to c(x) ≥ 0 (6.1)

the best known merit function is the logarithmic barrier function

Φ(x, µ) = f(x) − µ
m∑

i=1

log ci(x),

where µ is again a positive scalar barrier parameter . Each logarithmic term − log ci(x) becomes

infinite as x approaches the boundary of the i-th inequality from the feasible side, and is undefined

(effectively infinite) beyond there. The size of the logarithmic term is mitigated when µ is small,

and it is then possible to get close to the boundary of the feasible region before its effect is felt,

any minimization effort being directed towards reducing the objective. Once again, it is easy to

show that, under modest conditions, some minimizers of Φ(x, µ) converge to solutions of (6.1) as

µ approaches the set {0} from above. And once again a possible defect is that Φ(x, µ) may have

other, useless stationary points. The contours of a typical example are shown in Figure 6.1.

6.2 A basic barrier-function algorithm

The logarithmic barrier function is different in one vital aspect from the quadratic penalty function in

that it requires that there is a strictly interior point. If we apply the obvious sequential minimization

algorithm to Φ(x, µ), a strictly interior starting point is required, and all subsequent iterates will be

strictly interior. The obvious “interior-point” algorithm is as follows.

Given µ0 > 0, set k = 0.

Until “convergence”, iterate:

Find xS

k for which c(xS

k) > 0.

Starting from xS

k, use an unconstrained

minimization algorithm to find an

“approximate” minimizer xk of Φ(x, µk).

Compute µk+1 > 0 smaller than µk such

that limk→∞ µk+1 = 0. and increase k by 1.

In practice it is common to choose µk+1 = 0.1µk or even µk+1 = µ2
k, while perhaps the obvious

choice for a subsequent starting point is xS

k+1 = xk .

Fortunately, as we have hinted, basic convergence for the algorithm is easily established. Recall

that the active set A(x) at a point x is A(x) = {i | ci(x) = 0}. Just as for the quadratic penalty

function, we define first-order Lagrange multiplier estimates for the logarithmic barrier function,

86 PART 6. INTERIOR-POINT METHODS

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

µ = 10 µ = 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

µ = 0.1 µ = 0.01

Figure 6.1: The logarithmic barrier function for minx2
1 + x2

2 subject to x1 + x2
2 ≥ 1. The contours

for µ = 0.01 are visually indistinguishable from f(x) for feasible points.

this time so that

yi(x, µ)
def
=

µ

ci(x)
.

Then we have the following.

6.3. POTENTIAL DIFFICULTIES 87

Theorem 6.1. Suppose that f , c ∈ C2, that

‖∇xΦ(xk , µk)‖2 ≤ εk

where εk converges to zero as k increases, that yk = y(xk, µk), and that xk converges to x∗

for which {ai(x∗)}i∈A(x∗) are linearly independent. Then x∗ satisfies the first-order necessary

optimality conditions for the inequality-constrained problem (6.1) and {yk} converge to the

associated Lagrange multipliers y∗.

Notice here how the algorithm delivers something unexpected, namely estimates of the Lagrange

multipliers. Also see the role played by the linearly independence of the active constraint gradients,

regrettably quite a strong constraint qualification.

6.3 Potential difficulties

As we now know that it suffices to (approximately) minimize Φ(x, µ), how should we proceed? As

Φ(x, µ) is a smooth function, we can immediately appeal to the methods we discussed in Parts 2

and 3. But we need to be careful. Very, very careful.

We could use a linesearch method. Of note here is the fact that the barrier function has logarith-

mic singularities, indeed is undefined for infeasible points. Thus it makes sense to design a specialized

linesearch to cope with the singularity of the log. Alternatively, we could use a trust-region method.

Here we need to be able to instantly reject candidate steps for which c(xk + sk) 6> 0. More impor-

tantly, while all (consistent) trust-region norms are equivalent, (ideally) we should “shape” the trust

region for any barrier-function model to cope with the contours of the singularity. This implies that

the trust-region shape may vary considerably from iteration to iteration, with its shape reflecting

the eigenvalues arising from the singularity.

6.3.1 Potential difficulty I: ill-conditioning of the barrier Hessian

At the heart of both linesearch and trust-region methods is, of course, the Newton (second-order)

model and related Newton direction. The computation of a Newton model/direction for the loga-

rithmic barrier function is vital, and the resulting equations have a lot of (exploitable) structure.

The gradient of the barrier function is

∇xΦ(x, µ) = g(x) − µ
∑

i

ai(x)/ci(x) = g(x) −AT (x)y(x, µ) = g(x, y(x, µ)),

where g(x, y) is the gradient (1.2) of the Lagrangian function for (6.1). Likewise, the Hessian is

∇xxΦ(x, µ) = H(x, y(x, µ)) + µAT (x)C−2(x)A(x),

whereH(x, y) is the Hessian (1.3) of the Lagrangian and C(x) = diag(c1(x), . . . , cm(x)), the diagonal

matrix whose entries are the ci(x). Thus the Newton correction sP from x for the barrier function

88 PART 6. INTERIOR-POINT METHODS

satisfies

(H(x, y(x, µ)) + µAT (x)C−2(x)A(x))sP = −g(x, y(x, µ)). (6.2)

Since y(x, µ) = µC−1(x)e, (6.2) is sometimes written as

(
H(x, y(x, µ)) +AT (x)C−1(x)Y (x, µ)A(x)

)
sP = −g(x, y(x, µ)), (6.3)

or
(
H(x, y(x, µ)) +AT (x)Y 2(x, µ)A(x)/µ

)
sP = −g(x, y(x, µ)), (6.4)

where Y (x, µ) = diag(y1(x, µ), . . . , ym(x, µ)).

This is where we need to be careful. For we have the following estimates of the eigenvalues of

the barrier function as we approach a solution.

Theorem 6.2. Suppose that the assumptions of Theorem 6.1 are satisfied, that AA is the

matrix whose rows are {aTi (x∗)}i∈A(x∗), that ma = |A(x∗)|, and that x∗ is non-degenerate, that

is (y∗)i > 0 for all i ∈ A(x∗). Then the Hessian matrix of the barrier function, ∇xxΦ(xk , µk),

has ma eigenvalues

λi(YAAAA
T
AYA)/µk +O(1) for i = 1, . . . ,ma

and the remaining n−ma eigenvalues

λi(N
T
AH(x∗, y∗)NA) +O(µk) for i = 1, . . . , n−ma

as k → ∞, where λi(.) denotes the i-th eigenvalue of its matrix argument, YA is the diagonal

matrix of active Lagrange multipliers at x∗ and NA = is an orthogonal basis for the null-space

of AA.

This demonstrates that the condition number of ∇xxΦ(xk , µk) is O(1/µk) as µk shrinks to zero,

and suggests that it may not be straightforward to find the minimizer numerically. Look at how the

contours around x∗ in Figure 6.1 bunch together as µ approaches zero.

6.3.2 Potential difficulty II: poor starting points

As if this potential defect isn’t serious enough, there is a second significant difficulty with the naive

method we described earlier. This is that xS

k+1 = xk appears to be a very poor starting point for a

Newton step just after the (small) barrier parameter is reduced. To see this suppose, as will be the

case at the end of the minimization for the k-th barrier subproblem, that

0 ≈ ∇xΦ(xk, µk) = g(xk) − µkA
T (xk)C

−1(xk)e ≈ g(xk) − µkA
T
A(xk)C

−1
A (xk)e,

the approximation being true because the neglected terms involve y(xk, µk) = µk/ci(xk) which

converge to zero for inactive constraints. Then in the non-degenerate case, again roughly speaking,

the Newton correction sP for the new barrier parameter satisfies

µk+1A
T
A(xk)C

−2
A (xk)AA(xk)s

P ≈ (µk+1 − µk)A
T
A(xk)C

−1
A (xk)e (6.5)

6.4. A DIFFERENT PERSPECTIVE: PERTURBED OPTIMALITY CONDITIONS 89

since

∇xΦ(xk , µk+1) ≈ g(xk) − µk+1A
T
A(xk)C

−1
A (xk)e ≈ (µk+1 − µk)A

T
A(xk)C

−1
A (xk)e

and the µk+1A
T
A(xk)C

−2
A (xk)AA(xk) term dominates ∇xxΦ(xk , µk+1). If AA(xk) is full rank, then

multiplying the approximation (6.5) from the left first by the generalized inverse, (AAA
T
A)−1AA of

AA and then by C2
A implies that

AA(xk)s
P ≈

(

1 − µk
µk+1

)

cA(xk)

from which a Taylor expansion of cA(xk + sP) reveals that

cA(xk + sP) ≈ cA(xk) + AA(xk)s
P ≈

(

2 − µk
µk+1

)

cA(xk) < 0

whenever µk+1 < 1
2
µk. Hence a Newton step will asymptotically be infeasible for anything but the

most modest decrease in µ, and thus the method is unlikely to converge fast.

We will return to both of these issues shortly, but first we need to examine barrier methods in

a seemingly different light.

6.4 A different perspective: perturbed optimality conditions

We now consider what, superficially, appears to be a completely different approach to inequality-

constrained optimization. Recall from Theorem (1.9) that the first order optimality conditions for

(6.1) are that there are Lagrange multipliers (or, as they are sometimes called, dual variables) y for

which
g(x) −AT (x)y = 0 (dual feasibility)

C(x)y = 0 (complementary slackness)

c(x) ≥ 0 and y ≥ 0.

Now consider the “perturbed” problem

g(x) −AT (x)y = 0 (dual feasibility)

C(x)y = µe (perturbed complementary slackness)

c(x) > 0 and y > 0,

where µ > 0.

Primal-dual path-following methods aim to track solutions to the system

g(x) −AT (x)y = 0 and C(x)y − µe = 0 (6.6)

as µ shrinks to zero, while maintaining c(x) > 0 and y > 0. This approach has been amazingly

successful when applied to linear programming problems, and has been extended to many other

classes of convex optimization problems; we illustrate the trajectory of solutions to (6.6) for a pair

of quadratic programs in Figure 6.2.

Since (6.6) is simply a nonlinear system, an obvious (locally convergent) way to solve the system is,

as always, to use Newton’s method. It is easy to show that the Newton correction (sPD, w) to (x, y)

satisfies (

H(x, y) −AT (x)

Y A(x) C(x)

)(

sPD

w

)

= −
(

g(x) −AT (x)y

C(x)y − µe

)

. (6.7)

90 PART 6. INTERIOR-POINT METHODS

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 6.2: The trajectories of the solutions x(µ) of the perturbed optimality conditions (6.6) as µ

drops from infinity to zero for (left) the strictly convex quadratic objective (x1 − 1)2 + (x2 − 0.5)2

and (right) the non-convex one −2(x1 − 0.25)2 + 2(x2 − 0.5)2, both for the feasible region defined

by the constraints x1 + x2 ≤ 1, 3x1 + x2 ≤ 1.5 and (x1, x2) ≥ 0. Note that for the convex problem,

there is a single trajectory—the central path—which moves from the (analytic) center of the feasible

region to the unique minimizer of the problem. For the non-convex problem there is a central path

running to the global minimizer—this need not be the case; it might equally have targeted a local

minimizer—and a second trajectory starting when µ is roughly 0.1 and running to the other, local

minimizer.

Using the second equation to eliminate w gives that

(
H(x, y) +AT (x)C−1(x)Y A(x)

)
sPD = −

(
g(x) − µAT (x)C−1(x)e

)
= g(x, y(x, µ)), (6.8)

where, as before, y(x, µ) = µC−1(x)e. But now compare this with the Newton barrier system (6.3).

Amazingly, the only difference is that the (left-hand-side) coefficient matrix in (6.3) mentions the

specific y(x, µ) while that for (6.8) uses a generic y. And it is this difference that turns out to be

crucial. The freedom to choose y in H(x, y) + AT (x)C−1(x)Y A(x) for the primal-dual approach

proves to be vital. Making the primal choice y(x, µ) = µC−1(x)e can be poor, while using a more

flexible approach in which y is chosen by other means, such as through the primal-dual correction

y + w is often highly successful.

We now return to the potential difficulties with the primal approach we identified in Parts 6.3.1

and 6.3.2.

6.4.1. Potential difficulty II . . . revisited 91

6.4.1 Potential difficulty II . . . revisited

We first show that, despite our reservations in Part 6.3.2, the value xS

k+1 = xk can be a good

starting point. The problem with the primal correction sP is that the primal method has to choose

y = y(xS

k+1, µk+1) = µk+1C
−1(xk)e, and this is a factor µk+1/µk too small to be a good Lagrange

multiplier estimate—recall that Theorem 6.1 shows that µkC
−1(xk)e converges to y∗.

But now suppose instead that we use the primal-dual correction sPD and choose the “proper”

y = y(xk , µk) = µkC
−1(xk)e rather than y(xS

k+1, µk+1)—we know that this is a good choice inso-

far as this Newton step should decrease the dual infeasibility and complementary slackness since

(xk , µkC
−1(xk)e) are already good estimates. In this case, arguing as before, in the non-degenerate

case, the correction sPD satisfies

µkA
T
A(xk)C

−2
A (xk)AA(xk)s

PD ≈ (µk+1 − µk)A
T
A(xk)C

−1
A (xk)e,

and thus if AA(xk) is full rank,

AA(xk)s
PD ≈

(
µk+1

µk
− 1

)

cA(xk).

Then using a Taylor expansion of cA(xk + sPD) reveals that

cA(xk + sPD) ≈ cA(xk) + AA(xk)s
PD ≈ µk+1

µk
cA(xk) > 0,

and thus xk + sPD is feasible—the result is easy to show for inactive constraints. Hence, simply by

using a different model Hessian we can compute a useful Newton correction from xS

k+1 = xk that

both improves the violation of the optimality conditions (and ultimately leads to fast convergence)

and stays feasible.

6.4.2 Primal-dual barrier methods

In order to globalize the primal-dual iteration, we simply need to build an appropriate model of

the logarithmic barrier function within either a linesearch or trust-region framework for minimizing

Φ(x, µk). As we have already pointed out the disadvantages of only allowing the (primal) Hessian

approximation ∇xxΦ(xk, µk), we instead prefer the more flexible search-direction model problem to

(approximately)

minimize
s∈IRn

〈s, g(x, y(x, µ))〉 + 1
2

〈
s,
(
H(x, y) +AT (x)C−1(x)Y A(x)

)
s
〉
, (6.9)

possibly subject to a trust-region constraint. We have already noticed that the first-order term

g(x, y(x, µ)) = ∇xΦ(x, µ) as y(x, µ) = µC−1(x)e, and thus the model gradient is that of the barrier

function as required by our global convergence analyses of linesearch and trust-region methods.

We have discounted always choosing y = y(x, µ) in (6.9), and have suggested that the choice

y = (µk−1/µk)y(x, µ) when changing the barrier parameter results in good use of the starting point.

Another possibility is to use y = yOLD + wOLD, where wOLD is the primal-dual correction to the

previous dual-variable estimates yOLD. However, this needs to be used with care since there is no a

priori assurance that yOLD +wOLD > 0, and indeed it is usual to prefer y = max(yOLD +wOLD, ε(µk)e)

for some “small” ε(µk) > 0. The choice ε(µk) = µ1.5
k leads to a realistic primal-dual method,

although other precautions need sometimes to be taken.

92 PART 6. INTERIOR-POINT METHODS

6.4.3 Potential difficulty I . . . revisited

We now return to the other perceived difficult with barrier or primal-dual path-following methods,

namely that the inherent ill-conditioning in the barrier Hessian makes it hard to generate accurate

Newton steps when the barrier parameter is small. Let I be the set of inactive constraints at x∗,

and denote the active and inactive components of c and y with suffices A and I respectively. Thus

cA(x∗) = 0 and cI(x∗) > 0, while if the solution is non-degenerate, yA(x∗) > 0 and yI(x∗) = 0. As

we have seen, the Newton correction sPD satisfies (6.7), while the equivalent system (6.8) clearly has

a condition number that approaches infinity as x and y reach their limits because cA(x) approaches

zero while yA(x) approaches yA(x∗) > 0.

But now suppose that we separate (6.7) into






H(x, y) −ATA(x) −ATI (x)

YAAA(x) CA(x) 0

YIAA(x) 0 CI(x)











sPD

wA

wI




 = −






g(x) −AT (x)y

CA(x)yA − µe

CI(x)yI − µe




 ,

and then eliminate the variables wI , multiply the second equation by Y −1
A and use CI(x)yI = µe,

we obtain

(

H(x, y) +ATI (x)CI(x)−1YIAI(x) −ATA(x)

AA(x) CA(x)Y −1
A

)(

sPD

wA

)

= −
(

g(x) −ATA(x)yA − µATI (x)C−1
I (x)e

cA(x) − µY −1
A e

)

.

