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� The point source dipole, also known as the potential dipole

Hence
Dij =

∂

∂x0,j

(
x̂

r3

)
= −δij

r3
+ 3

x̂ix̂j
r5

and (with summation)
ui = Dijqj

is a solution of Stokes equations for any constant vector q.

The solution for a translating sphere By linearity, any linear combination of the potential dipole and
stokeslet also solves Stokes equations. We can combine them to find the solution to Stokes equations for a
neutrally buoyant sphere of radius a translating at constant speed U in the absence of other boundaries:

−∇p+ µ∇2u = 0, ∇ · u = 0 for |x− x0| > a (12)

with
u = U, const, for |x− x0| = a

and u → 0 at spatial infinity, with the sphere centred at x0 at any given instant.

To find the flow field at the field point x external to, or on the sphere, consider

ui = Gijgj +Dijqj .

By construction it is a solution of the Stokes equation and decays at spatial infinity. Imposing the no-slip
condition on the sphere boundary r = a we have

Ui =
gi
a
− qi
a3

+ x̂ix̂j

[
1

a3
gj +

3

a5
qj

]
.

Comparing coefficients, we have

q = −a
2

3
g and hence g =

3

4
aU =

1

8πµ
[6πaµU],

giving the solution for the flow around a translating sphere.

This readily allows us to calculate the viscous drag exerted by the surrounding fluid on a translating
sphere, which is known as Stokes drag. In particular the potential dipole does not contribute to the force
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(it is the limit of a linear combination of “equal but opposite” solutions, which thus do not exert a force
prior to taking the limit, and hence do not exert a force after taking the limit).

� Stokes Drag

Let σStkij = TStk
ijp mp be the stress associated with Stokeslet solution 11. We thus have

∇jσ
Stk
ij = mp∇jT

Stk
ijp = −miδ(x− x0).

The stress due to the Stokeslet contributions for the sphere solution is thus

σSphereij = 8πµTStk
ijp gp

and hence the total drag force, that is the force exerted by the fluid on the sphere, is

Fi =

∫
Sphere

σSphereij · njdS =

∫
Sphere

∇jσ
Sphere
ij dV

= 8πµ

∫
Sphere

gp∇jT
Sphere
ijk dV = −8πµ

∫
Sphere

gpδ(x− x0)dV = −8πµgp.

Hence the drag force is given by

F = −6πµaU. (13)

2.4.2 Resistive force theory

� Foundation of resistive force theory

Consider a small element of a very slender filament of circular cross section moving in a viscous
fluid. To provide the foundation for resistive force theory, our objective is to relate the drag force
per unit length, f to the velocity of the filament, analogous to the relationship between the drag
F and velocity U of a sphere in equation 13.

By the linearity of Stokes equations and symmetry of the circular cross section, the relation between
drag per unit length and velocity must be of the form

f = −CN (I− eTeT )U− CT (eT ·U)eT , (14)

with CT denoting the resistance coefficient in the tangential direction, eT and CN denoting the
resistance coefficient in the normal and binormal directions.
Thus our task reduces to finding CT , CN .

� Resistive Force Theory

Definition. Any theory of swimming that considers the mechanics of a beating cilium or flagellum
by using only the relationship between velocity and drag for isolated infinitesimal filament elements
given by equation (14), is referred to as resistive force theory. Such theories neglect possible non-
local hydrodynamic interactions between different parts of the filament, eg if it turns back on itself,
or hydrodynamic interactions between a cilium/flagellum and the cell to which it is attached
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To derive the relationship between drag and velocity for resistive force theory, consider a straight filament
of length L and cross section radius a, with a/L� 1.

Suppose the filament is aligned along the x axis, between x = 0 and x = L, and is subject to a constant
external force, uniformly distributed along its length, with force density per unit length f ext. We split
the rod into N = L/a� 1 elements of equal length, a.

Initially all hydrodynamic interactions of an element with its neighbours is neglected; the force each
element exerts on the fluid is then (L/N)f ext.

Invoking linearity of Stokes equations, the speed of the αth element must be of the form

uαi =
L

N
Aα

ijf
ext
j ,

where the tensor Aα
ij has O(1) coefficients and, by the no slip boundary condition, this is also the speed

of the fluid on the surface of the rod element. As all elements are equivalent the tensor Aα
ij in fact does

not depend on α and we drop the superscript in the following.

