Mathematics and data science for development

Problem sheet 1 - Data techniques (solutions)

Exercise 1. Let X, a matrix of size n X p and y a vector with p entries be observations of
some phenomenon. In the lectures we showed that we can use ordinary least squares (OLS)
to find a line that represents the relationship between X and y.

1. Show that if we assume that y; = x7 8 + ¢; where the errors ¢; are iid N (0,02 ),
then the MLE (maximum likelihood estimator) is the same as the OLS estimator.
(reminder: the likelihood function is the density function considered as a function of
the parameters: L(0|x) = fy(x), and the MLE is the value of § that maximizes this
function)

2. Suppose that p = 3 and that the columns of X are pairwise orthogonal, with the first
one being a column of ones (the intercept). Let 5’ = (81, 85)" be the coefficients if
we run a regression against the first two columns of X, and 8 = (81, 2, 33)T be the
coefficients for the regression against the three columns of X. Show that B = (Bl, BQ)
What does this mean and what are the implications for regression analysis?

Solution 1. We have y ~ N(z'3,0?).

1) =TT (s exvt-tn =« 5)2/20%),

| Sy, — 7B’
L(y) = oty exp (_ (v 202’5 ) ) ’

(L) =~ 0t (210)) ~ (5130 = X5 (5 - X5)).

where we use the fact that the value of # that maximizes the likelihood also maximizes the
log likelihood. By taking derivative with respect to 5 and equating to zero we obtain:

0=X"(y—XB).
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B=(XTX)"'XTy.

Now, for the second part we will rename the columns of X. The first columns is just ones
and we write it as 1, the second one we will call x and the third one z. Remember that
= (XTX)'XTy. We have that:

n 0 0
XX =10 [jz[*> 0
0 0 [l
It follows that
n-t 0 0

(XTX)'XT =10 |22 0 |[1,z2]"
0 0 [lzf]7

n-t n-! n-!
o e
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If we consider only the first two columns of X and we call this matrix W, we see that, in a
similar fashion:
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We have thus shown that the first two rows of matrices (X7X)™ !XT and (WTW-HwT
are identical. Since § = (XTX)'XTy and g’ = (WTW-1H)WTy, it follows that (B, Bs) =
(81, B3)-

Roughly speaking, this tells us that when we add features that are orthogonal to the ones
we already have present in our data, the estimators for the effects of the features we already
have won’t be affected by the new one. In other words, if we have orthogonal features,
we can estimate their effects either together or separately without affecting the regression
parameters.



Exercise 2. We have provided you with a data base (”countries.csv”) that consists of a
list of countries together with some population variables. The total population is a simple
count, and the GDP per capita is expressed in dollars. All the other variables are expressed
as percentages. There are some missing values, so be careful when doing your analysis.

Country | Tot. pop. | GDPP | Unemployment | Urban pop. | Internet | HIV rate

Albania 2913021 4094.35 | 14.1 52.163 45 0.1

Algeria 36117637 | 4463.4 | 9.96 67.54 12.5 0.1

1. Create scatter plots using different pairs of the variables. Can you see any interesting
relationship between these variables? Consider using a logarithmic transformation for
population size and GDPP.

2. Chose two of the scatter plots that look most interesting. Fit a linear model to each of
them. How strong are these relationships (consider the regression coefficient and the
p-value)?

3. In order to model the percentage of people with access to the internet, we will use
OLS. Suppose we use log(GDPP), urban population and log(pop) as our explanatory
variables. Comment on the meaning of the regression coefficient as well as the p-
values for each explanatory variable. What happens if we drop one of the explanatory
variables? And if we only use one? Which of all these possible models would you chose
and why? Finally, are there any potential issues with these models?



Solution 3. 1. Here we can see a matrix with all the possible scatter plots. It is easy
to see that many of the relationships are noisy, but those between GDP per capita, urban
population and internet use do appear linear and strong.
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Figure 1: Scatter plot for all the relevant variables.

2. Any choice is welcome. Here we quickly fit a regression with GDPP as the dependent
variable and urban populations as the explanatory one. We expect to see a summary (for
example a table) and a graphical representation of the fit achieved on the regression.

3. We notice that R? is 0.788 if we use all three variables, but it is already 0.785 if we only
use log(GDPp). It is possible to do a more in depth analysis, but this is already a very
strong indicator that all the variability we can explain in internet usage is explained by the
log (GDPp) and using the parsimony principle, we would be strongly inclined to use only
this explanatory variable.

Finally, our response variable is a number between 0 and 1, but our regression model considers
a normal response, which ranges from —oo to oco. Ideally we would like to have a response
whose distribution also ranges between 0 and 1.



Dep. Variable: loggdp
Model: oLs

Method:  Least Squares

Date: Thu, 13Dec2018 Prol :
Time: 154552 Log-Likelihood: 29174
No. Observations: 198 AIC: 5875
Df Residuals: 196 BIC: 5941
Df Model: 1
Covariance Type: nonrobust

coef stderr t P>lt [0.025 0875
const 59109 0198 29.882 0000 5521 6301
UrbanPop100 0.0471 0.003 14772 0000 0041 0053

Omnibus: 31.102  Durbin-Watson:  2.005

Prob(Omnibus): 0000 Jarque-Bera (JB): 62302
Skew: 0757 Prob(JB): 2 96e-14 0'2 0'4 0‘6 O‘E 1'0

[Table] Kurtosis: 5203 Cond.No. 163 [Plot]

Figure 2: This is the table and plot corresponding to regressing log(GDPP) on the proportion
of urban population.

Exercise 3. This course looks to provide you with a broad overview of the existing ap-
proaches to using mathematical modelling and data science to better understand develop-
ment problems. The paper Beyond prediction: Using big data for policy problems by Susan
Athey highlights important considerations for researchers using these new approaches. Read
the paper and:

1. Comment on the difference between predictive and causal inference, giving an example.
(one paragraph)

2. Briefly explain how these difference comes into play when making policy decisions.
(one or two paragraphs)

Solution 3. We expect the students to demonstrate that they read the paper and under-
stood the potential shortcomings of ”data-only” methods that avoid modelling assumptions,
as well as the importance of causality when designing policy. Ideally they will provide one
or two examples to illustrate their understanding.