(6.10)

But then we see that the terms involving inverses, C−1
I (x) and Y −1

A , remain bounded, and indeed

in the limit the system becomes

(

H(x, y) −ATA(x)

AA(x) 0

)(

sPD

wA

)

= −
(

g(x) −ATA(x)yA − µATI (x)C−1
I (x)e

0

)

which is well behaved. Thus just because (6.8) is ill conditioned, this does not preclude us from

finding sPD from an equivalent, perfectly well-behaved system like (6.10).

6.5. A PRACTICAL PRIMAL-DUAL METHOD 93

6.5 A practical primal-dual method

Following on from the above, we now give the skeleton of a reasonable primal-dual method.

Given µ0 > 0 and feasible (xS

0, y
S

0), set k = 0.

Until “convergence”, iterate:

Inner minimization: starting from (xS

k, y
S

k), use an

unconstrained minimization algorithm to find (xk , yk) for which

‖C(xk)yk − µke‖ ≤ µk and ‖g(xk) −AT (xk)yk‖ ≤ µ1.00005
k .

Set µk+1 = min(0.1µk, µ
1.9999
k).

Find (xS

k+1, y
S

k+1) using a primal-dual Newton step from (xk, yk).

If (xS

k+1, y
S

k+1) is infeasible, reset (xS

k+1, y
S

k+1) to (xk, yk).

Increase k by 1.

The inner minimization will be performed by either a linesearch or trust-region method for min-

imizing Φ(x, µk), the stopping rules ‖C(xk)yk − µke‖ ≤ µk and ‖g(xk) − AT (xk)yk‖ ≤ µ1.00005
k

certainly being attainable as the first-order optimality condition for minimizing Φ(x, µk) is that

g(x) − AT (x)y = 0, where C(x)y = µke. The extra step, in which the starting point is computed

by performing a primal-dual Newton step from (xk , yk), is simply included to generate a value that

is already close to first order critical, and the stopping tolerances are specially chosen to encourage

this. Indeed we have the following asymptotic convergence result.

Theorem 6.3. Suppose that f , c ∈ C2, that a subsequence {(xk , yk)}, k ∈ K, of the prac-

tical primal-dual method converges to (x∗, y∗) satisfying second-order sufficiency conditions,

that AA(x∗) is full-rank, and that (y∗)A > 0. Then the starting point satisfies the inner-

minimization termination test (i.e., (xk , yk) = (xS

k , y
S

k)) for all k sufficiently large, and the

whole sequence {(xk, yk)} converges to (x∗, y∗) at a superlinear rate (with a Q-factor at least

1.9998).

This is a highly acceptable result, the convergence being essentially quadratic (which would corre-

spond to a Q-factor of two).

Primal-dual interior-point methods have the potential for both excellent theoretical and practical

behaviour. There are polynomial interior-point algorithms for linear, (convex) quadratic and semi-

definite programming. While it is unlikely that this is true for more general (nonconvex) problems,

the barrier function globalization is most effective in practice, and the asymptotic behaviour is

normally just as for the convex case. From a global perspective, it is very important that iterates

are kept away from constraint boundary until near to convergence, as otherwise very slow progress

will be made—this is certainly born out in practice. Finally, while the methods we have discussed

94 PART 6. INTERIOR-POINT METHODS

in this parthave all required an interior starting point, it is possible to find one (if there is one!) by

solving the “phase-one” problem to

minimize
(x,γ)

γ subject to c(x) + γe ≥ 0;

any feasible point (x, γ) for this auxiliary problem for which γ < 0 is suitable, for then c(x) > 0.

It is quite common in practice to replace the inequality ci(x) ≥ 0 by the equation ci(x) −
si = 0, and simple bound si ≥ 0 on the slack variable si. This has the algebraic advantage that

the inequality constraints are then all simple bounds and thus that barrier terms only appear on

the diagonal of the Hessian model, but arguably the disadvantages that the dimensionality of the

problem has been artificially increased, and that we now need to use some means of coping with

equality constraints. We consider this latter point next.

PART 7

SQP METHODS FOR

EQUALITY CONSTRAINED

OPTIMIZATION

7.1. NEWTON’S METHOD FOR FIRST-ORDER OPTIMALITY 97

In this final part, having already investigated very good methods for dealing with inequality

constraints, we now turn our attention to the problem (5.1), in which there are only equality con-

straints on the variables. Of course in practice, there are frequently both equations and inequalities,

and composite methods using the barrier/interior-point methods discussed in Part 6 and the SQP

methods we shall consider here are often used. Alternatively, SQP methods themselves may easily

be generalized to handle inequality constraints. For brevity we shall not consider such extensions

further here.

7.1 Newton’s method for first-order optimality

Sequential Quadratic Programming (SQP) methods (sometimes called successive or recursive quadratic

programming methods) are most naturally derived by considering the first-order necessary condi-

tions for (5.1)—we will see where the names come from shortly. Recall at optimality we expect to

have

g(x, y) ≡ g(x) −AT (x)y = 0 and c(x) = 0. (7.1)

This is a system of nonlinear equations in the variables x and the Lagrange multipliers y. Notice

that the system is actually linear in y so that if x were known it would be straightforward to find y.

Suppose now that (x, y) is an approximation to a solution of (7.1). Then, as always, we might

apply Newton’s method to try to improve (x, y), and this leads us to construct a correction (s, w)

for which (

H(x, y) −AT (x)

A(x) 0

)(

s

w

)

= −
(

g(x, y)

c(x)

)

. (7.2)

Newton’s method would then apply the same procedure to the “improved” estimate (x+, y+) =

(x+ s, y + w).

There are a number of alternative formulations of (7.2). Firstly (7.2) may be written as the

symmetric system of equations

(

H(x, y) AT (x)

A(x) 0

)(

s

−w

)

= −
(

g(x, y)

c(x)

)

;

notice here that the coefficient matrix is indefinite because of its zero 2,2 block. Secondly, on writing

y+ = y + w, the equation becomes

(

H(x, y) −AT (x)

A(x) 0

)(

s

y+

)

= −
(

g(x)

c(x)

)

,

or finally, in symmetric form,

(

H(x, y) AT (x)

A(x) 0

)(

s

−y+

)

= −
(

g(x)

c(x)

)

.

In practice we might prefer to approximate H(x, y) by some symmetric B, and instead solve

(

B AT (x)

A(x) 0

)(

s

−y+

)

= −
(

g(x)

c(x)

)

=

(

B −AT (x)

A(x) 0

)(

s

y+

)

. (7.3)

98 PART 7. SQP METHODS FOR EQUALITY CONSTRAINED OPTIMIZATION

One could imagine solving these related systems by finding an LU factorization of the coefficient

matrix in the unsymmetric case, or a symmetric-indefinite (a generalization of Cholesky) factoriza-

tion in the symmetric case. Alternatively, if B is invertible, s and y+ might be found successively

by solving

A(x)B−1A(x)T y = −c+A(x)B−1g and then Bs = A(x)T y − g

using symmetric factorizations of B and A(x)B−1A(x)T (see Section 4.3.1). For very large problems,

iterative methods might be preferred, and here GMRES(k) or QMR, for the unsymmetric case, or

MINRES or conjugate-gradients (restricted to the null-space of A(x)), for the symmetric case, have

all been suggested. Thus there are many ways to solve the system(s) of linear equations that arise

from SQP methods, and there is currently much interest in exploiting the structure in such systems

to derive very efficient methods.

But where does the name “sequential quadratic programming” come from?

7.2 The Sequential Quadratic Programming iteration

As we saw in Part 4, a quadratic program is a problem involving the optimization of a quadratic

function subject to a set of linear inequality and/or equality constraints. Consider the quadratic

programming problem

minimize
s∈IRn

〈s, g(x)〉 + 1
2
〈s,Bs〉 subject to A(x)s = −c(x). (7.4)

Why this problem? Well, Theorem 1.3 indicates that c(x) +A(x)s is a first-order (Taylor) approx-

imation to the constraint function c(x + s), while 〈s, g(x)〉 + 1
2
〈s,Bs〉 is potentially a second-order

model of the decrease f(x + s) − f(x). Thus one can argue that (7.4) gives a suitable (at least

first-order) model of (5.1). An objection might be that really we should be aiming for true second-

order approximations to all functions concerned, but this would lead to the significantly-harder

minimization of a quadratic function subject to quadratic constraints—constraint curvature is a

major obstacle.

The interesting feature of (7.4) is that it follows immediately from Theorem 1.7 that any first-

order critical point of (7.4) is given by (7.3). Thus Newton-like methods for first-order optimality are

equivalent to the solution of a sequence of related quadratic programs. Hence the name. Notice that

if B = H(x, y), solving (7.4) is actually Newton’s method for (7.1), and this suggests that B should

be an approximation to the Hessian of the Lagrangian function, not the objective function. Clearly

the constraint curvature that we would have liked to have added to the linear approximations of the

constraints has worked its way into the objective function!

To summarize, the basic SQP iteration is as follows.

7.2. THE SEQUENTIAL QUADRATIC PROGRAMMING ITERATION 99

Given (x0, y0), set k = 0.

Until “convergence” iterate:

Compute a suitable symmetric Bk using (xk , yk).

Find

sk = arg min
s∈IRn

〈s, gk〉 + 1
2
〈s,Bks〉 subject to Aks = −ck (7.5)

along with associated Lagrange multiplier estimates yk+1.

Set xk+1 = xk + sk and increase k by 1.

The SQP method is both simple and fast. If Bk = H(xk, yk), the method is Newton’s method for

(7.1), and thus is quadratically convergent provided that (x0, y0) is sufficiently close to a first-order

critical point (x∗, y∗) of (5.1) for which

(

H(x∗, y∗) AT (x∗)

A(x∗) 0

)

is non-singular. Moreover, the method is superlinearly convergent when Bk is a “good” approxima-

tion to H(xk , yk), and there is even no necessity that this be so for fast convergence. It should also

be easy for the reader to believe that had we wanted to solve the problem (6.1) involving inequality

constraints, the suitable SQP subproblem would be

minimize
s∈IRn

〈s, g(x)〉 + 1
2
〈s,Bs〉 subject to A(x)s ≥ −c(x)

in which the nonlinear inequalities have been linearized.

But, as the reader will already have guessed, this basic iteration also has drawbacks, leading to

a number of vital questions. For a start it is a Newton-like iteration, and thus may diverge from

poor starting points. So how do we globalize this iteration? How should we pick Bk? What should

we do if (7.4) is unbounded from below? And precisely when is it unbounded?

The problem (7.4) only has a solution if the constraints A(x)s = −c(x) are consistent. This is

certainly the case if A(x) is full rank, but may not be so if A(x) is rank deficient—we shall consider

alternatives that deal with this deficiency later. Applying Theorem 1.8 to (7.4), we deduce that

any stationary point (s, y+) satisfying (7.3) solves (7.4) only if B is positive semi-definite on the

manifold {s : A(x)s = 0}—if B is positive definite on the manifold (s, y+) is the unique solution to

the problem. If the m by n matrix A(x) is full rank and the columns of S(x) form a basis for the null-

space of A(x), it is easy to show that B being positive (semi-)definite on the manifold {s : A(x)s = 0}
is equivalent to S(x)TBS(x) being positive (semi-)definite which is in turn equivalent to the matrix

(

B AT (x)

A(x) 0

)

(being non-singular and) having m negative eigenvalues. If B violates these assumptions, (7.4) is

unbounded.

100 PART 7. SQP METHODS FOR EQUALITY CONSTRAINED OPTIMIZATION

For the remainder of this part, we focus on methods to globalize the SQP iteration. And it should

not surprise the reader that we shall do so by considering linesearch and trust-region schemes.

7.3 Linesearch SQP methods

The obvious way to embed the SQP step sk within a linesearch framework is to pick xk+1 = xk+αksk,

where the step αk > 0 is chosen so that

Φ(xk + αksk, pk) “<” Φ(xk , pk), (7.6)

and where Φ(x, p) is a “suitable” merit function depending on parameters pk. Of course it is then

vital that sk be a descent direction for Φ(x, pk) at xk , as otherwise there may be no αk for which

(7.6) is satisfied. As always with linesearch methods, this limits the choice of Bk, and it is usual

to insist that Bk be positive definite—the reader may immediately object that this is imposing an

unnatural requirement, since Bk is supposed to be approximating the (usually) indefinite matrix

H(xk, yk), and we can only sympathise with such a view!

What might a suitable merit function be? One possibility is to use the quadratic penalty function

(5.2). In this case, we have the following result.

Theorem 7.1. Suppose that Bk is positive definite, and that (sk, yk+1) are the SQP search

direction and its associated Lagrange multiplier estimates for the problem

minimize
x∈IR

n
f(x) subject to c(x) = 0

at xk. Then if xk is not a first-order critical point, sk is a descent direction for the quadratic

penalty function Φ(x, µk) at xk whenever

µk ≤ ‖c(xk)‖2

‖yk+1‖2
.

We know that the parameter µk for the quadratic penalty function needs to approach zero for its

minimizers to converge to those of (5.1), so Theorem 7.1 simply confirms this by suggesting how to

adjust the parameter.

The quadratic penalty function has another role to play if the constraints are inconsistent. For

consider the quadratic (Newton-like) model

minimize
s∈IRn

〈s, gk +ATk ck/µk〉 + 1
2
〈s, (Bk + 1/µkA

T
kAk)s〉

that might be used to compute a step sQ

k from xk. Stationary points of this model satisfy

(Bk + 1/µkA
T
kAk)s

Q

k = −(gk +ATk ck/µk)

7.3. LINESEARCH SQP METHODS 101

or, on defining yQ

k
def
= −µ−1

k (ck +Aks
Q

k),

(

Bk ATk
Ak −µkI

)(

sQ

k

−yQ

k

)

= −
(

gk
ck

)

. (7.7)

But now compare this system with (7.3) that which defines the SQP step: the only difference is

the vanishingly small 2,2 block −µkI in the coefficient matrix. While this indicates that Newton-

like directions for the quadratic penalty function will become increasingly good approximations to

SQP steps (and, incidentally, it can be shown that a Newton iteration for (5.2) with well chosen

µk converges superlinearly under reasonable assumptions), the main point of the alternative (7.7)

is that rank-deficiency in Ak is neutralised by the presence of 2,2 block term −µkI . Nevertheless,

the quadratic penalty function is rarely used, its place often being taken by non-differentiable exact

penalty functions.

The non-differentiable exact penalty function is given by

Φ(x, ρ) = f(x) + ρ‖c(x)‖ (7.8)

for any norm ‖ · ‖ and scalar ρ > 0. Notice that the function is non-differentiable particularly when

c(x) = 0, the very values we hope to attain! The following result helps explain why such a function

is considered so valuable.

Theorem 7.2. Suppose that f, c ∈ C2, and that x∗ is an isolated local minimizer of f(x)

subject to c(x) = 0, with corresponding Lagrange multipliers y∗. Then x∗ is also an isolated

local minimizer of Φ(x, ρ) provided that
ρ > ‖y∗‖D,

where the dual norm ‖y‖D = sup
x6=0

〈y, x〉
‖x‖ .

Notice that the fact that ρ merely needs to be larger than some critical value for Φ(x, ρ) to be

usable to try to identify solutions to (5.1) is completely different to the quadratic penalty function,

for which the parameter had to take on a limiting value.

More importantly, as we now see, Φ(x, ρ) may be used as a merit function for the SQP step.

Theorem 7.3. Suppose that Bk is positive definite, and that (sk, yk+1) are the SQP search

direction and its associated Lagrange multiplier estimates for the problem

minimize
x∈IR

n
f(x) subject to c(x) = 0

at xk. Then if xk is not a first-order critical point, sk is a descent direction for the non-

differentiable penalty function Φ(x, ρk) at xk whenever ρk ≥ ‖yk+1‖D.

102 PART 7. SQP METHODS FOR EQUALITY CONSTRAINED OPTIMIZATION

Once again, this theorem indicates how ρk needs to be adjusted for use within a linesearch SQP

framework.

Thus far, everything looks perfect. We have methods for globalizing the SQP iteration, an

iteration that should ultimately converge very fast. But unfortunately, it is not as simple as that.

