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C5.9 Mathematical Mechanical Biology

Problem Sheet 1 with Hints

1st class, of 4. QUESTIONS 1,2 of PART 1.

Note

This hand-out is intended to be a guide for when you find yourself stuck on one of the prescribed problems:
it is not intended to be a replacement that you hand in to your tutor or TA. This sheet will provide a general
overview of how to obtain the answer for the harder parts; however, it will be up to you to complete as
necessary.

To ultimately obtain the best understanding of the lecture material, give a strong attempt on the problem
set before consulting these notes.
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(5.9 Mathematical Mechanical Biology

Problem Sheet 2

Eamonn Gaffney.

For class 2.
QUESTIONS 5,7,8,9 of PART 1,
QUESTION 1 of PART II.

Q5. Radius of Gyration of the Wormlike Chain Model

See next page.
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Q7. Static Kirchhoff Equations in the Local Basis

Below stress free curvature and twist, Uy, Uz in the online Bio-filaments notes, are set equal to zero. Before
we begin to manipulate the static equivalents to equations (71) and (72) from these notes, let us calculate
the spatial derivatives of each of the basis vectors. This is done by introducing a strain vector, u(s), with
components (u;(s),us(s), uz(s)) that depend on the arc parameter, s, and using equation (49):

od
8751 = ugdy — uzd3 (1)
% = U1d3 — U3d1. (2)
Jds
od
8753 = U2d1 — U1d2 (3)

In calculating this, what has been about the basis vectors, and thus the continuum rod.
Let us now take the static version of equation (71) from the notes and substitute n = n1d; +nods +nsds,
where each of our components depends on s:

dn d
Ts +f= s (n1dy + nady + nzds) + f = 0. (4)

Using our results from equation (1), (2) and (3), we can calculate the derivative term in equation (4):

d dn od dn od dn od
T (n1dy + nady + nads) = —d; di + nla—; + d—;dg + nga—; + d—;dg + nga—;
dn dn dn
= <d91 — nausz + nauz) d; + (dj + niuz — n3u1> dy + (dj —niuz + n2u1> ds, (5)

remembering that the components of our strain vector were space-dependent.
Lastly, by writing f = (f1, f2, f3) in terms of the director basis, we substitute equation (5) into equation
(4) and then extract the d;, d2 and d3 components:

d
S nsus4mgus+ fi = 0 (6)
ds
dn
—;2+n1u?,—n3u1+f2 =0 (7)
dn-
%—n1u2+n2u1+f3 = 0. (8)

We now apply a similar process to the static version of equation (72) from the bio-filaments notes. To close
our system of equations, we use the linear constitutive relation for the unstressed reference configuration, as
given in equation (73) of the bio-filaments notes, and evaluate using our results from equation (1), (2) and
(3) again:

etc ...
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Q8. Axon Injury
We begin with the following equation:

d*w d>w
+P

da? dx?
and non-dimensionalize it by including a characteristic length-scale, L, and non-dimensionalized variable,
x = X L. In this instance, we find:

B

+ kW =0, (13)

d*w d*w
where \ = Png and [ = k—g are non-dimensionalized parameters and we have new boundary conditions

w(+1) =0 and 2% |y_41 =0.
Using the ansatz w(X) = ¥ in the above equation, we find:

wh = A+ =0. (15)

Upon using the discriminant (by letting a@ = w?), real solutions will be obtained provided that A2—43 > 0.
This corresponds to the non-trivial solution required in the question, however, you are invited to think about
why that might be. What would the solution be if w is real? What if w is a repeated root? Imaginary?
Hence why is it necessary that A2 — 43 > 07

We can solve the characteristic equation for w to find 4 real solutions: w4, w_, —wy and —w_, where:

A+ /N — 15

wp =\ (16)
L AVAap (17)
_ A

As such, the general solution to the non-dimensionalized equation is given by:

w(X) = Acos(ws X) 4+ Beos(w_X) + Csin(w X) + Dsin(w_X), (18)

for A, B (not to be confused with the bending stiffness from equation (13)), C' and D being arbitrary
constants to determine with our boundary conditions. Doing this yields two possible scenarios:

(19)

w(X) = o (cos(w+X) - cos(wX)) |

cos(wy) cos(w_)

whereby Ay = Acos(w;) and where we have the relationship w; tan(wy) = w_ tan(w_) that must be
satisfied, or, alternatively:

(20)

w(X) = G <sin(w+X) - sin(w_X)> |

sin(w4) sin(w_)

where By = Bsin(wy ) and where the relationship w. cot(wy) = w_ cot(w_) must be satisfied.