To consider hydrodynamical interactions, at least approximately, we approximate each rod element by a
Stokeslet, of strength Lf ext/N , at locations xα

0 = (L/[2N ], 0, 0)+ (Lα/N, 0, 0), for α ∈ {1, ..., N}. This is
equivalent to approximating each rod element as a sphere of radius a = L/[2N ]; the far field of such an
object is dominated by the Stokeslet which decays like the inverse of distance; the potential dipole decays
like the inverse of the cubed distance. Even at a distance of 2a, ie. the next element, this approximation
induces a relative error of about 2/23, i.e. 25%, with improvements in considering more distant elements.
Given the level of accuracy of resistive force theory, this is a tolerable error.

The flow induced by the αth stokeslet is

uαi (x) =
1

8πµ

L

N
Gij(x,x

α
0 )f

ext
j .

Invoking linearity once more, the velocity at the βth segment is thus the linear superposition of the
flow induced by the βth element and the flow induced by (our Stokeslet approximation of) all the other
elements.

� Foundation of resistive force theory

Hence, the flow at a point on the surface of the βth element, xβ ∈ ∂Ωβ, is

uβi (x
β) = Aijf

ext
j L/N +

∑
α; α 6=β

L

N
Gij(x

β,xα
0 )f

ext
j

= Aijf
ext
j L/N +

∑
α; α 6=β

L

8πµN

{
δij
r

+
rirj
r3

}
fextj

where r = xβ − xα
0 , r = |r|.
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� Foundation of resistive force theory

For N � 1 we have the velocity at the centre of filament can be derived as follows.

We approximate the sum by an integral, excluding a region around xβ. Thus, we have

uβi (x
β) = Aijf

ext
j L/N +

1

8πµ

∫ sβ

0
ds

{
δij
r

+
rirj
r3

}
fextj

+
1

8πµ

∫ L

sβ+2a
ds

{
δij
r

+
rirj
r3

}
fextj +O(L/N)

where sβ = βL/N and xα → sex noting that xβ is still a fixed point on ∂Ωβ. With the (crude!)
approximation

r ∼
(
sβ +

L

2N
− s

)
ex,

and using L/[2N ] = a, we have

uβi ∼ Aijf
ext
j L/N +

1

8πµ
[δij + δi1δj1] f

ext
j

[∫ sβ

0

ds

|sβ − s+ a|
+

∫ L

2a+sβ

ds

|sβ − s+ a|

]
∼ Aijf

ext
j L/N

+
1

8πµ
[δij + δi1δj1] f

ext
j log

(
sβ(L− sβ)

a2

)1 +O

a(L− 2sβ)

sβ(L− sβ)

1

log
(
sβ(L−sβ)

a2

)


Considering away from the ends of the rod, so that sβ = γL, with γ not close to zero or unity, so
that | log(γ(1− γ))| ∼ O(1), we have

uβi ∼ Aijf
ext
j L/N +

1

4πµ
[δij + δi1δj1] f

ext
j log

(
L

a

)(
1 +

1

2

log(γ(1− γ))

log
(
L
a

) + h.o.t.

)
.

Hence

uβi ∼ 1

4πµ
[δij + δi1δj1] f

ext
j log

(
L

a

)
as 1

N
,
a

L
→ 0,

though extensive further work (eg matching into a prolate ellipsoid cap) is required to determine
corrections at the ends.

A flagellum. Approximating a flagellum as a collection of slender straight elements, the velocity of
the centre of each rod is related to the hydrodynamic force density exerted on the rod, at this level of
approximation, by

ui ∼
1

4πµ
[δij + δi1δj1] f

ext
j log

(
L

a

)
.

Note this gives the velocity of a segment given the force per unit length applied on the fluid by the
filament. We require the drag force per unit length, ie the force per unit length exerted on the filament
by the fluid; this differs just by a minus sign (by Newton’s third law).

Hence, the relationship between the hydrodynamic forces and velocities of elements of a flagellum are
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related by
fT = −CTuT , fN = −CNuN , where CN = 2CT =

4πµ

log
(
L
a

) ,
with fT , uT , CT denoting the force density, velocity and resistance coefficient in the tangential direction
and fN , uN , CN denoting the analogous quantities in the normal and binormal directions.

The original, more rigorous but harder, analysis can be found in [4], where the flow field adjacent to a
sinusoidally moving filament is determined invoking asymptotics in a/L. Differentiating these flow field
yields the stress tensor, and hence the resistance coefficient can be explicitly determined, as first noted by
[3]. You will immediately note the increase in complexity of the analysis if you read the original papers
with further complexity if the careful asymptotics of [5] are explored; therefore a crude technique, rather
than a rigorous one, is presented here.