For consider the example in Figure 7.1. Here the current iterate lies close to (actually on) the

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

xk

sk

x∗

Figure 7.1: `1 non-differentiable exact penalty function (ρ = 1): f(x) = 2(x2
1 + x2

2 − 1) − x1 and

c(x) = x2
1 + x2

2 − 1. Solution: x∗ = (1, 0), y∗ = 3
2
. The SQP direction using the optimal Hessian

H(x∗, y∗) = I . Notice how the merit function increases at the point xk + sk.

constraint, the SQP step moves tangentially from it, and thus moves away as the constraint is

nonlinear, but unfortunately, at the same time, the value of the objective function rises. Thus any

merit function like (5.2) or (7.8) composed simply from positive combinations of the objective and

(powers) of norms of constraint violations will increase after such an SQP step, and thus necessarily

αk 6= 1 in (7.6)—worse still, this behaviour can happen arbitrarily close to the minimizer. This has

the unfortunate side effect that it may happen that the expected fast convergence achievable by

Newton-like methods will be thwarted by the merit function. That is, there is a serious mismatch

between the global and local convergence needs of the SQP method. The fact that the merit function

may prevent acceptance of the full SQP step is known as the Maratos effect .

The Maratos effect occurs because the curvature of the constraints is not adequately represented

by linearization in the SQP model. In particular,

c(xk + sk) = O(‖sk‖2).

This suggests that we need to correct for this curvature. We may do this by computing a second-order

correction from xk + sk, that is an extra step sC

k for which

c(xk + sk + sC

k) = o(‖sk‖2). (7.9)

Since we do not want to destroy potential for fast convergence, we must also insist that the correction

7.4. TRUST-REGION SQP METHODS 103

is small relative to the SQP step, and thus that

sC

k = o(sk). (7.10)

There are a number of ways to compute a second-order correction. The first is simply to move

back as quickly as possible towards the constraints. This suggests we compute a minimum (`2-)norm

solution to c(xk + sk) +A(xk + sk)s
C

k = 0. It is easy to check that the required solution satisfies
(

I AT (xk + sk)

A(xk + sk) 0

)(

sC

k

−yC

k+1

)

= −
(

0

c(xk + sk)

)

.

Since this requires that we re-evaluate the constraints and their Jacobian at xk + sk, we might hope

instead to find a minimum norm solution to c(xk + sk) + A(xk)s
C

k = 0, and thus that
(

I AT (xk)

A(xk) 0

)(

sC

k

−yC

k+1

)

= −
(

0

c(xk + sk)

)

.

A third amongst many other possibilities is to compute another SQP step from xk + sk, that is to

compute sC

k so that
(

BC

k AT (xk + sk)

A(xk + sk) 0

)(

sC

k

−yC

k+1

)

= −
(

g(xk + sk)

c(xk + sk)

)

,

where BC

k is an approximation to H(xk + sk, y
+
k). It can easily be shown that all of the above

corrections satisfy (7.9)–(7.10). In Figure 7.2, we illustrate a second-order correction in action. It

is possible to show that, under reasonable assumptions, any step xk + sk + sC

k made up from the

SQP step sk and a second-order correction sC

k satisfying (7.9)–(7.10) will ultimately reduce (7.8). So

now we can have both global and very fast asymptotic convergence at the expense of extra problem

evaluations. Of course, we have stressed that a second SQP step gives a second-order correction,

so another way of viewing this is to require that the merit function decreases at least every second

iteration, and to tolerate non-monotonic behaviour in the interim.

7.4 Trust-region SQP methods

The main disadvantage of (at least naive) linesearch SQP methods is the unnatural requirement

that Bk be positive definite. We saw the same restriction in the unconstrained case, although at

least then there was some expectation that ultimately the true Hessian Hk would be positive (semi-)

definite. In the unconstrained case, indefinite model Hessians were better handled in a trust-region

framework, and the same is true in the constrained case.

The obvious trust-region generalization of the basic SQP step-generation subproblem (7.4) is to

find

sk = arg min
s∈IRn

〈s, gk〉 + 1
2
〈s,Bks〉 subject to Aks = −ck and ‖s‖ ≤ ∆k. (7.11)

Since we do not require that Bk be positive definite, this allows us to use Bk = H(xk, yk) if we so

desire. However a few moments reflection should make it clear that such an approach has a serious

flaw. Let ∆CRIT be the least distance to the linearized constraints, i.e.

∆CRIT def
= min ‖s‖ subject to Aks = −ck.

104 PART 7. SQP METHODS FOR EQUALITY CONSTRAINED OPTIMIZATION

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

xk

sk

x∗

sC

k

Figure 7.2: `1 non-differentiable exact penalty function (ρ = 1): f(x) = 2(x2
1 + x2

2 − 1) − x1 and

c(x) = x2
1 + x2

2 − 1 solution: x∗ = (1, 0), y∗ = 3
2
. See that the second-order correction sC

k helps

avoid the Maratos effect for the above problem with the `1-penalty function. Notice how sC

k more

than compensates for the increase in the merit function at the point xk + sk, and how much closer

xk + sk + sC

k is to x∗ than is xk.

The difficulty is that if ∆k < ∆CRIT, then there is no solution to the trust-region subproblem (7.11).

This implies that unless ck = 0, the subproblem is meaningless for all sufficiently small trust-region

radius (see Figure 7.3). Thus we need to consider alternatives. In this section, we shall review the

S`pQP method of Fletcher, the composite step SQP methods due to Vardi, to Byrd and Omojokun,

and to Celis, Dennis and-Tapia, and the filter-SQP approach of Fletcher and Leyffer.

7.4.1 The S`pQP method

Our first trust-region approach is to try to minimize the `p-(exact) penalty function

Φ(x, ρ) = f(x) + ρ‖c(x)‖p (7.12)

for sufficiently large ρ > 0 and some `p norm (1 ≤ p ≤ ∞). We saw in Part 7.3 that feasible

minimizers of (7.12) may be solutions to (5.1) so long as ρ > 0 is large enough. Of course, as

Φ(x, ρ) is non-differentiable, we cannot simply apply one of the unconstrained trust-region methods

discussed in Part 3, but must instead build a specialized method.

Since we are discussing trust-region methods, a suitable model problem is the `pQP

minimize
s∈IRn

fk + 〈s, gk〉 + 1
2
〈s,Bks〉 + ρ‖ck +Aks‖p subject to ‖s‖ ≤ ∆k.

This has the major advantage that the model problem is always consistent, since now the only

constraint is the trust-region bound. In addition, when ρ and ∆k are large enough, it can be shown

that the model minimizer is the SQP direction so long as Aks = −ck is consistent. Moreover, when

the norms are polyhedral (e.g., the `1 or `∞ norms), `pQP is equivalent to a quadratic program.

7.4. TRUST-REGION SQP METHODS 105

+

+

+

+
The linearized constraint

�
��	

PPPPPPq

The trust region� -

The nonlinear constraintA
AAK

�
���

Figure 7.3: The intersection between the linearization of a nonlinear constraint and a spherical trust

region. In the left figure, the trust-region radius is sufficiently large for the trust region and the

linearized constraint to intersect. This is not so for the smaller trust region illustrated in the right

figure.

To see this, consider for example the `1QP model problem with an `∞ trust region

minimize
s∈IRn

〈s, gk〉 + 1
2
〈s,Bks〉 + ρ‖ck +Aks‖1 subject to ‖s‖∞ ≤ ∆k.

But we can always write

ck +Aks = u− v, where (u, v) ≥ 0.

Hence the `1QP subproblem is equivalent to the quadratic program

minimize
s∈IRn, u,v∈IRm

〈s, gk〉 + 1
2
〈s,Bks〉 + ρ〈e, u+ v〉

subject to Aks− u+ v = −ck
u ≥ 0, v ≥ 0

and −∆ke ≤ s ≤ ∆ke.

Notice that the QP involves inequality constraints, but there are good methods (especially of the

interior-point variety) for solving such problems. In particular, it is possible to exploit the structure

of the u and v variables.

In order to develop a practical S`1QP method, it should not surprise the reader that we need to

ensure that every step we generate achieves as much reduction in the model fk+〈s, gk〉+ 1
2
〈s,Bks〉+

ρ‖ck +Aks‖p as would have been achieved at a Cauchy point. One such Cauchy point requires the

solution to `1LP model

minimize
s∈IRn

〈s, gk〉 + ρ‖ck +Aks‖1 subject to ‖s‖∞ ≤ ∆k,

which may be reformulated as a linear program. Fortunately approximate solutions to both `1LP

and `1QP subproblems suffice. In practice it is also important to adjust ρ as the method progresses

106 PART 7. SQP METHODS FOR EQUALITY CONSTRAINED OPTIMIZATION

so as to ensure that ρ is larger than the (as yet unknown) ‖y∗‖D, and this may be achieved by

using the available Lagrange multiplier estimates yk. Such a scheme is globally convergent, but

there is still a need for a second-order correction to prevent the Maratos effect and thus allow fast

asymptotic convergence. If c(x) = 0 are inconsistent, the method converges to (locally) least value

of the infeasibility ‖c(x)‖ provided ρ→ ∞.

The alert reader will have noticed that in this section we have replaced the `2 trust-region of

the unconstraint trust-region method by a box or `∞ trust-region. The reason for this apparent

lack of consistency is that minimizing a quadratic subject to linear constraints and an additional

quadratic trust-region is too hard. On the other hand, adding box-constraints does not increase the

complexity of the resulting (quadratic programming) trust-region subproblem.

7.4.2 Composite-step methods

Another approach to avoid the difficulties caused by inconsistent QP subproblems is to separate the

computation of the step into two stages. The aim of a composite-step method is to find

sk = nk + tk,

where the normal step nk moves towards feasibility of the linearized constraints (within the trust

region), while the tangential step tk reduces the model objective function (again within the trust-

region) without sacrificing feasibility obtained from nk. Of course since the normal step is solely

concerned with feasibility, the model objective may get worse, and indeed it may not recover during

the tangential step. The fact that the tangential step is required to maintain any gains in (linearized)

feasibility achieved during the normal step implies that

Ak(nk + tk) = Aknk and hence that Aktk = 0.

We illustrate possible normal and tangential steps in Figure 7.4.

7.4.2.1 Constraint relaxation—Vardi’s method

Vardi’s approach is an early composite-step method. The normal step is found by relaxing the

requirement

Aks = −ck and ‖s‖ ≤ ∆k

to

Akn = −σkck and ‖n‖ ≤ ∆k,

where σk ∈ [0, 1] is small enough so that there is a feasible nk. Clearly s = 0 is feasible if σk = 0,

and the largest possible σmax may be found by computing

max
σ∈(0,1]

[

min
‖s‖≤∆k

‖Aks+ σck‖ = 0

]

.

In practice, some value between zero and σmax is chosen, since this gives some “elbow-room” in

which to compute the tangential step. The main defect with the approach is that there may be no

normal step if the linearized constraints are inconsistent.

7.4. TRUST-REGION SQP METHODS 107

+

+

+

+

The linearized constraint
�

��	

PPPPPPq

The trust region� -

Nearest point on linearized constraint

nk

Close to nearest point

nk

Figure 7.4: Computing the normal step. The left-hand figure shows the largest possible normal

step. The right-hand figure illustrates a shorter normal step n, and the freedom this then allows for

the tangential step—any point on the dotted line is a potential tangential step.

Once a normal step has been determined, the tangential step is computed as the

(approximate) arg min
t∈IRn

〈t, gk +Bknk〉 + 1
2
〈t, Bkt〉

subject to Akt = 0 and ‖nk + t‖ ≤ ∆k.

Although of historical interest, the method has been effectively superseded by the Byrd–Omojokun

approach we describe next.

7.4.2.2 Constraint reduction—the Byrd–Omojokun method

The Byrd–Omojokun method aims to cope with the inconsistency issue that afflicts Vardi’s approach.

Rather than relaxing the constraints, the normal step is now computed as

approximately minimize ‖Akn+ ck‖ subject to ‖n‖ ≤ ∆k,

in order to achieve a reasonable improvement in linearized infeasibility that is consistent with the

trust-region. The tangential step is then computed exactly as in Vardi’s method.

An important aspect is that it is possible to use the conjugate gradient method to solve both

subproblems. This provides Cauchy points in both cases and allows the method to be used to

solve large problems. The method has been shown to be globally convergent (under reasonable

assumptions) using an `2 merit function, and is the basis of the successful KNITRO software package.

7.4.2.3 Constraint lumping—the Celis–Dennis–Tapia method

A third method which might be considered to be of the composite-step variety is that due to Celis,

108 PART 7. SQP METHODS FOR EQUALITY CONSTRAINED OPTIMIZATION

Dennis and Tapia. In this approach, the requirement that Aks = −ck is replaced by requiring that

‖Aks+ ck‖ ≤ σk

for some σk ∈ [0, ‖ck‖]. The value of σk is chosen so that the normal step nk satisfies

‖Akn+ ck‖ ≤ σk and ‖n‖ ≤ ∆k.

Having found a suitable normal step, the tangential step is found as an

(approximate) arg min
t∈IRn

〈t, gk +Bknk〉 + 1
2
〈t, Bkt〉

subject to ‖Akt+Aknk + ck‖ ≤ σk and ‖t+ nk‖ ≤ ∆k.

While finding a suitable σk is inconvenient, the real Achilles’ heel of this approach is that the

tangential step subproblem is (much) harder than those we have considered so far. If the `2-norm is

used for the constraints, we need to find the minimizer of a quadratic objective within the intersection

of two “spherical” regions. Unlike the case involving a single sphere (recall Part 3.5.1), it is not

known if there is an efficient algorithm in the two-sphere case. Alternatively, if polyhedral (`1 or

`∞) norms are used and Bk is indefinite, the subproblem becomes a non-convex quadratic program

for which there is unlikely to be an efficient general-purpose algorithm—in the special case where Bk

is positive semi-definite and the `∞ norm is used, the subproblem is a convex QP. For this reason,

the Celis–Dennis–Tapia approach is rarely used in practice.

7.4.3 Filter methods

The last SQP method we shall consider is the most recent. The approach taken is quite radical in

that, unlike all of the methods we have considered so far, it makes no use of a merit function to force

global convergence. The main objection to merit functions is that they depend, to a large degree,

on arbitrary or a-priori unknown parameters. A secondary objection is that they tend to be overly

conservative in accepting promising potential iterates. But if we wish to avoid merit functions, we

need some other device to encourage convergence. The new idea is to use a “filter”

Let θ(x) = ‖c(x)‖ be some norm of the constraint violation at x. A filter is a set of pairs

{(θk, fk)} of violations and objective values such that no member dominates another, i.e., it does

not happen that

θi“<”θj and fi“<”fj

for any pair of filter points i 6= j—the “<” here informally means “very slightly smaller than”.

We illustrate a filter in Figure 7.5. A potential new entry to the “north-east” of any of the

existing filter entries would not be permitted, and the forbidden region is the intersection of the

solid horizontal and vertical lines emanating to the right and above each filter point. For theoretical

reasons (akin to requiring sufficient decrease), we slightly enlarge the forbidden region by putting a

small margin around each filter point, and this is illustrated in the figure by the dotted lines.

And now it is clear how to use a filter. Any potential SQP (or other) iterate xk + sk will

immediately be rejected if it lies in the forbidden filter region accumulated during the previous k

iterations. This may be embedded in a trust-region framework, and a typical iteration might be as

follows:

7.4. TRUST-REGION SQP METHODS 109

6

0

f(x)

-
θ(x)

r
1

r
4

r
2

r
3

Figure 7.5: A filter with four entries.

If possible find

sk = arg min
s∈IRn

〈s, gk〉 + 1
2
〈s,Bks〉 subject to Aks = −ck and ‖s‖ ≤ ∆k,

but otherwise, find sk such that

θ(xk + sk)“<”θi for all i ≤ k.

If xk + sk is “acceptable” for the filter, set xk+1 = xk + sk

and possibly add (f((xk + sk), θ(xk + sk)) to the filter,

“prune” the filter, and increase ∆k.

Otherwise reduce ∆k and try again.

A few words of explanation are needed. The trust-region and linearized constraints will always

be compatible if ck is small enough so long as they are at c(x) = 0. Thus if the trust-region

subproblem is incompatible, one remedy is simply to move closer to the constraints. This is known

as a restoration step. By “pruning” the filter, we mean that a new point may completely dominate

one or more existing filter points and, in this case, the dominated entry may be removed without

110 PART 7. SQP METHODS FOR EQUALITY CONSTRAINED OPTIMIZATION

altering the filter. For example, if a new entry were accepted to the “south-west” of point 4 in our

figure, point 4 would be pruned.

