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HEALTH WARNING:

The following lecture notes are meant as a rough guide to the lectures. They are not meant to
replace the lectures. You should expect that some material in these notes will not be covered in
class and that extra material will be covered during the lectures (especially longer proofs, examples,
and applications). Nevertheless, I will try to follow the notation and the overall structure of the
notes as much as possible.
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1 Background: basic geometry of surfaces

� Geometry

Here, we introduce basic notions of differential geometry for surfaces. Of particular importance are
the definition of the area and length elements and the notions of mean and Gaussian curvatures.
The Gauss-Bonnet theorem (given without proof) will also be important in our discussion of
mechanics.

For simplicity we consider here an orientable parametrised surface Σ defined by the position vectors

x = x(ξ1, ξ2) ∈ R3, (ξ1, ξ2) ∈ M ⊂ R2. (1)

We assume that x is at least of class C2 and such that the tangent vectors

ri =
∂x

∂ξi
, i = 1, 2 (2)

are linearly independent for all (ξ1, ξ2) ∈ M . Since Σ is orientable, we can define a normal vector (see
Fig. 1)

n =
r1 × r2

||r1 × r2||
, (3)

where ||a|| =
√
a · a. Note that by definition {r1, r2,n} forms a basis (but not necessarily orthonormal –

Figure 1: Tangent vectors (red and blue) on an ellipsoid parameterised by two angles (thin black line).
The normal vector (in black) is simply obtained as the cross product of the two tangent vectors.

it turns out that it is not always advantageous to use an orthonormal basis to describe surfaces).
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1.1 Length and area

To identify key quantities, we first compute the area of a surface

� Area element

We start with
A =

∫
Σ

dS (4)

That is,
A =

∫∫
M

√
g11g22 − g212 dξ1dξ2 (5)

where gij = ri.rj

Alternatively, we can write
A =

∫∫
M

√
det(G) dξ1dξ2 (6)

which naturally leads to the definition of G = (gij), the matrix of the metric tensor.

Next, we compute a length element



CONTENTS 5

� Length element

We start with a curve r = r(t) defining a path γ on Σ

L =

∫
γ

ds (7)

That is,
ds2 = gijdξidξj (8)

and
L =

∫
I

√
gij ξ̇iξ̇j dt (9)

Associated with the metric we have defined the first fundamental form ds2 = gijdξidξj .

1.2 Curvatures

We are interested in defining curvatures on the surface Σ. We consider a curve C on Σ passing through
a point P and parameterised by its arc length s and define t as the tangent vector of C at P .

We know from Module 1 that the curvature of the curve C at a point P is obtained as |t′|. It is therefore
natural to define the curvature vector

k =
dt

ds
(10)

and decompose it into two components, the normal curvature vector kn and the geodesic curvature vector
kg

k = kn + kg (11)

where kn = −knn is along the normal vector1, that is

kn = −n · dt
ds

, kg = ||kg|| =
∣∣∣∣t · (dt

ds
× n

)∣∣∣∣ . (12)

The normal curvature kn is a property of the surface itself and gives the curvature in a planar slice spanned
by the normal and tangent vector (see Fig. 1.2) whereas the geodesic curvature gives the curvature on
the curve on the surface (it is identically zero for a geodesic curve).

We can compute explicitly the normal curvature for a given curve.

1Note the choice of sign designed to ensure that the normal curvature of a sphere of radius R is indeed kn = +1/R rather
than −1/R if we take n to be outer normal vector.
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Figure 2: The normal curvature of a curve on a surface in a given direction t is given by the curvature
of the curve obtained as the intersection of the surface with the plane spanned by n and t .

� The normal curvature

That is,
kn = Kij(ξ

i)′(ξj)′ (13)

where
Kij = Kji = −n · ∂rj

∂ξi
(14)

which naturally leads to the definition of K = (Kij), the matrix of the extrinsic curvature tensor. This
tensor is naturally associated with the second fundamental form Kijdξidξj .