Note that Ay and Cj are still undefined even after using the boundary conditions. In a biological context,
this doesn’t make sense; an axon cannot be stretched to infinity. What further constraints can we use to
find AO or 007

Additionally, you may have noticed that P is not defined in the question on the problem sheet. We can,
however, solve for P using the relationships wy tan(w;) = w_ tan(w_) or w: cot(wy) = w_ cot(w_), but
there are infinitely many solutions in this instance. What other constraint is needed to restrict the values P
can possibly take?
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Find the conditions for which a non-trivial solution oceurs and test vour solution with the
physiological values B = 6 x 107"Nm?, &k = 12Nm* and L = 15pum. Compare your
solution to the profile of Fig. 2 and Fig. 3 of the paper [Min D. Tang-Schomer, Ankur
R. Patel, Peter W. Baas, and Douglas H. Smith. Mechanical breaking of microtubules in
axons during dynamic streteh injury underlies delayed elasticily, microtubule disassembly,
and aron degeneration. The FASEB Journal, 24(5):1401-1410, 2010.]
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Q9. Derivation of Beam Equation

We begin with the general equations for a rod confined to planar motion:

88% +f = pA% (21)
00 o = pa2¥ (22)
EI%-FGCOS@—FSiH@ = pj'%, (23)
where:
% = cosf (24)
% = siné. (25)

We use the hint from the problem sheet; namely, to consider § < 1. In this case, we can consider the
corresponding asymptotic behavior of equation (24) and (25) in the limit of 6 — 0:

ox
o~ 1= =35 2
s =>r=s (26)
dy
So equation (23) becomes:
3,
Y 6 _Fo—o, (28)
Ox3

however, differentiating this with respect to z, we find:

0 Py oG OF 08 0 Py Oy 9%y
<E10x3> Oz ox or  Or (EI) 9T =0 (29)
where have used equation (27) and the time-independent forms of equation (21) and equation (22).

Introducing y(z) = w(x), our final result is:
0 DPw Pw 0w

or, if we consider the scenario where there are no loads on our beam and FI is constant (for what sort of
materials or rods would this be a good approximation?), then equation (30) reduces to:

9: \Flows ) YV ae % o = 5 \Flows 9z Lo

0w 0w
E18x4 F(?:UQ =0, (31)
which is the classical Euler-Bernoulli equation for a beam.

Considering the possible boundary conditions we can impose on our system, clamped boundary conditions
correspond to not only fixing the position of the beam at its ends, but also its direction. In other words,
w(z =0), w(x = L), w'(z = 0) and w'(x = L) are specified. Meanwhile, for a pinned beam, the positions
are fixed but are done so in a way where the beam is still free to rotate. In this instance, w(z = 0) and
w(z = L) are specified along with the condition ET ‘51271;’ = 0. Where does this latter condition come from?
Are these boundary conditions sufficient to fully solve the system?
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Part II. Question 1 - Invariance of Arclength and Area

As with most questions requiring a proof, there are multiple ways to derive the desired result. Again, you
are encouraged to work out a method that makes sense to you, however, we will begin by defining some
notation:

Under our original parametrization, we define our surface metric to be g;; with corresponding displace-

ment coordinates &' and £2. After a change of parametrization, these now become g,jj, (fl)T and (fQ)T

respectively. However, to do this transformation, we define a Jacobian, J:

6(51)1 6(51)1

J = 6?;21)“( aagz)‘r ) (32)
ogt o¢€2

which we can use as follows to change our coordinates and metric:

@) = Je (33)
QL- = JgiJ, (34)

where (') is the transpose.

To prove arclength invariance, it is sufficient to show that (ds2)T = ds?. So, beginning with the left hand
side:

(as%)" = [(fi)T]TgiTj (€)' = [(5i)T}T‘7T9ia‘J ()" =€) gu€ = ds?, (35)

where we have used our previous results given in equation (33) and (34).

Let us now prove the invariance of area:

etc ...
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Problem Sheet 3

Eamonn Gaffney.

For class 3.
QUESTIONS 2, 6, 8, 9 of PART II.