While the basic filter idea is rather simple, in practice, it is significantly more complicated than

this. In particular, there are theoretical reasons why some points that are acceptable to the filter

should still be rejected if any decrease in the SQP model of the objective function is far from realized

in practice.

CONCLUSIONS

We hope we have conveyed the impression that research into the design, convergence and imple-

mentation of algorithms for nonlinear optimization is an exciting and expanding area. We have

only been able to outline the developments in the field, and have made no attempt to survey the

vast literature that has built up over the last 50 years. Current algorithms for specialized problems

like linear and quadratic programming and unconstrained optimization are well capable of solving

problems involving millions of unknowns (and constraints), while those for generally constrained

optimization routinely solve problems in the tens and, perhaps even, hundreds of thousands of un-

knowns and constraints. The next big goal is to be able to design algorithms that have some hope of

finding global optima for large problems, the current state-of-the-art being for problems with tens

or hundreds of unknowns. Clearly closing the gap between local and global optimization has some

way to go!

APPENDIX A

SEMINAL BOOKS AND PAPERS

The following books and papers are classics in the field. Although many of them cover topics outside

the material we have described, they are all worth reading. This section constitutes a personal view

of the most significant papers in the area. It is not meant to be a complete bibliography.

APPENDIX A — SEMINAL BOOKS AND PAPERS 115

General text books

There are a large number of text books devoted to nonlinear (and even more for linear) programming.

Those we find most useful and which emphasize practical methods are

J. Dennis and R. Schnabel, “Numerical Methods for Unconstrained Optimization and Non-

linear Equations”, (republished by) SIAM (Classics in Applied Mathematics 16) (1996),

R. Fletcher, “Practical Methods of Optimization”, 2nd edition Wiley (1987), (republished

in paperback 2000),

P. Gill, W. Murray and M. Wright, “Practical Optimization”, Academic Press (1981), and

J. Nocedal and S. Wright, “Numerical Optimization”, Springer Verlag (1999).

The first of these concentrates on unconstrained optimization, while the remainder cover (continu-

ous) optimization in general.

Early quasi-Newton methods

These methods were introduced by

W. Davidon, “Variable metric method for minimization”, manuscript (1958), finally pub-

lished SIAM J. Optimization 1 (1991) 1:17,

and championed by

R. Fletcher and M. J. D. Powell, “A rapidly convergent descent method for minimization”,

Computer J. (1963) 163:168.

Although the so-called DFP method has been superseded by the more reliable BFGS method, it

paved the way for a number of classes of important updates.

More modern quasi-Newton methods

Coincidentally, all of the papers

C. G. Broyden, “The convergence of a class of double-rank minimization algorithms”, J.

Inst. Math. Applcs., 6 (1970) 76:90,

R. Fletcher, “A new approach to variable metric algorithms”, Computer J. (1970) 13 (1970)

317:322,

D. Goldfarb, “A family of variable metric methods derived by variational means”, Math.

Computation 24 (1970) 23:26, and

D. F. Shanno, “Conditioning of quasi-Newton methods for function minimization”, Math.

Computation 24 (1970) 647:657

appeared in the same year. The aptly-named BFGS method has stood the test of time well, and is

still regarded as possibly the best secant updating formula.

Quasi-Newton methods for large problems

Limited memory methods are secant-updating methods that discard old information so as to reduce

116 APPENDIX A — SEMINAL BOOKS AND PAPERS

the amount of storage required when solving large problems. The methods first appeared in

J. Nocedal, “Updating quasi-Newton matrices with limited storage”, Math. Computation

35 (1980) 773:782, and

A. Buckley and A. Lenir, “QN-like variable storage conjugate gradients”, Math. Program-

ming 27 (1983) 155:175.

Secant updating formulae proved to be less useful for large-scale computation, but a successful

generalization, applicable to what are known as partially separable functions, was pioneered by

A. Griewank and Ph. Toint, “Partitioned variable metric updates for large structured

optimization problems”, Numerische Mathematik 39 (1982) 119:137, see also 429:448, as

well as

A. Griewank and Ph. Toint, “On the unconstrained optimization of partially separable

functions”, in Nonlinear Optimization 1981 (Powell, M., ed.) Academic Press (1982)

Conjugate gradient methods for large problems

Generalizations of Conjugate Gradient methods for non-quadratic minimization were originally pro-

posed by

R. Fletcher and C. M. Reeves, “Function minimization by conjugate gradients”, Computer

J. (1964) 149:154, and

E. Polak and G. Ribiére, “Note sur la convergence de méthodes de directions conjuguées”,

Revue Française d’informatique et de recherche opérationelle 16 (1969) 35:43.

An alternative is to attempt to solve the (linear) Newton system by a conjugate-gradient like method.

Suitable methods for terminating such a procedure while still maintaining fast convergence were

proposed by

R. S. Dembo and T. Steihaug, “Truncated-Newton algorithms for large-scale unconstrained

optimization”, Math. Programming 26 (1983) 190:212.

Non-monotone methods

While it is usual to think of requiring that the objective function decreases at every iteration, this

is not actually necessary for convergence so long as there is some overall downward trend. The first

method along these lines was by

L. Grippo, F. Lampariello and S. Lucidi, “A nonmonotone line search technique for Newton’s

method”, SIAM J. Num. Anal., 23 (1986) 707:716.

Trust-region methods

The earliest methods that might be regarded as trust-region methods are those by

APPENDIX A — SEMINAL BOOKS AND PAPERS 117

K. Levenberg, “A method for the solution of certain problems in least squares”, Quarterly

J. Appl. Maths, 2 (1944) 164:168, and

D. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters” SIAM

J. Appl. Maths, 11 (1963) 431:441

for the solution of nonlinear least-squares problems, although they are motivated from the perspec-

tive of modifying indefinite Hessians rather than restricting the step. Probably the first “modern”

interpretation is by

S. Goldfeldt, R. Quandt and H. Trotter, “Maximization by quadratic hill-climbing”, Econo-

metrica, 34 (1966) 541:551.

Certainly, the earliest proofs of convergence are given by

M. Powell, “A New Algorithm for Unconstrained Optimization”, in Nonlinear Programming,

(Rosen, J., Mangasarian, O., and Ritter, K., eds.) Academic Press (1970),

while a good modern introduction is by

J. Moré, “Recent developments in algorithms and software for trust region methods”, in

Mathematical Programming: The State of the Art, (Bachem, A., Grötschel, M., and Korte,

B., eds.) Springer Verlag (1983).

You might want to see our book

A. Conn, N. Gould and Ph. Toint, “Trust-region methods”, SIAM (2000)

for a comprehensive history and review of the large variety of articles on trust-region methods.

Trust-region subproblems

Almost all you need to know about solving small-scale trust-region subproblems is contained in the

paper

J. Moré and D. Sorensen, “Computing a trust region step”, SIAM J. Sci. Stat. Comp. 4

(1983) 533:572.

Likewise

T. Steihaug, “The conjugate gradient method and trust regions in large scale optimization”,

SIAM J. Num. Anal. 20 (1983) 626:637

provides the basic truncated conjugate-gradient approach used so successfully for large-scale prob-

lems. More recently1

N. Gould, S. Lucidi, M. Roma and Ph. Toint, “Solving the trust-region subproblem using

the Lanczos method”, SIAM J. Optimization 9 (1999) 504:525

show how to improve on Steihaug’s approach by moving around the trust-region boundary. A

particularly nice new paper by

Y. Yuan, “On the truncated conjugate-gradient method”, Math. Programming, 87 (2000)

561:573

1We would hate to claim “seminal” status for one of our own papers!

118 APPENDIX A — SEMINAL BOOKS AND PAPERS

proves that Steihaug’s approximation gives at least 50% of the optimal function decrease when

applied to convex problems.

The Symmetric Rank-One quasi-Newton approximation

Since trust-region methods allow non-convex models, perhaps the simplest of all Hessian approxi-

mation methods, the Symmetric Rank-One update, is back in fashion. Although it is unclear who

first suggested the method,

C. Broyden, “Quasi-Newton methods and their application to function minimization”, Math.

Computation 21 (1967) 577:593

is the earliest reference that we know of. Its revival in fortune is due2 to

A. Conn, N. Gould and Ph. Toint, “Convergence of quasi-Newton matrices generated by

the Symmetric Rank One update” Math. Programming, 50 (1991) 177:196 (see also Math.

Comp. 50 (1988) 399:430), and

R. Byrd, H. Khalfan and R. Schnabel “Analysis of a symmetric rank-one trust region

method” SIAM J. Optimization 6 (1996) 1025:1039,

and it has now taken its place alongside the BFGS method as the pre-eminent updating formula.

More non-monotone methods

Non-monotone methods have also been proposed in the trust-region case. The basic reference here

is the paper by

Ph. Toint, “A non-monotone trust-region algorithm for nonlinear optimization subject to

convex constraints”, Math. Programming, 77 (1997) 69:94.

Barrier function methods

Although they appear to have originated in a pair of unpublished University of Oslo technical reports

by K. Frisch in the mid 1950s, (logarithmic) barrier function were popularized by

A. Fiacco and G. McCormick, “The sequential unconstrained minimization technique for

nonlinear programming: a primal-dual method”, Management Science 10 (1964) 360:366;

see also ibid (1964) 601:617.

A full early history is given in the book

A. Fiacco and G. McCormick, “Nonlinear programming: sequential unconstrained minimiza-

tion techniques” (1968), republished as Classics in Applied Mathematics 4, SIAM (1990).

The worsening conditioning of the Hessian was first highlighted by

F. Lootsma, “Hessian matrices of penalty functions for solving constrained optimization

problems”, Philips Research Reports, 24 (1969) 322:331, and

W. Murray, “Analytical expressions for eigenvalues and eigenvectors of the Hessian matri-

ces of barrier and penalty functions”, J. Optimization Theory and Applications, 7 (1971)

189:196,

2See previous footnote . . .

APPENDIX A — SEMINAL BOOKS AND PAPERS 119

although recent work by

M. Wright, “Ill-conditioning and computational error in interior methods for nonlinear pro-

gramming”, SIAM J. Optimization 9 (1999) 84:111, and

S. Wright, “Effects of finite-precision arithmetic on interior-point methods for nonlinear

programming”, SIAM J. Optimization 12 (2001) 36:78

demonstrates that this “defect” is far from fatal.

Interior-point methods

The interior-point revolution was started by

N. Karmarkar, “A new polynomial-time algorithm for linear programming”, Combinatorica

4 (1984) 373:395.

It did not take long for

P. Gill, W. Murray, M. Saunders, J. Tomlin and M. Wright, “On projected Newton barrier

methods for linear programming and an equivalence to Karmarkar’s projective method”,

Math. Programming, 36 (1986) 183:209

to realize that this radical “new” approach was actually something that nonlinear programmers had

tried (but, most unfortunately, discarded) in the past.

SQP methods

The first SQP method was proposed in the overlooked 1963 Harvard Master’s thesis of R. Wilson.

The generic linesearch SQP method is that of

B. Pschenichny, “Algorithms for general problems of mathematical programming”, Kiber-

netica, 6 (1970) 120:125,

while there is a much larger variety of trust-region SQP methods, principally because of the con-

straint incompatibility issue.

Merit functions for SQP

The first use of an exact penalty function to globalize the SQP method was by

S. Han, “A globally convergent method for nonlinear programming”, J. Optimization The-

ory and Applics, 22 (1977) 297:309, and

M. Powell, “A fast algorithm for nonlinearly constrained optimization calculations”, in Nu-

merical Analysis, Dundee 1977 (G. Watson, ed) Springer Verlag (1978) 144:157.

The fact that such a merit function may prevent full SQP steps was observed N. Maratos in his

1978 U. of London Ph. D. thesis, while methods for combating the Maratos effect were subsequently

proposed by

R. Fletcher, “Second-order corrections for non-differentiable optimization”, in Numerical

Analysis, Dundee 1981 (G. Watson, ed) Springer Verlag (1982) 85:114, and

R. Chamberlain, M. Powell, C. Lemaréchal, and H. Pedersen, “The watchdog technique

for forcing convergence in algorithms for constrained optimization”, Math. Programming

Studies, 16 (1982) 1:17.

120 APPENDIX A — SEMINAL BOOKS AND PAPERS

An SQP method that avoids the need for a merit function altogether by staying feasible is given by

E. Panier and A. Tits, “On combining feasibility, descent and superlinear convergence in

inequality constrained optimization”,Mathematical Programming, 59 (1993) 261;276.

Hessian approximations

There is a vast literature on suitable Hessian approximations for use in SQP methods. Rather than

point at individual papers, a good place to start is

P. Boggs and J. Tolle, “Sequential quadratic programming”, Acta Numerica 4 (1995) 1:51,

but see also our paper

N. Gould and Ph. Toint, “SQP methods for large-scale nonlinear programming”, in System

modelling and optimization, methods, theory and applications (M. Powell and S. Scholtes,

eds.) Kluwer (2000) 149:178.

Trust-region SQP methods

Since the trust-region and the linearized constraints may be incompatible, almost all trust-region

SQP methods modify the basic SQP method in some way. The S`1QP method is due to

R. Fletcher, “A model algorithm for composite non-differentiable optimization problems”,

Math. Programming Studies, 17 (1982) 67:76.

Methods that relax the constraints include those proposed by

A. Vardi, “A trust region algorithm for equality constrained minimization: convergence

properties and implementation”, SIAM J. Num. Anal., 22 (1985) 575:591, and

M. Celis, J. Dennis and R. Tapia, “A trust region strategy for nonlinear equality constrained

optimization”, in Numerical Optimization 1984 (P. Boggs, R. Byrd and R. Schnabel, eds),

SIAM (1985) 71:82,

as well as a method that appeared in the 1989 U. of Colorado at Boulder Ph. D. thesis of E.

Omojokun, supervised by R. Byrd. The Filter-SQP approach may be found in

R. Fletcher and S. Leyffer, “Nonlinear programming without a penalty function”, Math.

Programming, 91 (2002) 239:269,

while a complete convergence analysis for both SQP and interior-point variants is given by

A. Wächter and L. T. Biegler, “Line search Filter methods for nonlinear programming”,

SIAM J. Optimization 16 (2006) 1:31 and 32:48.

Modern methods for nonlinear programming

Many modern methods for nonlinearly constrained optimization tend to be SQP-interior-point hy-

brids. A good example is due to

R. Byrd, J. Gilbert and J. Nocedal, “A trust region method based on interior point tech-

niques for nonlinear programming”, Math. Programming A 89 (2000) 149:185,

and forms the basis for the excellent KNITRO package.

APPENDIX B

OPTIMIZATION RESOURCES

ON THE INTERNET

As we are all too keenly aware, the Internet provides a wealth of both information and misinforma-

tion on any subject under the sun. Here we suggest some useful resources relating to optimization.

APPENDIX B — OPTIMIZATION RESOURCES ON THE INTERNET 123

B.1 Answering questions on the web

A good starting point for finding out more about optimization are the two lists of Frequently Asked

Questions (FAQs) on optimization. The Linear Programming FAQ,

www-unix.mcs.anl.gov/otc/Guide/faq/linear-programming-faq.html ,

is dedicated to question on linear optimization problems as well as certain aspects of mixed integer

linear programming. The Nonlinear Programming FAQ,

www-unix.mcs.anl.gov/otc/Guide/faq/nonlinear-programming-faq.html ,

offers a concise introduction to nonlinear optimization. The NEOS guide,

www-fp.mcs.anl.gov/otc/Guide ,

provides an overview of optimization and the solvers available. It contains the optimization tree,

www-fp.mcs.anl.gov/otc/Guide/OptWeb ,

a dichotomy of optimization problems. Both sites are maintained by the Optimization Technology

Center

www.ece.nwu.edu/OTC ,

a loose collaboration between Argonne National Laboratory and Northwestern University in the

USA.

Hans Mittelmann of Arizona State University maintains a decision tree for optimization soft-

ware,

plato.la.asu.edu/guide.html ,

and he also provides a useful set of benchmarks for optimization software,

plato.la.asu.edu/bench.html .

Harvey Greenberg’s Mathematical Programming Glossary,

www.cudenver.edu/ hgreenbe/glossary/glossary.html

contains brief definitions of commonly used expressions in optimization and operations research.