2.4.3 Example. Predicting the speed of a swimming cell.

Figure 4: Left. An image of two carp spermatozoa highlighting the spherical cell body, courtesy of Galina
Prokopchuk and Jacky Cosson, University of South Bohemia, Faculty of Fisheries and Protection of Waters,
Research Institute of Fish Culture and Hydrobiology. The head radius is exaggerated in the image due to an optical
effect as the microscopy is fine tuned to make the flagellum visible, which requires phase contrast microscopy, rather
than standard microscopy, since the flagellar cross sectional radius is less than a wavelength of light. Right. The
model; shallow planar waves of the form y = εh(x, t) propagate down the flagellum, where the plane y = 0 is the
mid-plane of the flagellum.

For simplicity, we consider a swimmer with a spherical cell body. These are not that common – instead
there is an array of interesting cell shape geometries. Nonetheless, numerous fish spermatozoa, for
instance carp and turbot, have spherical bodies.

Let y = 0 correspond to the midplane about which the flagellum beats, and let y = εh(s, t) denote the
location of the flagellum at time t and arclength s. We assume a small amplitude beat so that ε� 1.

Finally, in most expositions, it is assumed that the spermatozoon body has negligible velocity in the
y direction, i.e. that the cell body velocity is (U, 0) and that it does not rotate. Below we make this
assumption, but it is generally unjustified. See for example page 13 of the supplementary information,
where the trajectory a cell head is the magenta curve. We consider when such assumptions are valid in
more detail in the problems.

Our objective below is thus to find U , that is the swimming velocity, in terms of h(x, t).
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� Total force balance on the flagellum

• The spherical cell body moves with speed U. Hence it experiences a drag force of −6πµaU
from the fluid.

• Considered in isolation there is no net force on the cell as the Stokes number RS , is essentially
zero.

• Thus
−6πµaU+ (Drag force on flagellum) = 0.

Hence

6πµaU = (Drag force on flagellum). (15)

We now use resistive force theory to determine the drag force on the flagellum in terms of h(s, t). This
gives us an equation for U, and we takes its projection onto the x-axis to find U , the swimming speed in
the x direction, working to the leading non-trivial order in ε� 1.

� Prediction for U via resistive force theory

We have et = (−1, εhs), en = (εhs, 1) and the velocity of the flagellum element is given by
U = (U, εht) noting there is no cell body velocity in the y-direction. Hence the drag force per unit
length on the element ds is given by

f = − [CNen ·Uen + CTet ·Uet] = − [(CN − CT )en ·Uen + CTU]

and projecting this onto the x-direction we have

f · ex = − [(CN − CT )en ·Uen · ex + CTU ]

= −
[
(CN − CT )(ε

2h2sU) + (CN − CT )(ε
2hsht) + CTU

]
Hence, by equation (15)

6πaµU = −
∫ L

0

[
(CN − CT )ε

2h2sU + (CN − CT )(ε
2hsht) + CTU

]
ds (16)

Rearranging gives[
6πaµ+ (CN − CT )ε

2

∫ L

0
h2sds+ CTL

]
U = −(CN − CT )ε

2

∫ L

0
hshtds.

Dropping the clearly subleading O(ε2) term on the left-hand side immediately yields

U = ε2
CT − CN

6πaµ+ CTL

∫ L

0
hshtds.

We note that Friedrich et. al [2] have recently reported a very good agreement between resistive force
theory predictions and spermatozoan trajectories.


	MMB-partIII_new.pdf
	Introduction
	Biofluids
	The equations of Newtonian fluid dynamics
	Conservation of mass and incompressibility
	Conservation of momentum
	Characteristic Scales of Incompressible Newtonian Fluid Mechanics and The Stokes Equations
	Boundary conditions for Stokes equations

	Purcell's Scallop theorem
	Ciliary Pumping
	Cellular Motility
	Some simple observations about, and solutions for, Stokes equations
	Resistive force theory
	Example. Predicting the speed of a swimming cell.


	An introduction to Poroelasticity. To be written.
	Volume fractions and no voids
	Mass balance
	Momentum balance and fluid-solid drag
	Constitutive Laws
	Restrictions on the constitutive laws due to the second law of thermodynamics.

	Summary of equations
	Boundary conditions and initial conditions
	Further tissue complications: Osmotic pressures

	Application: cartilage models and confined compression experiments

	Problems