Question 2 - Orthogonality

Please see next page
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Question 6 - The Slightly Deformed Sphere

Tt is highly recommended that you use a symbolic algebra package like Mathematica or Maple to help you

complete this problem; the algebra becomes messy very quickly. There are some similarities in computing

the curvatures as in question 4, however, the main difference will be consistently working to first order in e.
To begin with, we start with our position vector, defined as:

x = R(1+ €h(0, ) {cos(¢) sin(0), sin(¢) sin(#), cos(9)} , (1)

find the corresponding tangent vectors, rg and r4:

79 = [Rcos(9) (e sin(@)h19 (0, ) + e cos(9)h(6, ) + cos(ﬁ)) ,
Rsin(¢) (esin(@)h(l’o)(ﬂ, ) + ecos(0)h(0, d) + cos(e)) :
Recos(9)h 0 (8, ¢) — Rsin(0)(eh(h,¢) +1)], (2)

rg = [Rsin(0) (ecos(6)h®D(6,6) - sin(6) (¢h(0, 9) + 1)) ,

Rsin(0) (e sin(¢)h OV (0, ¢) + € cos(p)h(0, p) + cos(¢)) ,
Recos(A)%V (6, ¢)], (3)

and compute the unit normal as we did previously:

Ty XT
n=_22"9¢ (4)
e x Tl
Using equations (14) and (15), we can calculate our first fundamental form, G, however, we only work up
to O (e) and neglect lower ordered terms. This can be done in Mathematica by using the “Series” command
and expanding in powers of €. To first order, we find:

R2(2¢h(0, ) + 1) 0
G = ( 0 R?(2¢h(6, ¢) + 1) sin(6) ) : (5)

Calculating the second fundamental form, K, again up to O (€) only, we find that the entries of K are
given by:

K = R(elz,(e,(/))—eh(2’0)(9,(/))+1) (6)
€ (cos (0.1) — sin L1

Ky = Ky—Z (cos(0)h (9;;;;)(0) (0)h1D(0, ¢)) -

Ky = R (eh(e,qs) sin?(6) + (sin(e) - ecos(e)h<1»“>(9,¢)) sin(6) — eh® (8, (;5)) . (8)

where K10 (0, ¢) = 9% L0V (0, ¢) = g—g and so forth.
Lastly, we obtain the entries of the principal curvature matrix, L = G~ K by combining our first order

results from equations (17) to (20). We again only take terms to O (e):
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1 e(h(0,¢)+hZ9(0,0))

Ly = 7 7 (9)
e (cos(0)h(OD(0, ¢) — sin(B)h(11 (6, )
L = Rsin(0) (10)
0)RO1 (6, ¢) — sin(0)RH1 (8,
L, o leos® (Rizng(i)) (@R (0, 9)) 1)
Ly — % € (h(0=2)(9, @) esc?(0) + hlgf, ®) + cot(0)h1-0) (9, ?)) ' (12)

Computing the Gaussian curvature, K¢, and mean curvature, H, to first order, we find:

tr(L) _ 1 € ((WZ0(8,¢) + cot(0) 10 (8, ¢) + csc2(0) RO (8, $) + 2h(6., ¢)))

H = —“=4 R (13)
(2,0) (1,0) 200\ 5 (0,2)
Ko = det(L) = % e (R29(8, ¢) + cot(8)h (9,@2;— csc?(0)h92)(0, o) + 2h(t9,qb))7 (14)

which are the required results.
A small Mathematica script which does this computation is provided below. Be sure to understand what
the program and the commands actually do before just copying it!

Algorithm 1 A script to compute the Mean and Gaussian curvatures of a slightly deformed sphere to O (e).
x = R (1 + ep*h[t, p])*{Cos[p] Sin[t], Sin[p] Sin[t], Cos[t]}

rt = Simplify[D[x, t]];

rp = Simplify[D[x, p]J;

n = Simplify[Cross[rt, rp]/Sqrt[Cross[rt, rp].Cross[rt, rp]], Assumptions -> R > 0];
G = Simplify[{{rt.rt, rt.rp}, {rp.rt, rp.rp}};

G1 = Simplify[Normal[Series|G, {ep, 0, 1}]]];

K = Simplify[{{-n.D]rt, t], -n.D[rt, p]}, {-n.D[rp, t], -u.D[rp, p|}}];

K1 = Simplify[Normal[Series[K, {ep, 0, 1}]]];

L1 = Normal[Series[Inverse[G1].K1, {ep, 0, 1}]];

GaussK1 = Series[Det[L1], {ep, 0, 1}]

H = 0.5*Simplify[Series[Tr[L1], {ep, 0, 1}]]
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Question 8 - Shape Equation with Fixed Pressure