The usenet newsgroup

sci.op-research

is dedicated to answering questions on optimization and operations research. Brian Borchers edits

a weekly digest of postings to it. You can receive the digest by sending an email to

listserv@listserv.okstate.edu

with the message

SUBSCRIBE ORCS-L Your Name .

124 APPENDIX B — OPTIMIZATION RESOURCES ON THE INTERNET

B.2 Solving optimization problems on the web

B.2.1 The NEOS server

Probably the most important and useful optimization site on the web is the NEOS server3 at

www-neos.mcs.anl.gov/neos

which allows you to solve optimization problems over the internet. NEOS handles several thousand

(!) submissions per week. The server provides a wide choice of state-of-the-art optimization software

which can be used remotely without the need to install or maintain any software.

The problems should preferably be formulated in a modelling language such as AMPL4 or

GAMS5 (see Section B.2.3). However, some solvers also accept problem descriptions in other formats

such as C or fortran source code or the verbose linear programming MPS format.

There are a number of solvers implementing algorithms for nonlinearly constrained optimization

problems. Most are hybrids, and thus capable of handling both equality and inequality constraints.

There are at least two solvers implementing augmented Lagrangian ideas (see Part 5).

LANCELOT implements an augmented Lagrangian algorithm. It uses a trust-region to promote

global convergence.

MINOS implements a sequential linearly constrained algorithm. Steplength control is heuristic (for

want of a suitable merit function), but superlinear convergence is often achieved.

There are at least four interior point solvers (see Part 6).

IPOPT, is a freely available line-search filter primal-dual interior-point method.

KNITRO (with a silent “K”), is a primal-dual interior-point method which uses trust regions.

LOQO is based on an infeasible primal-dual interior-point method. It uses a linesearch and a

version of a filter to enforce global convergence.

MOSEK can only be used to solve convex large-scale smooth nonlinear optimization problems. It

does not work for nonconvex problems.

Finally, there are at least three solvers implementing SQP algorithms (see Part 7).

DONLP2 implements a linesearch SQP algorithm with an exact non-differentiable `1-penalty func-

tion as a merit function. It uses dense linear algebra.

FILTER implements a trust-region SQP algorithm which is suitable for solving large nonlinearly

constrained problems with small degrees of freedom. It uses a filter (see Part 7.4.3) to promote

global convergence.

3J. Czyzyk, M. Mesnier and J. Moré. The NEOS server. IEEE Journal on Computational Science and Engineering,

5:68–75, 1998.
4R. Fourer, D. Gay and B. Kernighan. AMPL: A modelling Language for Mathematical Programming. Boyd &

Fraser Publishing Company, Massachusetts, 1993.
5A. Brooke, D. Kendrick, A. Meeraus and R. Raman. GAMS A user’s guide. GAMS Developments Corporation,

1217 Potomac Street, N.W., Washington DC 20007, USA, December 1998.

APPENDIX B — OPTIMIZATION RESOURCES ON THE INTERNET 125

SNOPT implements a linesearch SQP algorithm which uses an augmented Lagrangian as a merit

function. It maintains a positive definite limited memory approximation of the Hessian of the

Lagrangian.

There is also a range of other solvers not covered in this article.

CONOPT is a feasible path method based on the generalized reduced gradient algorithm.

PATHNLP finds stationary points for the nonlinear problem by solving the Karush-Kuhn-Tucker

conditions (see Theorems 1.7 and 1.9), written as a mixed complementarity problem, using

the PATH solver.

Consult the NEOS guide (see Section B.1) for appropriate contacts.

A wide range of other optimization problems can also be solved such as semi-infinite optimization,

mixed integer linear and nonlinear optimization, semidefinite optimization, complementarity prob-

lems, non-differentiable optimization, and unconstrained and stochastic optimization problems. The

fact that the server maintains state-of-the-art optimization software makes is suitable for medium

to large scale applications.

Users with their own copy of the modelling systems AMPL or GAMS can even invoke the NEOS

solvers out of their local AMPL or GAMS session using KESTREL,

www-neos.mcs.anl.gov/neos/kestrel.html .

This is very convenient as it makes it possible to post- or pre-process the models using a local copy

of the modelling tool.

B.2.2 Other online solvers

The system www-Nimbus, from

nimbus.mit.jyu.fi ,

is designed to solve (small) multi-objective optimization problems. It consists of a sequence of menus

to input the multi-objective problem as well as some facilities for displaying the solution. It requires

the user to interactively guide the optimization and requires some familiarity with multi-objective

terminology. An online tutorial guides the user through the process. Certain topology optimization

problems can be solved at

www.topopt.dtu.dk

The input is via a GUI and the solution is also display graphically. The system Baron,

archimedes.scs.uiuc.edu/baron/availability.html ,

allows the solution of small global optimization problems online.

B.2.3 Useful sites for modelling problems prior to online solution

AMPL (A Mathematical Programming Language)

www.ampl.com

is a modelling language for optimization problems. The site lists extensions to the book, allows the

126 APPENDIX B — OPTIMIZATION RESOURCES ON THE INTERNET

solution of example models and contains a list of available solvers. Further AMPL models can be

found at the following sites:

NLP models by Bob Vanderbei:

www.sor.princeton.edu/∼rvdb/ampl/nlmodels .

MINLP and MPEC models by Sven Leyffer:

www.maths.dundee.ac.uk/∼sleyffer/MacMINLP and

www.maths.dundee.ac.uk/∼sleyffer/MacMPEC .

The COPS collection of Jorge Moré:

www-unix.mcs.anl.gov/∼more/cops .

These sites are especially useful to help with your own modelling exercises.

GAMS (the General Algebraic Modelling System)

www.gams.com

is another modelling language. The site contains documentation on GAMS and some example

models. More GAMS models can be found on the GAMS-world pages. These are sites, dedicated

to important modelling areas, see

www.gamsworld.org .

It also offers a translation service from one modelling language to another.

Recently, optimization solvers have also been interfaced to matlab at

tomlab.biz/ .

B.2.4 Free optimization software

An extension of MPS to nonlinear optimization, SIF (standard input format), can be used to model

optimization problems. The reference document can be found at

www.numerical.rl.ac.uk/lancelot/sif/sifhtml.html .

A collection of optimization problems in SIF is available at CUTEr can be found via

www.cse.clrc.ac.uk/Activity/CUTEr .

Two solvers, LANCELOT

www.cse.clrc.ac.uk/Activity/LANCELOT

and GALAHAD

www.cse.clrc.ac.uk/Activity/GALAHAD

are available freely for non-commercial users.

AMPL and some solvers are also available freely in limited size student versions, which allow the

solution of problems of up to 300 variables and constraints, see

netlib.bell-labs.com/netlib/ampl/student/ .

APPENDIX B — OPTIMIZATION RESOURCES ON THE INTERNET 127

B.3 Optimization reports on the web

Optimization online,

www.optimization-online.org ,

is an e-print site for papers on optimization. It is sponsored by the Mathematical Programming

Society. It allows you to search for preprints on certain subjects. A monthly digest summarizes all

monthly submissions.

The two main optimization journals, Mathematical Programming and SIAM Journal on Opti-

mization maintain free sites with access to titles and abstracts, see

link.springer.de/link/service/journals/10107/,

and

www.siam.org/journals/siopt/siopt.htm .

128 APPENDIX B — OPTIMIZATION RESOURCES ON THE INTERNET

APPENDIX C

SKETCHES OF PROOFS

As promised, we now give sketches of proofs of almost all the results we have stated. For the few

results that are simply too complicated to summarize, we indicate where the reader might find the

complete proof.

SKETCHES OF PROOFS — PART 1 131

Theorems 1.1—1.3 can be found in any good book on analysis. Theorems 1.1 and 1.2 follow directly

by considering the remainders of truncated Taylor expansions of the univariate function f(x+ αs)

with α ∈ [0, 1], while Theorem 1.3 uses the Newton formula

F (x+ s) = F (x) +

∫ 1

0

∇xF (x+ αs)sdα.

Proof of Farkas’ lemma

The result is trivial if C = 0. So otherwise, suppose that g ∈ C and that 〈s, ai〉 ≥ 0 for i ∈ A. Then

〈s, g〉 =
∑

i∈A

yi〈s, ai〉 ≥ 0.

Hence S is empty, since 〈s, g〉 is non-negative.

Conversely, suppose that g /∈ C, and consider

min
c∈C

‖g − c‖2 = min
c∈C̄

‖g − c‖2,

where

C̄ = C
⋂

{c | ‖g − c‖2 ≤ ‖g − c̄‖2}

and c̄ is any point in C. Since C is closed, and {c | ‖g− c‖2 ≤ ‖g− c̄‖2} is compact, C̄ is non-empty

and compact, and it follows from Weierstrass’ Theorem (namely, that the minimizer of continuous

function within a compact set is achieved) that

c∗ = arg min
c∈C

‖g − c‖2

exists. As C is convex with 0, c∗ ∈ C, αc∗ ∈ C for all α ≥ 0, and hence φ(α) = ‖g − αc∗‖2
2 is

minimized at α = 1. Hence φ′(1) = 0 and thus

〈c∗, c∗ − g〉 = 0. (C.1)

By convexity, if c ∈ C, so is c∗ + θ(c− c∗) for all θ ∈ [0, 1], and hence by optimality of c∗

‖g − c∗‖2
2 ≤ ‖g − c∗ + θ(c∗ − c)‖2

2.

Expanding and taking the limit as θ approaches zero, we deduce that

0 ≤ 〈g − c∗, c∗ − c〉 = 〈c∗ − g, c〉

using (C.1). Thus, defining s = c∗ − g, 〈s, c〉 ≥ 0 for all c ∈ C, and in particular 〈s, ai〉 ≥ 0 for all

i ∈ A. But as s 6= 0, as c∗ ∈ C and g /∈ C, and 〈s, g〉 = −〈s, s〉 < 0, using (C.1), we have exhibited

the separating hyperplane 〈s, v〉 = 0 as required when g /∈ C.

132 APPENDIX C — SKETCHES OF PROOFS

Proof of Theorem 1.4

Suppose otherwise, that g(x∗) 6= 0. A Taylor expansion in the direction −g(x∗) gives

f(x∗ − αg(x∗)) = f(x∗) − α‖g(x∗)‖2 +O(α2).

For sufficiently small α, 1
2
α‖g(x∗)‖2 ≥ O(α2), and thus

f(x∗ − αg(x∗)) ≤ f(x∗) − 1
2
α‖g(x∗)‖2 < f(x∗).

This contradicts the hypothesis that x∗ is a local minimizer.

Proof of Theorem 1.5

Again, suppose otherwise that 〈s,H(x∗)s〉 < 0. A Taylor expansion in the direction s gives

f(x∗ + αs) = f(x∗) + 1
2
α2〈s,H(x∗)s〉 +O(α3),

since g(x∗) = 0. For sufficiently small α, − 1
4
α2〈s,H(x∗)s〉 ≥ O(α3), and thus

f(x∗ + αs) ≤ f(x∗) + 1
4
α2〈s,H(x∗)s〉 < f(x∗).

Once again, this contradicts the hypothesis that x∗ is a local minimizer.

Proof of Theorem 1.6

By continuity H(x) is positive definite for all x in a open ball N around x∗. The generalized mean-

value theorem then says that if x∗ + s ∈ N , there is a value z between the points x∗ and x∗ + s for

which

f(x∗ + s) = f(x∗) + 〈s, g(x∗)〉 + 1
2
〈s,H(z)s〉 = f(x∗) + 1

2
〈s,H(z)s〉 > f(x∗)

for all nonzero s, and thus x∗ is an isolated local minimizer.

Proof of Theorem 1.7

We consider feasible perturbations about x∗. Consider a vector valued C2 (C3 for Theorem 1.8)

function x(α) of the scalar α for which x(0) = x∗ and c(x(α)) = 0. (The constraint qualification is

that all such feasible perturbations are of this form). We may then write

x(α) = x∗ + αs+ 1
2
α2p+O(α3) (C.2)

and we require that

0 = ci(x(α)) = ci(x∗ + αs+ 1
2
α2p+O(α3))

= ci(x∗) + 〈ai(x∗), αs+ 1
2
α2p〉 + 1

2
α2〈s,Hi(x∗)s〉 +O(α3)

= α〈ai(x∗), s〉 + 1
2
α2 (〈ai(x∗), p〉 + 〈s,Hi(x∗)s〉) +O(α3)

SKETCHES OF PROOFS — PART 1 133

using Taylor’s theorem. Matching similar asymptotic terms, this implies that for such a feasible

perturbation

A(x∗)s = 0 (C.3)

and

〈ai(x∗), p〉 + 〈s,Hi(x∗)s〉 = 0 (C.4)

for all i = 1, . . . ,m. Now consider the objective function

f(x(α)) = f(x∗ + αs+ 1
2
α2p+O(α3))

= f(x∗) + 〈g(x∗), αs+ 1
2
α2p〉 + 1

2
α2〈s,H(x∗)s〉 +O(α3)

= f(x∗) + α〈g(x∗), s〉 + 1
2
α2 (〈g(x∗), p〉 + 〈s,H(x∗)s〉) +O(α3).

(C.5)

This function is unconstrained along x(α), so we may deduce, as in Theorem 1.4, that

〈g(x∗), s〉 = 0 for all s such that A(x∗)s = 0. (C.6)

If we let S be a basis for the null-space of A(x∗), we may write

g(x∗) = AT (x∗)y∗ + Sz∗ (C.7)

for some y∗ and z∗. Since, by definition, A(x∗)S = 0, and as it then follows from (C.6) that

gT (x∗)S = 0, we have that

0 = ST g(x∗) = STAT (x∗)y∗ + STSz∗ = STSz∗.

Hence STSz∗ = 0 and thus z∗ = 0 since S is of full rank. Thus (C.7) gives

g(x∗) −AT (x∗)y∗ = 0. (C.8)

Proof of Theorem 1.8

We have shown that

f(x(α)) = f(x∗) + 1
2
α2 (〈p, g(x∗)〉 + 〈s,H(x∗)s〉) +O(α3) (C.9)

for all s satisfying A(x∗)s = 0, and that (C.8) holds. Hence, necessarily,

〈p, g(x∗)〉 + 〈s,H(x∗)s〉 ≥ 0 (C.10)

for all s and p satisfying (C.3) and (C.4). But (C.8) and (C.4) combine to give

〈p, g(x∗)〉 =

m∑

i=1

(y∗)i〈p, ai(x∗)〉 = −
m∑

i=1

(y∗)i〈s,Hi(x∗)s〉

and thus (C.10) is equivalent to

〈

s,

(

H(x∗) −
m∑

i=1

(y∗)iHi(x∗)

)

s

〉

≡ 〈s,H(x∗, y∗)s〉 ≥ 0

for all s satisfying (C.3).

134 APPENDIX C — SKETCHES OF PROOFS

Proof of Theorem 1.9

As in the proof of Theorem 1.7, we consider feasible perturbations about x∗. Since any constraint

that is inactive at x∗ (i.e., ci(x∗) > 0) will remain inactive for small perturbations, we need only

consider perturbations that are constrained by the constraints active at x∗, (i.e., ci(x∗) = 0). Let A
denote the indices of the active constraints. We then consider a vector valued C2 (C3 for Theorem

1.10) function x(α) of the scalar α for which x(0) = x∗ and ci(x(α)) ≥ 0 for i ∈ A. In this case,

assuming that x(α) may be expressed as (C.2), we require that

0 ≤ ci(x(α)) = c(x∗ + αs+ 1
2
α2p+O(α3))

= ci(x∗) + 〈ai(x∗), αs+ 1
2
α2p〉 + 1

2
α2〈s,Hi(x∗)s〉 +O(α3)

= α〈ai(x∗), s〉 + 1
2
α2 (〈ai(x∗), p〉 + 〈s,Hi(x∗)s〉) +O(α3)

for all i ∈ A. Thus

〈s, ai(x∗)〉 ≥ 0 (C.11)

and

〈p, ai(x∗)〉 + 〈s,Hi(x∗)s〉 ≥ 0 when 〈s, ai(x∗)〉 = 0 (C.12)

for all i ∈ A. The expansion of f(x(α)) (C.5) then implies that x∗ can only be a local minimizer if

S = {s | 〈s, g(x∗)〉 < 0 and 〈s, ai(x∗)〉 ≥ 0 for i ∈ A} = ∅.