We are asked to show that for a membrane under fixed pressure, P, the shape equation, under the small
gradient approximation, is given by:

KAAR —yAh = P. (15)

The idea is that the total energy of the membrane configuration does not only have a contribution from
the approximate bending energy, given by equation (35) of the bio-membranes notes:

=< drdy [/-c (AR)? + 7 (Vh)z] : (16)

but also a contribution from the work done by pressure, given by:

ep=—PV =—P dV, (17)
Q

where the pressure is assumed to be constant and €2 is the integral over the volume of the membrane.
Using the hint from the problem sheet, we introduce the divergence of the position vector, r = (z,y, h(z,y)),
into equation (29):

P P
ep=—P dV:—§ V-rdV:—g r - ndS, (18)
Q Q b

where we have used the divergence theorem and are now finding the integral over the area of the membrane,
3.
As a reminder, the unit normal vector was given by:

1

1+ (Vh)?

so evaluating equation (30) in the Monge parametrization, we find:

n= (—haz,—hy, 1), (19)

1

1+ (Vh)?

dzdy {—zh, —yh, + h} = g dzdy{rs-Vh—h}, (20)

P
Ep = _g dxdy 1 + (Vh)2(33,y,h(.’]3, y)) : (_hfb7 _hy7 1)

3
where 73 = (z,y).
The problem now becomes a matter of minimizing the functional:

1 P
STow =2+ cp =5 dudy |x (AR)® + v (Vh)?| + 5 dwdy{ra-Vh—n}. (21)
Let us minimize ep by considering the first variation with respect to h:
P
dep = 3 dxdy {rs -V (6h) — 0h}, (22)

however, to remove the V (6h) term, we realize that V - (ro0h) = (V - r2) 6h + 79 - V (6h), so equation (34)
becomes:

dep = g dxdy {V - (ro0h) — (V - 1r3) 0h — dh} = g dxdy{V - (ro0h) — 36h}, (23)

due to the fact that V - ro = 2 from our previous definition.
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Let us minimize €5 now:
deg = % dxdy {26 AR (6h) + 29Vh -V (6h)}, (24)

however, using a similar trick that allowed us to go from equation (34) to equation (35), we find that, upon
substituting V - (ARV (6h)) = VAR -V (6h) + ARA (6h) and V - (Vhoh) = AhSh + VR -V (6h), we obtain:

dea = dady{—KkVAh-V (6h) — yARSh 4+ V - [RARV (6h) + vV hh]} . (25)
Lastly, substituting V - (VA(h)oh) = AARSh + VAR -V (6h):
deg =  daedy{[kAAh —yAR|Sh +V - [KARV (6h) + vVhdh — kVA(R)OR]} . (26)

Combining equation (35) and equation (38), we demand that dez,iq; = 0, so that we end up with:

0= dady { [nAAh — AR — ?’f] Sh+V - |:I<LAhV (8h) + vV hdh — KNV A(R)Sh + §T26h] } . (@n

so that our shape equation is now given by:

KAAh —yAh = P, (28)

as required. However, what constraints or boundary conditions do we now need in order for equation (40)
to be true?



C5.9 Mathematical Mechanical Biology

Question 9 - Shape Equation over a Step Function

We are asked to find the shape of a membrane that is hanging over a step-edge. To do this, we work in 1D
using the corresponding shape equation derived in lectures:

d*h 1 d*h
P 29
dz* A2 dz? ’ (29)
with boundary conditions given by h(z = 0) = hg, h(L) =0, h'(0) = 0 and »'(L) = 0.
However, let us introduce the scaling & = ¥, so that equation (41) now becomes:
d*h  d?h
22 _Z2Z2 ) 30
dz*  dz? ’ (30)
with new boundary conditions given by: h(z = 0) = hq, h(L = %) =0, W(0) =0 and h'(L) = 0.
The general solution of this non-dimensionalized equation is then given by:
h(z) = A+ Bz + Csinh (&) + D cosh (2) (31)

and, by substituting the boundary conditions, we find that the resulting shape can be written in the following
form (of course, this is not the only form that it could be written in):

(cosh (L) - 1) (cosh () — 1) — sinh (L) (sinh () — #)
(cosh (£) = 1) (cosh (L) = 1) = sinh (L) (sinh (£) = L) |

Plotting this solution for hg =1, L =1 and A = \}5, we obtain the following:

(32)

h(&) = ho — ho

We note from our definition of  that we have two length scales: L and A. Plot the solution for various
values of L and \. What do you notice about the solution when L > A? What about when A > L7 What
sort of energy is minimized in both scenarios?
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Problem Sheet 4

Eamonn Gaffney.

QUESTIONS 2, 3, 4, 5 of PART III. For class 4, of 4.

Part 3. Question 2. Ciliary Pumping.

Detailed calculation is not necessary to deduce the expression for U. Modes decouple at the first non-
trivial order the second derivatives acting on mode number n just induce a factor of n?. Thus one can
determine the contribution to U from the mode

e —x = €(—=bpcos(njx +1]), ye = ecysin(n[z +t]) (1)
by identifying
a=—nb,, b=nc, (2)

in the lecture note result 1
U= (b* + 2ab — a?)
to obtain the contribution from this mode. How can one consider the remaining modes without detailed

calculation?

The mode
xe —x = eapsin(nfz +t]), Y. = e(—d, cos(n[z +1]))

is simply a phase shift of the mode in equation (1). By considering a shifted time coordinate

we can determine the contribution from this mode by the subsitution
dn = Cny,  Gp — —by.
followed by the identification (2). Hence we use
a=na,, b=nd,

in the lecture note result 1
Us =3 (b* + 2ab — a?)

to obtain the contribution from this mode.

Summing all contributions, and noting U = €2U; to leading order, gives

oo

1
U= 562 Z n?[c2 +d2 — a2 — b2 + 2(and, — cnby)).

n=1
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We now determine power optimal strokes, defined as those maximising absolute velocity, subject to the
constraint of a fixed power consumption W using Lagrange multipliers with the above leading order
expressions. Thus we consider

L[{an7 by, Cn, dn}] = U[{ana bn7 Cn, dn}] - )\(P[{anv bn7 Cn, dn}] - W) (3)

and the extremal conditions
oL _ oL _ oL _ oL ”
dan b, cn  Odn

Thus
a2 + 2apd, —d> =0, b2 — 2b,c, — 2 = 0.

and hence a, = (—1 £ v/2)d,, and b, = (1 & v/2)c,, which yields

U = ¢é i n? ((2 +2V2)e2 + (2 F 2\/§)d,21) (5)
n=1

P = EQini” ((412&)&1 + (4;2\/5)61,%). (6)
n=1

How might the optimal solution be found?

Therefore the optimal stroke is achieved when a, = b, = ¢, = d, = 0 for n > 2. Without loss of
generality, we can set by = 0 as it is just a phase difference, and we finally have the optimal strokes
a1 = (=14 +/2)d; with the extremal velocity,

1%
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Part 3. Question 3. Ciliate Motility.

Take a reference frame comoving with the swimmer oriented such that the direction of the swimmer
velocity is given by U = Ue,. The non-dimensional Stokes equations are

Viu=Vp, V-u=0,

with 45
u=—-Ue,;, as |x— o0, u= ed—tlvl(cos 0)eg = 51 Vi(cosb)eg, on r=1,
where ey is the unit vector in the direction of increasing spherical polar 6, where r = |x| and z = r cos ),

x = rsinf cos ¢ for instance.
Explain why there is no fluid flow in the e, direction.
Show that

u= [—U(t) + %(:f)] cos fe, + [U(t) + i(;)] sinfey, p= Const

is a solution of the Stokes equation for Q(t) = 2P(t). To do this, you will need to consider the vector
Lapalacian of u. This is non-trivial in non-Cartesian coordinates and you may wish to consider using a
symbolic algebra package such as Mathematica.

fl[r_,theta_,phi_]:=(—U + Q/r"3) x Cos[theta]

f2[r_,theta_,phi_]:=(U + P/r"3)  Sin[theta)]

FullSimplify[Laplacian[fl[r, theta, phi], {r, theta, phi}, “Spherical”] — 2 x f1[r, theta, phi] /r"2—
2/(r2 * Sin[theta]) * (f2[r, theta, phi] x Cos[theta] + Sin[theta] * D[f2[r, theta, phi], theta])]

2(—2P + Q)Cos[theta]
o

FullSimplify[Laplacian[f2[r, theta, phi], {r, theta, phi}, “Spherical "]+
2 x DI[f1[r, theta, phi], theta] /72 — 1/(r"2 * Sin[theta] * Sin[theta]) * f2[r, theta, phi]]

2(2P — @)Sin]theta]
5

Given Q(t) = 2P(t), show that U(t) = 2¢51 /3.