But then the result follows directly from Farkas’ lemma.

Proof of Theorem 1.10

The expansion (C.5) for the change in the objective function will be dominated by the first-order

term α〈s, g(x∗)〉 for feasible perturbations unless 〈s, g(x∗)〉 = 0, in which case the expansion (C.9)

is relevant. Thus we must have that (C.10) holds for all feasible s for which 〈s, g(x∗)〉 = 0. The

latter requirement gives that

0 = 〈s, g(x∗)〉 =
∑

i∈A

yi〈s, ai(x∗)〉,

and hence that either yi = 0 or 〈s, ai(x∗)〉 = 0 (or both).

We now focus on the subset of all feasible arcs that ensure ci(x(α)) = 0 if yi > 0 and ci(x(α)) ≥ 0

if yi = 0 for i ∈ A. For those constraints for which ci(x(α) = 0, we have that (C.3) and (C.4) hold,

and thus for such perturbations s ∈ N+. In this case

〈p, g(x∗)〉 =
∑

i∈A

yi〈p, ai(x∗)〉 =
∑

i∈A
yi>0

yi〈p, ai(x∗)〉 = −
∑

i∈A
yi>0

yi〈s,Hi(x∗)s〉 = −
∑

i∈A

yi〈s,Hi(x∗)s〉

This combines with (C.10) to give that

〈s,H(x∗, y∗)s〉 ≡
〈

s,

(

H(x∗) −
m∑

i=1

(y∗)iHi(x∗)

)

s

〉

= 〈p, g(x∗)〉 + 〈s,H(x∗)s〉 ≥ 0.

for all s ∈ N+, which is the required result.

SKETCHES OF PROOFS — PART 2 135

Proof of Theorem 1.11

Consider any feasible arc x(α). We have seen that (C.11) and (C.12) hold, and that first-order

feasible perturbations are characterized by N+. It then follows from (C.12) that

〈p, g(x∗)〉 =
∑

i∈A

yi〈p, ai(x∗)〉 =
∑

i∈A
〈s,ai(x∗)〉=0

yi〈p, ai(x∗)〉 ≥ −
∑

i∈A
〈s,ai(x∗)〉=0

yi〈s,Hi(x∗)s〉 = −
∑

i∈A

yi〈s,Hi(x∗)s〉,

and hence by assumption that

〈p, g(x∗)〉 + 〈s,H(x∗)s〉 ≥
〈

s,

(

H(x∗) −
m∑

i=1

(y∗)iHi(x∗)

)

s

〉

≡ 〈s,H(x∗, y∗)s〉 > 0

for all s ∈ N+. But this then combines with (C.5) and (C.11) to show that f(x(α)) > f(x∗) for all

sufficiently small α.

Proof of Theorem 2.1

From Taylor’s theorem (Theorem 1.1), and using the bound

α ≤ 2(β − 1)〈p, g(x)〉
γ(x)‖p‖2

2

,

we have that
f(x+ αp) ≤ f(x) + α〈p, g(x)〉 + 1

2
γ(x)α2‖p‖2

≤ f(x) + α〈p, g(x)〉 + α(β − 1)〈p, g(x)〉
= f(x) + αβ〈p, g(x)〉.

Proof of Corollary 2.2

Theorem 2.1 shows that the linesearch will terminate as soon as α(l) ≤ αmax. There are two cases

to consider. Firstly, it may be that αinit satisfies the Armijo condition, in which case αk = αinit.

If not, there must be a last linesearch iteration, say the lth, for which α(l) > αmax (if the linesearch

has not already terminated). Then αk ≥ α(l+1) = τα(l) > ταmax. Combining these two cases gives

the required result.

Proof of Theorem 2.3

We shall suppose that gk 6= 0 for all k and that

lim
k→∞

fk > −∞.

From the Armijo condition, we have that

fk+1 − fk ≤ αkβ〈pk, gk〉

136 APPENDIX C — SKETCHES OF PROOFS

for all k, and hence summing over the first j iterations

fj+1 − f0 ≤
j
∑

k=0

αkβ〈pk, gk〉.

Since the left-hand side of this inequality is, by assumption, bounded below, so is the sum on

right-hand-side. As this sum is composed of negative terms, we deduce that

lim
k→∞

αk〈pk, gk〉 = 0.

Now define the two sets

K1 =

{

k | αinit >
2τ(β − 1)〈pk, gk〉

γ‖pk‖2
2

}

and

K2 =

{

k | αinit ≤ 2τ(β − 1)〈pk, gk〉
γ‖pk‖2

2

}

,

where γ is the assumed uniform Lipschitz constant. For k ∈ K1,

αk ≥ 2τ(β − 1)〈pk, gk〉
γ‖pk‖2

2

in which case

αk〈pk, gk〉 ≤
2τ(β − 1)

γ

(〈pk, gk〉
‖pk‖

)2

< 0.

Thus

lim
k∈K1→∞

|〈pk, gk〉|
‖pk‖2

= 0. (C.13)

For k ∈ K2,

αk ≥ αinit

in which case

lim
k∈K2→∞

|〈pk, gk〉| = 0. (C.14)

Combining (C.13) and (C.14) gives the required result.

Proof of Theorem 2.4

Follows immediately from Theorem 2.3, since for pk = −gk,

min (|〈pk, gk〉|, |〈pk, gk〉|/‖pk‖2) = ‖gk‖2 min (1, ‖gk‖2)

and thus

lim
k→∞

min (|〈pk, gk〉|, |〈pk, gk〉|/‖pk‖2) = 0

implies that limk→∞ gk = 0.

SKETCHES OF PROOFS — PART 2 137

Proof of Theorem 2.5

Let λmin(Bk) and λmax(Bk) be the smallest and largest eigenvalues of Bk. By assumption, there

are bounds λmin > 0 and λmax such that

λmin ≤ λmin(Bk) ≤
〈s,Bks〉
‖s‖2

≤ λmax(Bk) ≤ λmax

for any nonzero vector s. Thus

|〈pk, gk〉| = |〈gk, B−1
k gk〉| ≥ λmin(B−1

k)‖gk‖2
2 =

1

λmax(Bk)
‖gk‖2

2 ≥ λ−1
max‖gk‖2

2.

In addition

‖pk‖2
2 = 〈gk, B−2

k gk〉 ≤ λmax(B
−2
k)‖gk‖2

2 =
1

λmin(B2
k)

‖gk‖2
2 ≤ λ−2

min‖gk‖2
2,

and hence

‖pk‖2 ≤ λ−1
min‖gk‖2,

which leads to |〈pk, gk〉|
‖pk‖2

≥ λmin

λmax
‖gk‖2.

Thus

min (|〈pk, gk〉|, |〈pk, gk〉|/‖pk‖2) ≥ λ−1
max‖gk‖2 min (‖gk‖2, λmin) .

and hence

lim
k→∞

min (|〈pk, gk〉|, |〈pk, gk〉|/‖pk‖2) = 0

implies, as before, that limk→∞ gk = 0.

Proof of Theorem 2.6

Consider the sequence of iterates xk, k ∈ K, whose limit is x∗. By continuity, Hk is positive definite

for all such k sufficiently large. In particular, we have that there is a k0 ≥ 0 such that

〈pk, Hkpk〉 ≥ 1
2
λmin(H∗)‖pk‖2

2

for all k ∈ K ≥ k0, where λmin(H∗) is the smallest eigenvalue of H(x∗). We may then deduce that

|〈pk, gk〉| = −〈pk, gk〉 = 〈pk, Hkpk〉 ≥ 1
2
λmin(H∗)‖pk‖2

2. (C.15)

for all such k, and also that

lim
k∈K→∞

pk = 0

since Theorem 2.5 implies that at least one of the left-hand sides of (C.15) and

|〈pk, gk〉|
‖pk‖2

= −〈pk, gk〉
‖pk‖2

≥ 1
2
λmin(H∗)‖pk‖2

converges to zero for all such k.

138 APPENDIX C — SKETCHES OF PROOFS

From Taylor’s theorem, there is a zk between xk and xk + pk such that

f(xk + pk) = fk + 〈pk, gk〉 + 1
2
〈pk, H(zk)pk〉.

Thus, the Lipschitz continuity of H gives that

f(xk + pk) − fk − 1
2
〈pk, gk〉 = 1

2
(〈pk, gk〉 + 〈pk, H(zk)pk〉)

= 1
2
(〈pk, gk〉 + 〈pk, Hkpk〉) + 1

2
〈pk, (H(zk) −Hk)pk〉

≤ 1
2
γ‖zk − xk‖2‖pk‖2

2 ≤ 1
2
γ‖pk‖3

2

(C.16)

since Hkpk + gk = 0. Now pick k sufficiently large so that

γ‖pk‖2 ≤ λmin(H∗)(1 − 2β).

In this case, (C.15) and (C.16) give that

f(xk + pk) − fk ≤ 1
2
〈pk, gk〉 + 1

2
λmin(H∗)(1 − 2β)‖pk‖2

2 ≤ 1
2
(1 − (1 − 2β))〈pk , gk〉 = β〈pk, gk〉,

and thus that a unit stepsize satisfies the Armijo condition for all sufficiently large k ∈ K.

Now note that ‖H−1
k ‖2 ≤ 2/λmin(H∗) for all sufficiently large k ∈ K. The iteration gives

xk+1 − x∗ = xk − x∗ −H−1
k gk = xk − x∗ −H−1

k (gk − g(x∗)) = H−1
k (g(x∗) − gk −Hk(x∗ − xk)) .

But Theorem 1.3 gives that

‖g(x∗) − gk −Hk (x∗ − xk) ‖2 ≤ γ‖x∗ − xk‖2
2.

Hence

‖xk+1 − x∗‖2 ≤ γ‖H−1
k ‖2‖x∗ − xk‖2

2

which is (iii) when κ = 2γ/λmin(H∗) for k ∈ K. Result (ii) follows since once an iterate becomes

sufficiently close to x∗ for sufficiently large k ∈ K, this implies k + 1 ∈ K, and hence K = IN. Thus

(i) and (iii) are true for all k sufficiently large.

Conjugate-gradient methods (Part 2.5.4)

All of the results given in Part 2.5.4 are easy to verify. For completeness, we include formal state-

ments and sketches of proofs here.

Lemma C.2.1. Suppose that Di = (d0 : · · · : di−1), Di = {p | p = Dipd for some pd ∈ IRi} and

pi = arg min
p∈Di

q(p) = 〈p, g〉 + 1
2
〈p,Bp〉. Then

〈dj , gi〉 = 0 for j = 0, . . . , i− 1, (C.17)

where

gi = Bpi + g. (C.18)

SKETCHES OF PROOFS — PART 2 139

Proof: We require pi = Dipid, where pid = arg min
pd∈IRi

q(Dipd). Since q(Dipd) = 〈pd, Di T g〉 +

1
2
〈p,dDi TBDipd〉, stationarity of the gradient of q(Dipd) yields

0 = Di TBDipid +Di T g = Di T (BDipid + g) = Di T (Bpi + g) = Di T gi,

which is (C.17) in vector form.

Lemma C.2.2. Under the assumptions of Lemma C.2.1,

pi = pi−1 − 〈di−1, gi−1〉Di(Di TBDi)−1ei. (C.19)

Proof. Clearly pi−1 ∈ Di−1 ⊂ Di, and thus we require pi = pi−1+Dipid, where pid = arg min
pd∈IRi

q(pi−1+

Dipd). But

q(pi−1 +Dipd) = q(pi−1) + 〈pd, Di T (g +Bpi−1)〉 + 1
2
〈pd, Di TBDipd〉

= q(pi−1) + 〈pd, Di T gi−1〉 + 1
2
〈pd, Di TBDipd〉

= q(pi−1) + 〈di−1, gi−1〉〈pd, ei〉 + 1
2
〈pd, Di TBDipd〉.

Stationarity of the gradient of q(pi−1+Dipd) then gives the required result pid = −di−1 T gi−1(Di TBDi)−1ei.

Lemma C.2.3. Suppose, in addition to the assumptions of Lemma C.2.1, that

〈di, Bdj〉 = 0 for i 6= j. (C.20)

Then

pi = pi−1 + αi−1di−1, (C.21)

where

αi−1 = − 〈di−1, gi−1〉
〈di−1, Bdi−1〉 . (C.22)

Proof. The B-conjugacy (C.20) of the {dj} implies thatDi TBDi is a diagonal matrix with diagonal

entries 〈dj , Bdj〉 for j = 0, . . . i−1. Thus (Di TBDi)−1ei = ei/〈di−1, Bdi−1〉. The result then follows

directly from (C.19).

Lemma C.2.4. (Orthogonal gradients) Suppose, in addition to the assumptions of Lemma C.2.3,

that

di = −gi +
i−1∑

j=0

βijdj . (C.23)

Then

〈gi, gj〉 = 0 for all i 6= j. (C.24)

Proof. It follows directly by induction from (C.23) that span{gi} = span{di}. Thus gj =
∑j

k=0 γ
j,kdk for some γj,k, and hence from (C.17) that 〈gi, gj〉 =

∑j
k=0 γ

j,k〈gi, dk〉 = 0 when

j < i.

Lemma C.2.5. Under the assumptions of Lemma C.2.4,

〈di, gi〉 = 〈di, g〉 (C.25)

140 APPENDIX C — SKETCHES OF PROOFS

Proof. It follows from (C.21) that pi =
∑i−1

j=0 αjd
j . Thus (C.18) and (C.20) together give

〈di, gi〉 = 〈di, g +Bpi〉 = 〈di, g +

i−1∑

j=0

αj〈di, Bdj〉 = 〈di, g〉〉

Lemma C.2.6. Under the assumptions of Lemma C.2.4,

〈di, gi〉 = −‖gi‖2
2. (C.26)

Proof. It follows directly from (C.23) that 〈gi, di〉 = −〈gi, gi〉 +
∑i−1
j=0 β

ij〈gi, dj〉. The result then

follows immediately from (C.17).

Corollary C.2.7. Under the assumptions of Lemma C.2.4,

αi =
‖gi‖2

2

〈di, Bdi〉 . (C.27)

Proof. This is immediate from (C.24) and (C.26).

Lemma C.2.8. Under the assumptions of Lemma C.2.4,

〈gi, Bdj〉 =







0 if j < i− 1

‖gi‖2
2

αi−1
if j = i− 1

(C.28)

Proof. It follows directly from (C.18) and (C.21) that gj+1 = gj+αjBdj , and thus that 〈gi, gj+1〉 =

〈gi, gj〉 + αj〈gi, Bdj〉. But then (C.24) implies that 〈gi, Bdj〉 = 0 if j < i − 1, while, if j = i − 1,

〈gi, gi〉 = 〈gi, gi−1〉 + αi−1〈gi, Bdi−1〉 from which we deduce (C.28) once again using (C.24).

Lemma C.2.9. Under the assumptions of Lemma C.2.4,

βij =







0 if j < i− 1

βi ≡ ‖gi‖2
2

‖gi−1‖2
2

if j = i− 1

Proof. The required B-conjugacy (C.20) and (C.23) give that

0 = 〈dj , Bdi〉 = −〈dj , Bgi〉 +

i−1∑

k=0

βik〈dj , Bdk〉 = −〈dj , Bgi〉 + βij〈dj , Bdj〉

and thus that

βij = 〈dj , Bgi〉/〈dj , Bdj〉.

The result follows immediately from (C.28) for j < i− 1. For j = i− 1, again using (C.27) and now

also (C.27), as required we have

βi i−1 =
〈di−1}Bgi, 〉
〈di−1, Bdi−1〉 =

‖gi‖2
2

αi−1〈di−1, Bdi−1〉 =
‖gi‖2

2

‖gi−1‖2
2

.

SKETCHES OF PROOFS — PART 3 141

Lemma C.2.10. Under the assumptions of Lemma C.2.4,

〈pi, g〉 ≤ 〈pi−1, g〉 < 0 for all i > 0.

Proof. It follows immediately from (C.21), (C.22) and (C.25) that

pi = pi−1 − 〈g, di−1〉
〈di−1, Bdi−1〉d

i−1,

and thus

〈g, pi〉 = 〈g, pi−1〉 − 〈g, di−1〉2
〈di−1, Bdi−1〉 ,

from which it follows that 〈g, pi〉 < 〈g, pi−1〉. The result then follows by induction, since

〈g, p1〉 = − ‖g‖4
2

〈g,Bg〉 < 0.

Proof of Theorem 3.1

Firstly note that, for all α ≥ 0,

mk(−αgk) = fk − α‖gk‖2
2 + 1

2
α2〈gk, Bkgk〉. (C.29)

If gk is zero, the result is immediate. So suppose otherwise. In this case, there are three possibilities:

(i) the curvature 〈gk, Bkgk〉 is not strictly positive; in this case mk(−αgk) is unbounded from below

as α increases, and hence the Cauchy point occurs on the trust-region boundary.

(ii) the curvature 〈gk, Bkgk〉 > 0 and the minimizer of mk(−αgk) occurs at or beyond the trust-

region boundary; once again, the the Cauchy point occurs on the trust-region boundary.

(iii) the curvature 〈gk, Bkgk〉 > 0 and the minimizer of mk(−αgk), and hence the Cauchy point,

occurs before the trust-region is reached.

We consider each case in turn;

Case (i). In this case, since 〈gk, Bkgk〉 ≤ 0, (C.29) gives

mk(−αgk) = fk − α‖gk‖2
2 + 1

2
α2〈gk, Bkgk〉 ≤ fk − α‖gk‖2

2 (C.30)

for all α ≥ 0. Since the Cauchy point lies on the boundary of the trust region

αC

k =
∆k

‖gk‖
. (C.31)

Substituting this value into (C.30) gives

fk −mk(s
C

k) ≥ ‖gk‖2
2

∆k

‖gk‖
≥ κs‖gk‖2∆k ≥ 1

2
κs‖gk‖2∆k (C.32)

since ‖gk‖2 ≥ κs‖gk‖.

142 APPENDIX C — SKETCHES OF PROOFS

Case (ii). In this case, let α∗
k be the unique minimizer of (C.29); elementary calculus reveals that

α∗
k =

‖gk‖2
2

〈gk, Bkgk〉
. (C.33)

Since this minimizer lies on or beyond the trust-region boundary (C.31) and (C.33) together imply

that

αC

k 〈gk, Bkgk〉 ≤ ‖gk‖2
2.

Substituting this last inequality in (C.29), and using (C.31) and ‖gk‖2 ≥ κs‖gk‖, it follows that

fk −mk(s
C

k) = αC

k‖gk‖2
2 − 1

2
[αC

k]
2〈gk, Bkgk〉 ≥ 1

2
αC

k‖gk‖2
2 = 1

2
‖gk‖2

2

∆k

‖gk‖
≥ 1

2
κs‖gk‖2∆k.

Case (iii). In this case, αC

k = α∗
k, and (C.29) becomes

fk −mk(s
C

k) =
‖gk‖4

2

〈gk, Bkgk〉
− 1

2

‖gk‖4
2

〈gk, Bkgk〉
= 1

2

‖gk‖4
2

〈gk, Bkgk〉
≥ 1

2

‖gk‖2
2

1 + ‖Bk‖2
,

where

|〈gk, Bkgk〉| ≤ ‖gk‖2
2‖Bk‖2 ≤ ‖gk‖2

2(1 + ‖Bk‖2)

because of the Cauchy-Schwarz inequality.

The result follows since it is true in each of the above three possible cases. Note that the “1+”

is only needed to cover case where Bk = 0, and that in this case, the “min” in the theorem might

actually be replaced by κs∆k.

Proof of Corollary 3.2

Immediate from Theorem 3.1 and the requirement that mk(sk) ≤ mk(s
C

k).

Proof of Lemma 3.3

The generalized mean-value theorem gives that

f(xk + sk) = f(xk) + 〈sk,∇xf(xk)〉 + 1
2
〈sk,∇xxf(ξk)sk〉

for some ξk in the segment [xk, xk + sk]. Thus

|f(xk + sk) −mk(sk)| = 1
2
|〈sk, H(ξk)sk〉 − 〈sk, Bksk〉| ≤ 1

2
|〈sk, H(ξk)sk〉| + 1

2
|〈sk, Bksk〉|

≤ 1
2
(κh + κb)‖sk‖2

2 ≤ 1
2
κ2
l (κh + κb)‖sk‖2 ≤ κd∆

2
k

using the triangle and Cauchy-Schwarz inequalities.

Proof of Lemma 3.4

By definition,

1 + ‖Bk‖2 ≤ κh + κb,

SKETCHES OF PROOFS — PART 3 143

and hence for any radius satisfying the given (first) bound,

κs∆k ≤ ‖gk‖2

κh + κb
≤ ‖gk‖2

1 + ‖Bk‖2
.

As a consequence, Corollary 3.2 gives that

fk −mk(sk) ≥ 1
2
‖gk‖2 min

[‖gk‖2

1 + ‖Bk‖2
, κs∆k

]

= 1
2
κs‖gk‖2∆k. (C.34)

But then Lemma 3.3 and the assumed (second) bound on the radius gives that

|ρk − 1| =

∣
∣
∣
∣

f(xk + sk) −mk(sk)

fk −mk(sk)

∣
∣
∣
∣
≤ 2

κd∆
2
k

κs‖gk‖2∆k
=

2κd
κs

∆k

‖gk‖2
≤ 1 − ηv . (C.35)

Therefore, ρk ≥ ηv and the iteration is very successful.

Proof of Lemma 3.5

Suppose otherwise that ∆k can become arbitrarily small. In particular, assume that iteration k is

the first such that

∆k+1 ≤ κε. (C.36)

Then since the radius for the previous iteration must have been larger, the iteration was unsuccessful,

and thus γd∆k ≤ ∆k+1. Hence

∆k ≤ εmin

(
1

κs(κh + κb)
,
κs(1 − ηv)

2κd

)

≤ ‖gk‖min

(
1

κs(κh + κb)
,
κs(1 − ηv)

2κd

)

.

But this contradicts the assertion of Lemma 3.4 that the k-th iteration must be very successful.

Proof of Lemma 3.6

The mechanism of the algorithm ensures that x∗ = xk0+1 = xk0+j for all j > 0, where k0 is the

index of the last successful iterate. Moreover, since all iterations are unsuccessful for sufficiently

large k, the sequence {∆k} converges to zero. If ‖gk0+1‖ > 0, Lemma 3.4 then implies that there

must be a successful iteration of index larger than k0, which is impossible. Hence ‖gk0+1‖ = 0.

Proof of Theorem 3.7

Lemma 3.6 shows that the result is true when there are only a finite number of successful iterations.

So it remains to consider the case where there are an infinite number of successful iterations. Let S
be the index set of successful iterations. Now suppose that

‖gk‖ ≥ ε (C.37)

for some ε > 0 and all k, and consider a successful iteration of index k. The fact that k is successful,

Corollary 3.2, Lemma 3.5, and the assumption (C.37) give that

fk − fk+1 ≥ ηs[fk −mk(sk)] ≥ δε
def
= 1

2
ηsεmin

[
ε

1 + κb
, κsκε

]

. (C.38)

144 APPENDIX C — SKETCHES OF PROOFS

Summing now over all successful iterations from 0 to k, it follows that

f0 − fk+1 =

k∑

j=0
j∈S

[fj − fj+1] ≥ σkδε,

where σk is the number of successful iterations up to iteration k. But since there are infinitely many

such iterations, it must be that

lim
k→∞

σk = +∞.

Thus (C.37) can only be true if fk+1 is unbounded from below, and conversely, if fk+1 is bounded

from below, (C.37) must be false, and there is a subsequence of the ‖gk‖ converging to zero.

Proof of Corollary 3.8

Suppose otherwise that fk is bounded from below, and that there is a subsequence of successful

iterates, indexed by {ti} ⊆ S, such that

‖gti‖ ≥ 2ε > 0 (C.39)

for some ε > 0 and for all i. Theorem 3.7 ensures the existence, for each ti, of a first successful

iteration `i > ti such that ‖g`i‖ < ε. That is to say that there is another subsequence of S indexed

by {`i} such that

‖gk‖ ≥ ε for ti ≤ k < `i and ‖g`i‖ < ε. (C.40)

We now restrict our attention to the subsequence of successful iterations whose indices are in the

set

K def
= {k ∈ S | ti ≤ k < `i},

where ti and `i belong to the two subsequences defined above.

The subsequences {ti}, {`i} and K are all illustrated in Figure C.1, where, for simplicity, it is

assumed that all iterations are successful. In this figure, we have marked position j in each of the

subsequences represented in abscissa when j belongs to that subsequence. Note in this example that

`0 = `1 = `2 = `3 = `4 = `5 = 8, which we indicated by arrows from t0 = 0, t1 = 1, t2 = 2, t3 = 3,

t4 = 4 and t5 = 7 to k = 9, and so on.

As in the previous proof, it immediately follows that

fk − fk+1 ≥ ηs[fk −mk(sk)] ≥ 1
2
ηsεmin

[
ε

1 + κb
, κs∆k

]

(C.41)

holds for all k ∈ K because of (C.40). Hence, since {fk} is, by assumption, bounded from below,

the left-hand side of (C.41) must tend to zero when k tends to infinity, and thus that

lim
k→∞
k∈K

∆k = 0.

As a consequence, the second term dominates in the minimum of (C.41) and it follows that, for

k ∈ K sufficiently large,

∆k ≤ 2

εηsκs
[fk − fk+1].

SKETCHES OF PROOFS — PART 3 145

6
‖gk‖

2ε

ε

- kS
-{ti}

{`i} - - - -
-K

r

r

r

r

r

b

b

r

?

b

r

r

r

b

b

?

b

r

r

r

b

?
?

b
b

r

r

b

?

?

Figure C.1: The subsequences of the proof of Corollary 3.8

We then deduce from this bound that, for i sufficiently large,

‖xti − x`i‖ ≤
`i−1∑

j=ti

j∈K

‖xj − xj+1‖ ≤
`i−1∑

j=ti

j∈K

∆j ≤
2

εηsκs
[fti − f`i]. (C.42)

But, because {fk} is monotonic and, by assumption, bounded from below, the right-hand side of

(C.42) must converge to zero. Thus ‖xti − x`i‖ tends to zero as i tends to infinity, and hence, by

continuity, ‖gti − g`i‖ also tend to zero. However this is impossible because of the definitions of {ti}
and {`i}, which imply that ‖gti − g`i‖ ≥ ε. Hence, no subsequence satisfying (C.39) can exist.

Proof of Theorem 3.9

The constraint ‖s‖2 ≤ ∆ is equivalent to

1
2
∆2 − 1

2
〈s, s〉 ≥ 0. (C.43)

Applying Theorem 1.9 to the problem of minimizing q(s) subject to (C.43) gives

g +Bs∗ = −λ∗s∗ (C.44)

for some Lagrange multiplier λ∗ ≥ 0 for which either λ∗ = 0 or ‖s∗‖2 = ∆ (or both). It remains to

show that B + λ∗I is positive semi-definite.

If s∗ lies in the interior of the trust-region, necessarily λ∗ = 0, and Theorem 1.10 implies that

B + λ∗I = B must be positive semi-definite. Likewise if ‖s∗‖2 = ∆ and λ∗ = 0, it follows from

Theorem 1.10 that necessarily 〈v,Bv〉 ≥ 0 for all v ∈ N+ = {v|〈s∗, v〉 ≥ 0}. If v /∈ N+, then

−v ∈ N+, and thus 〈v,Bv〉 ≥ 0 for all v. Thus the only outstanding case is where ‖s∗‖2 = ∆ and

146 APPENDIX C — SKETCHES OF PROOFS

λ∗ > 0. In this case, Theorem 1.10 shows that 〈v, (B + λ∗I)v〉 ≥ 0 for all v ∈ N+ = {v|〈s∗, v〉 = 0},
so it remains to consider 〈v,Bv〉 when 〈s∗, v〉 6= 0.

w

q
s∗

N+

s

Figure C.2: Construction of “missing” directions of positive curvature.

Let s be any point on the boundary of the trust-region, and let w = s − s∗, as in Figure C.2.

Then

−〈w, s∗〉 = 〈s∗ − s, s∗〉 = 1
2
〈s∗ − s, s∗ − s〉 = 1

2
〈w,w〉 (C.45)

since ‖s‖2 = ∆ = ‖s∗‖2. Combining this with (C.44) gives

q(s) − q(s∗) = 〈w, g +Bs∗〉 + 1
2
〈w,Bw〉 = −λ∗〈w, s∗〉 + 1

2
〈w,Bw〉 = 1

2
〈w, (B + λ∗I)w〉, (C.46)

and thus necessarily 〈w, (B + λ∗I)w〉 ≥ 0 since s∗ is a global minimizer. It is easy to show that

s = s∗ − 2
〈s∗, v〉
〈v, v〉 v

lies on the trust-region boundary, and thus for this s, w is parallel to v from which it follows that

〈v, (B + λ∗I)v〉 ≥ 0.

When B + λ∗I is positive definite, s∗ = −(B + λ∗I)
−1g. If this point is on the trust-region

boundary, while s is any value in the trust-region, (C.45) and (C.46) become −〈w, s∗〉 ≥ 1
2
〈w,w〉

and q(s) ≥ q(s∗) + 1
2
〈w, (B + λ∗I)w〉 respectively. Hence, q(s) > q(s∗) for any s 6= s∗. If s∗ is

interior, λ∗ = 0, B is positive definite, and thus s∗ is the unique unconstrained minimizer of q(s).

Newton’s method for the secular equation (Part 3)

Recall that the Newton correction at λ is −φ(λ)/φ′(λ). Since

φ(λ) =
1

‖s(λ)‖2
− 1

∆
=

1

(〈s(λ), s(λ)〉) 1
2

− 1

∆
,

it follows, on differentiating, that

φ′(λ) = −〈s(λ),∇λs(λ)〉
(〈s(λ), s(λ)〉) 3

2

= −〈s(λ),∇λs(λ)〉
‖s(λ)‖3

2

.

In addition, on differentiating the defining equation

(B + λI)s(λ) = −g,

SKETCHES OF PROOFS — PART 3 147

it must be that

(B + λI)∇λs(λ) + s(λ) = 0.

Notice that, rather than the value of ∇λs(λ), merely the numerator

〈s(λ),∇λs(λ)〉 = −〈s(λ), (B + λI)(λ)−1s(λ)〉

is required in the expression for φ′(λ). Given the factorization B + λI = L(λ)LT (λ), the simple

relationship

〈s(λ), (B + λI)−1s(λ)〉 = 〈s(λ), L−T (λ)L−1(λ)s(λ)〉 = 〈L−1(λ)s(λ), L−1(λ)s(λ)〉 = ‖w(λ)‖2
2

where L(λ)w(λ) = s(λ) then justifies the Newton step.

Proof of Theorem 3.10

We first show that

〈di, dj〉 =
‖gi‖2

2

‖gj‖2
2

‖dj‖2
2 > 0 (C.47)

for all 0 ≤ j ≤ i ≤ k. For any i, (C.47) is trivially true for j = i. Suppose it is also true for all i ≤ l.

Then, the update for dl+1 gives

dl+1 = −gl+1 +
‖gl+1‖2

2

‖gl‖2
2

dl.

Forming the inner product with dj , and using the fact that 〈dj , gl+1〉 = 0 for all j = 0, . . . , l, and

(C.47) when j = l, reveals

〈dl+1, dj〉 = −〈gl+1, dj〉 +
‖gl+1‖2

2

‖gl‖2
2

〈dl, dj〉 =
‖gl+1‖2

2

‖gl‖2
2

‖gl‖2
2

‖gj‖2
2

‖dj‖2
2 =

‖gl+1‖2
2

‖gj‖2
2

‖dj‖2
2 > 0.

Thus (C.47) is true for i ≤ l + 1, and hence for all 0 ≤ j ≤ i ≤ k.

We now have from the algorithm that

si = s0 +

i−1∑

j=0

αjdj =

i−1∑

j=0

αjdj

as, by assumption, s0 = 0. Hence

〈si, di〉 =

〈
i−1∑

j=0

αjdj , di

〉

=

i−1∑

j=0

αj〈dj , di〉 > 0 (C.48)

as each αj > 0, which follows from the definition of αj , since 〈dj , Hdj〉 > 0, and from relationship

(C.47). Hence

‖si+1‖2
2 = 〈si+1, si+1〉 = 〈si + αidi, si + αidi〉

= 〈si, si〉 + 2αi〈si, di〉 + αi 2〈di, di〉 > 〈si, si〉 = ‖si‖2
2

follows directly from (C.48) and αi > 0 which is the required result.