For the more difficult part of the question, not expected except as an optional exploration of the theory,
see J. R. Blake, A spherical envelope approach to ciliary propulsion, J . Fluid Mech. (1971), vol. 46, part
1, pp. 199-208.
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Part 3. Question 4. Rotating sphere in Stokes flow.

With x = x — xq, r = |x — X¢| and

0ij Xy
Gij = R
the rotational dipole G¢ is defined by
1 8Gij
Gim = 5 6mly dxoy’

where

1 i (mylj)=(1,2,3) or (3,1,2) or (2,3,1)
emij =4 —1 if  (m,l,5)=(1,3,2) or (2,1,3) or (3,2,1)
0 if any of i, j, k are equal

Part a. We have

1 0 1 o |6 1%
- . Gi = = . Y J ,
2€mlj Dz, iJ 2€ml] 070, [ r + 3 ]
1 0 1 1 . . .. 0 1
= §€mlj [52]81‘071 (7“) — ;3 (&‘jl’j + 5jl$i) + Tilj 81‘071 (73)] )
Z
= Emliﬁ

Part b. Thus G¥, ¢ is a solution of Stokes equations for any constant vector q and it decays at spatial

infinity. With xg the centre of the sphere, the sphere is given by r = a, where we have

3 3 T N
a GEQO =a eilemﬁ = 6ileml'la

which is the velocity on a rotating sphere.

If this is not clear, without loss take € = Qe,, whereupon the velocity on the rotating sphere is, using

spherical polars,
al)sin fey = —aflsin 6 sin pe, + afdsin 6 cos pe,

and compare with Qes A X.

Hence

v = a>GS, O
is a solution for the Stokes flow for a rotating sphere with radius a and angular velocity 2. Note this
is the solution as Stokes flows solutions are unique (why? This is a little tricky and one may be better
referring to a text rather than directly attempting this, eg Pozrikidis, Ch. 1, Boundary integral and
singularity methods for linearized viscous flow, CUP).

Part c. One can use brute force, though that would be on the long side. Alternatively, let the stress

field of the Stokes solution 1

Ui = g G
be given by 0;; = T};pg,- Why must it be of this form?
You can show

0Tjs

oz, = —0;50(%),
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from the momentum balance for w;.

Then the stress field associated with v = a3G¢ - Q is given by (why?)
a’Q) 0
Hence the p* component of the moment of the sphere due to the fluid is given by
M, = EpgrTq2rsNsdS

Sphere

which simplifies to the required answer.
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Part 3. Question 5. Resistive force theory.

As in the notes, we have

6mpalU = (Drag force on flagellum). (7)
and e; = (—1,ehg), e, = (ehs, 1) and the velocity of the flagellum element is given by U = (U, V + ehy).
Hence the drag force per unit length on the element ds is given by

f = —[Cye,-Ue,+ Cre,-Ue] =—[(Cny—Cr)e,-Ue, + CrU]
= —[(Cny—Cr)e, ®e, + CrI]U

€2h?  ehs U
—[(CN_CT)( he 1 )-f—CTI] (eht—FV)

ezth—l— e2hshy + €hsV U
- _(CN_CT>< ehsU + ehy +V ) _CT< ehy +V )

Integrating over the flagellum length, s € [0, L], and using equation (7) we have

L
- ( U ) _ [ OrL+e(Cn - CE) o dsh? | | ( e(Cn — Cr) [ dsh, )
vV e(Cn — Cr) |, dshs CnL

[ E(Cn—Cr) ) dshshy
eCn OL dsh;

Clearly the term €2(Cy — Cr) OL dsh? is a lower order than CrL and hence the former is dropped. Thus

(6rpa + CrL)U = —(Cy — Cr) [62 OL dshgshy + €V OL dshs] :
Also . . .
V= —m [eCN . dsh; + €U (Cn — C7) . dshs] .
Subsituting the expression for V' into the expression for U we have
) ) L Cy L L
(6rpa + CrL+ O(e*))U = —e“(Cy — Cr) [ . dshgsh; — Grpat CnL o dshs . dsht] :

We can drop the O(e?) on the left as it is asymptotically small relative to C7 L.

Hence we have at leading order

CN L L

_ L
o2 Gr=—Cn [ dshehy — —N _ dsh, dsht]
0

‘ 6rpa + CrL 6rpa+CnL 0

and we recover the expression in the lecture notes provided

Cn Fdshy [ dshy

< 1.
6rpa + CyL oL dshshy