148 APPENDIX C — SKETCHES OF PROOFS

Proof of Theorem 3.11

The proof is elementary but rather complicated. See

Y. Yuan, “On the truncated conjugate-gradient method”, Mathematical Programming, 87

(2000) 561:573

for full details.

Proof of Theorem 4.1

The proof of this is sufficiently non trivial that early proofs were incomplete. For a correct version,

see

J. M. Borwein, “Necessary and sufficient conditions for quadratic minimality”,

Numerical Functional Analysis and Optimization, 5 (1982) 127:140.

Proof of Theorem 4.4

We prove this first, and then deduce Theorems 4.2 and 4.3—we suppose throughout that A is of full

rank. The result is actually a trivial consequence of the definition of second-order sufficiency. For

if S denotes a basis for the null-space of A, any vector lying in this null space may be expressed as

s = SsN . Since 〈s,Hs〉 > 0 for all such vectors, 〈sN , S
THSsN〉 > 0 for all nonzero sN , which is true

if and only if STHS is positive definite.

Proof of Theorem 4.2

The proof is straightforward, but depends heavily on three consequences of a classical result, namely

Sylvester (1814–1897)’s law of inertia. The inertia of a symmetric matrix K is the triplet

In(K)
def
= (k+, k−, k0),

where k+, k− and k0 denote respectively the numbers of (strictly) positive, negative and zero

eigenvalues of K.

Theorem C.4.1. (Sylvester’s law of inertia). Let K be a given symmetric matrix, and S any

non-singular matrix. Then

In(K) = In(STKS).

This has the immediate consequences

Lemma C.4.2. Let K be a given symmetric matrix. Then symmetric (row-and-column) permuta-

tions of K do not change its inertia.

Proof: This follows immediately from Theorem C.4.1 by picking S as the required permutation

matrix. 2

SKETCHES OF PROOFS — PART 4 149

Lemma C.4.3. Suppose that C and F are symmetric, and additionally C is invertible. Then

In

(

C ET

E F

)

= In(C) + In(F −EC−1ET). (C.49)

Proof: Since

M
def
=

(

C ET

E F

)

=

(

I 0

EC−1 I

)(

C 0

0 F −EC−1ET

)(

I C−1ET

0 I

)

,

the required result (C.49) follows from Theorem C.4.1, as the middle matrix in the above decom-

position of M is block diagonal and the outer pair of matrices are non-singular transposes of each

other. 2

Lemma C.4.4. Suppose that E is p by p and symmetric. Then

In

(

E I

I 0

)

= (p, p, 0). (C.50)

Proof: To see this, let E have spectral decomposition QDQT , where Q is orthonormal and D is

diagonal with diagonal entries di, i = 1, . . . , p. Then

(

Q 0

0 Q

)(

D I

I 0

)(

QT 0

0 QT

)

=

(

QDQT QQT

QQT 0

)

=

(

E I

I 0

)

,

so

In

(

E I

I 0

)

= In

(

D I

I 0

)

using Theorem C.4.1. But the eigenvalues λ of the latter satisfy

(

D I

I 0

)(

x

y

)

= λ

(

x

y

)

from which it follows trivially that λ = − 1
2
di± 1

2

√

d2
i + 4. Since one of these is strictly positive, and

the other is strictly negative for each i = 1, . . . p, (C.50) is true. 2

Armed with these lemmata, to prove the theorem let the m by n matrix A have an LQ factors

AQ ≡ A(Y S) = (L 0),

where L is (lower triangular and) invertible, Q is orthonormal and Y and S are columns of Q. Notice

that S gives a basis for the null-space of A since AS = 0. Then

(

QT 0

0 L−1

)(

H AT

A 0

)(

Q 0

0 L−T

)

=

(

QTHQ QTATL−T

L−1AQ 0

)

=






Y THY Y THS I

STHY STHS 0

I 0 0




 .

150 APPENDIX C — SKETCHES OF PROOFS

But Theorem 4.4 shows that In(STHS) = (n−m, 0, 0). Hence Theorem C.4.1 and Lemmas C.4.2–

C.4.4 give

In(K)
Thm C.4.1

= In






Y THY Y THS I

STHY STHS 0

I 0 0






Lem C.4.2
= In






Y THY I Y THS

I 0 0

STHY 0 STHS






Lem C.4.4
= In

(

Y THY I

I 0

)

+ In



STHS − (STHY 0)

(

Y THY I

I 0

)−1(

Y THS

0

)



Lem C.4.3
= (m,m, 0) + In

(

STHS − (STHY 0)

(

0 I

I −Y THY

)(

Y THS

0

))

= (m,m, 0) + In(STHS)
Thm 4.4

= (m,m, 0) + (n−m, 0, 0) = (n,m, 0)

as required.

Proof of Theorem 4.3

Since by assumption H , and a fortiori, AH−1AT are non-singular, let In(H) = (n− h−, h−, 0) and

In(AH−1AT) = (m− s−, s−, 0). The result then follows immediately by applying Theorem 4.2 and

Lemma C.4.3 to K to find

(n,m, 0) = In(K) = In(H) + In(−AH−1AT) = (n− h−, h−, 0) + (s−,m− s−, 0),

and hence that h− = s−.

Proof of Theorem 5.1

Denote the left generalized inverse of AT (x) by

A+(x) =
(
A(x)AT (x)

)−1
A(x)

at any point for which A(x) is full rank. Since, by assumption, A(x∗) is full rank, these generalized

inverses exists, and are bounded and continuous in some open neighbourhood of x∗.

Now let

yk = −c(xk)
µk

as well as

y∗ = A+(x∗)g(x∗).

It then follows from the inner-iteration termination test

‖g(xk) −AT (xk)yk‖ ≤ εk (C.51)

SKETCHES OF PROOFS — PART 5 151

and the continuity of A+(xk) that

‖A+(xk)g(xk) − yk‖2 =
∥
∥A+(xk)

(
g(xk) −AT (xk)yk

)∥
∥

2
≤ 2‖A+(x∗)‖2εk.

Then

‖yk − y∗‖2 ≤ ‖A+(x∗)g(x∗) −A+(xk)g(xk)‖2 + ‖A+(xk)g(xk) − yk‖2

which implies that {yk} converges to y∗. In addition, continuity of the gradients and (C.51) implies

that

g(x∗) −AT (x∗)y∗ = 0,

while the fact that c(xk) = −µkyk with bounded yk implies that

c(x∗) = 0.

Hence (x∗, y∗) satisfies the first-order optimality conditions.

Proof of Theorem 5.2

A formal proof is given by

W. Murray, “Analytical expressions for eigenvalues and eigenvectors of the Hessian matrices

of barrier and penalty functions”, J. Optimization Theory and Applics, 7 (1971) 189:196.

By way of a sketch, let Q(x) and S(x) be orthonormal bases for the range- and null-spaces of

A(x). As we have shown, the required Hessian may be expressed (in decreasing terms of asymptotic

dominance) as

∇xxΦ(x, µ) = ATA(x)AA(x)/µ+H(x, y(x, µ)).

Since the eigenvalues of ∇xxΦ(x, µ) are not affected by orthonormal transformations, on pre- and

post-multiplying ∇xxΦ(x, µ) by (Q(x) S(x)) and its transpose, we see that the required eigenvalues

are those of

(

Q(x)TAT (x)A(x)Q(x)/µ +Q(x)TH(x, y(x, µ))Q(x) Q(x)TH(x, y(x, µ))S(x)

S(x)TH(x, y(x, µ))Q(x) S(x)TH(x, y(x, µ))S(x)

)

+O(µ),

(C.52)

where we have use the relationship A(x)S(x) = 0. The dominant eigenvalues are those arising from

the 1,1 block of (C.52), and these are those of Q(x)TAT (x)A(x)Q(x)/µ with an O(1) error—these

are the same as those of

A(x)Q(x)Q(x)TAT (x)µ = A(x)AT (x)/µ

asQ(x)QT (x) = I and because the non-zero eigenvalues of BTB and BBT agree for any (rectangular

or otherwise) matrix B. Since the remaining eigenvalues must occur for eigenvectors orthogonal to

those giving the 1,1 block, they will asymptotically be those of the 2,2 block, and thus those of

S(x)TH(x, y(x, µ))S(x) with an O(µ) term.

152 APPENDIX C — SKETCHES OF PROOFS

Proof of Theorem 5.3

The proof of convergence of yk to y∗
def
= A+(x∗)g(x∗) for which g(x∗) = AT (x∗)y∗ is exactly as for

Theorem 5.1. For the second part of the theorem, the definition of yk and the triangle inequality

gives

‖c(xk)‖ = µk‖uk − yk‖ ≤ µk‖yk − y∗‖ + µk‖uk − y∗‖.
the first term on the right-hand side converges to zero as yk approaches y∗ with bounded µk, while

the second term has the same limit because of the assumptions made. Hence c(x∗) = 0, and (x∗, y∗)

satisfies the first-order optimality conditions.

Proof of Theorem 6.1

Let A = A(x∗), and I = {1, . . . ,m} \ A be the indices of constraints that are active and inactive

at x∗. Furthermore let subscripts A and I denote the rows of matrices/vectors whose indices are

indexed by these sets. Denote the left generalized inverse of ATA(x) by

A+
A(x) =

(
AA(x)ATA(x)

)−1
AA(x)

at any point for which AA(x) is full rank. Since, by assumption, AA(x∗) is full rank, these generalized

inverses exists, and are bounded and continuous in some open neighbourhood of x∗.

Now let

(yk)i =
µk

ci(xk)

for i = 1, . . . ,m, as well as

(y∗)A = A+
A(x∗)g(x∗)

and (y∗)I = 0. If I 6= ∅, then

‖(yk)I‖2 ≤ 2µk
√

|I|/min
i∈I

|ci(x∗)| (C.53)

for all sufficiently large k. It then follows from the inner-iteration termination test that

‖g(xk) −ATA(xk)(yk)A‖2 ≤ ‖g(xk) −AT (xk)yk‖2 + ‖ATI (xk)(yk)I‖2

≤ ε̄k
def
= εk + µk

2
√

|I|‖AI‖2

mini∈I |ci(x∗)|
.

(C.54)

Hence

‖A+
A(xk)g(xk) − (yk)A‖2 = ‖A+

A(xk)(g(xk) −ATA(xk)(yk)A)‖2 ≤ 2‖A+
A(x∗)‖2ε̄k.

Then

‖(yk)A − (y∗)A‖2 ≤ ‖A+
A(x∗)g(x∗) −A+

A(xk)g(xk)‖2 + ‖A+
A(xk)g(xk) − (yk)A‖2

which, in combination with (C.53) and convergence of xk, implies that {yk} converges to y∗. In

addition, continuity of the gradients and (C.54) implies that

g(x∗) −AT (x∗)y∗ = 0

while the fact that c(xk) > 0 for all k, the definition of yk and y∗ (and the implication that

ci(xk)(yk)i = µk) shows that c(x∗) ≥ 0, y∗ ≥ 0 and ci(x∗)(y∗)i = 0. Hence (x∗, y∗) satisfies the

first-order optimality conditions.

SKETCHES OF PROOFS — PART 7 153

Proof of Theorem 6.2

This is essentially the same as that for Theorem 5.2, as before given formally by

W. Murray, “Analytical expressions for eigenvalues and eigenvectors of the Hessian matrices

of barrier and penalty functions”, J. Optimization Theory and Applics, 7 (1971) 189:196.

By way of a sketch, let Q(x) and S(x) be orthonormal bases for the range- and null-spaces of

AA(x∗)(x), and let AI(x) be the matrix whose rows are {aTi (x)}i/∈A(x∗). As we have shown, the

required Hessian may be expressed (in decreasing terms of asymptotic dominance) as

∇xxΦ(x, µ) = ATA(x)Y 2
A(x, µ)AA(x)/µ+H(x, y(x, µ)) + µATI (x)C−2

I (x)AI(x).

Since the eigenvalues of ∇xxΦ(x, µ) are not affected by orthonormal transformations, on pre- and

post-multiplying ∇xxΦ(x, µ) by (Q(x) S(x)) and its transpose, we see that the required eigenvalues

are those of
(

Q(x)TATA(x)Y 2
A(x, µ)AA(x)Q(x)/µ +Q(x)TH(x, y(x, µ))Q(x) Q(x)TH(x, y(x, µ))S(x)

S(x)TH(x, y(x, µ))Q(x) S(x)TH(x, y(x, µ))S(x)

)

+O(µ),

(C.55)

where we have use the relationship A(x)S(x) = 0. The dominant eigenvalues are those arising from

the 1,1 block of (C.55), and these are those of Q(x)TATA(x)Y 2
A(x, µ)AA(x)Q(x)/µ with an O(1)

error—these are the same as those of

YA(x, µ)AA(x)Q(x)Q(x)TATA(x)YA(x, µ)/µ = YA(x, µ)AA(x)ATA(x)YA(x, µ)/µ

asQ(x)QT (x) = I and because the non-zero eigenvalues of BTB and BBT agree for any (rectangular

or otherwise) matrix B. Since the remaining eigenvalues must occur for eigenvectors orthogonal to

those giving the 1,1 block, they will asymptotically be those of the 2,2 block, and thus those of

S(x)TH(x, y(x, µ))S(x) with an O(µ) term.

Proof of Theorem 6.3

The proof of this result is elementary, but rather long and involved. See

N. Gould, D. Orban, A. Sartenaer and Ph. L. Toint, “Superlinear convergence of primal-

dual interior point algorithms for nonlinear programming”, SIAM J. Optimization, 11(4)

(2001) 974:1002

for full details.

Proof of Theorem 7.1

The SQP search direction sk and its associated Lagrange multiplier estimates yk+1 satisfy

Bksk −ATk yk+1 = −gk (C.56)

and

Aksk = −ck. (C.57)

154 APPENDIX C — SKETCHES OF PROOFS

Pre-multiplying (C.56) by sk and using (C.57) gives that

〈sk, gk〉 = −〈sk, Bksk〉 + 〈sk, ATk yk+1〉 = −〈sk, Bksk〉 − 〈ck, yk+1〉. (C.58)

Likewise (C.57) gives
1

µk
〈sk, ATk ck〉 = −‖ck‖2

2

µk
. (C.59)

Combining (C.58) and (C.59), and using the positive definiteness of Bk, the Cauchy-Schwarz in-

equality and the fact that sk 6= 0 if xk is not critical, yields

〈sk,∇xΦ(xk)〉 =

〈

sk, gk +
1

µk
ATk ck

〉

= −〈sk, Bksk〉 − 〈ck, yk+1〉 −
‖ck‖2

2

µk

< −‖ck‖2

(‖ck‖2

µk
− ‖yk+1‖2

)

≤ 0

because of the required bound on µk.

Proof of Theorem 7.2

The proof is slightly complicated as it uses the calculus of non-differentiable functions. See Theorem

14.3.1 in

R. Fletcher, “Practical Methods of Optimization”, Wiley (1987, 2nd edition),

where the converse result, that if x∗ is an isolated local minimizer of Φ(x, ρ) for which c(x∗) = 0

then x∗ solves the given nonlinear program so long as ρ is sufficiently large, is also given. Moreover,

Fletcher showns (Theorem 14.3.2) that x∗ cannot be a local minimizer of Φ(x, ρ) when ρ < ‖y∗‖D.

Proof of Theorem 7.3

For small steps α, Taylor’s theorem applied separately to f and c, along with (C.57), gives that

Φ(xk + αsk, ρk) − Φ(xk, ρk) = α〈sk, gk〉 + ρk

(

‖ck + αAksk‖ − ‖ck‖
)

+O(α2)

= α〈sk, gk〉 + ρk

(

‖(1− α)ck‖ − ‖ck‖
)

+O(α2)

= α (〈sk, gk〉 − ρk‖ck‖) +O
(
α2
)
.

Combining this with (C.58), and once again using the positive definiteness of Bk, the Hölder in-

equality (that is that 〈u, v〉 ≤ ‖u‖‖v‖D for any u, v) and the fact that sk 6= 0 if xk is not critical,

yields

Φ(xk + αsk , ρk) − Φ(xk , ρk) = −α (〈sk, Bksk〉 + 〈ck, yk+1〉 + ρk‖ck‖) +O(α2)

< −α (−‖ck|‖yk+1‖D + ρk‖ck‖) +O(α2)

= −α‖ck‖
(

ρk − ‖yk+1‖D
)

+O(α2) < 0

because of the required bound on ρk, for sufficiently small α. Hence sufficiently small steps along

sk from non-critical xk reduce Φ(x, ρk).