A natural question is to determine the extremal values of the normal curvature as we vary the tangent
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vector at P .
� Principal curvatures

That is, the principal curvatures are the eigenvalues of the principal curvature matrix

L = G−1K. (15)

Define e1 and e2 as the orthonormal eigenvectors associated with the principal curvatures k1 and k2. We
can write

t = cos θ e1 + sin θ e2 (16)

and, in general, we have (Euler’s theorem 1760, see Fig. 1.2)

kn = k1 cos
2 θ + k2 sin

2 θ. (17)

The principal curvatures can be used to defined the mean curvature H and Gaussian curvature KG as
follows

2H = tr(L) = k1 + k2, (18)
KG = det(L) = k1k2. (19)

It can be shown that the Gaussian curvature is intrinsic to the surface (in the sense that it only depends
on the metric and not on the normal vector). This result is contained in the Gauss’ famous Theorema
Egregium (remarkable theorem). Note that KG is independent of the parameterisation but that H can
change sign (depending on the choice of the normal vector).

A minimal surface is such that H = 0 identically for all points. These surfaces play a particularly
important role in a number of important problems and we will indeed see that the vanishing of the mean
curvature naturally arises as a condition to minimise the area.

The Gaussian curvature is particularly important in the classification of surfaces as either elliptic (KG >
0), hyperbolic (KG < 0), or parabolic (KG = 0).
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1
k1
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k2

n

Figure 3: The principal curvatures of a surface are the maximal values of the normal curvature at a point
and geometrically correspond to the inverse radius of the best fitting circles (of maximal radii).

1.3 The Gauss-Bonnet theorem

An important result of global topology is the Gauss-Bonnet theorem (Bonnet 1848). Let Σ be a compact
two-dimensional Riemannian manifold with boundary ∂Σ. Let KG be the Gaussian curvature of Σ, and
kg the geodesic curvature of ∂Σ. Then∫

Σ
KGdS +

∫
∂Σ

kgds = 2πχ(Σ), (20)

where χ(Σ) is the Euler characteristic of Σ, a global topological property, which, for a surface of genus2

p is given by χ(Σ) = 2− 2p.

Of particular interest for us is the case of a closed orientable surface for which∫
Σ
KGdS = 4π(1− p). (21)

1.4 Examples

Examples of different minimal surfaces are given in Fig. 4. The corresponding Mathematica file that
created these graphs can be downloaded with the Lecture Notes material (“Curvature Computation.nb”).

2In three-dimensions, the genus of an orientable surface is given by the number of handles, a sphere has genus 0, a torus
or a mug has genus 1, and so on.
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Figure 4: Different minimal surfaces. Left: the helicoid, Right: the catenoid. Middle: The helico-
catenoid. Tangent vectors (red and blue). The normal vector (in black) is simply obtained as the cross
product of the two tangent vectors.
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2 Fluid biomembranes

� Motivation

Many biological membranes are made of lipid bilayers and examples are given in MMB-
Presentation, Bio-Membranes, online. Mechanically, these structures and synthetic lipid vesicles
resist bending, stretching but are fluid in the plane and as such do not resist shear. In this Chapter
we consider the model of Canham (1970)-Helfrich (1973)-Evans (1973) to describe the response of
such membranes under pressure.

2.1 The biomembrane model

We have the following assumptions:

A1. The biomembrane is thin enough with respect to its maximal radius of curvature and typical length
so that it can be represented by a surface Σ.

A2. The biomembrane is shearless (offers no resistance to shear) but resists bending and stretching.

A3. The energy associated with change in bending is given by the lowest polynomial in the surface mean
and Gaussian curvatures that preserve the parameterisation and the energy of stretching by the
change of area.

A pedantic but important remark: A membrane is a membrane but is not a membrane, in the sense
that the term membrane used in biology is the same term used by biophysicists but not the same as the
term “membrane” used in mechanics. In mechanics a membrane is a two-dimensional structure that can
resist tension but not compression or bending. A plate is an initially flat structure that resists bending,
tension, and compression (it can be unshearable or shearable depending on the theory). A shell is an
initially curved surface that resists bending, tension, and compression (it can be unshearable or shearable
depending on the theory). We will use the term biomembrane or fluid membrane to describe a shearless
structure that can resist bending and stretching.

Following the assumptions, we posit that the elastic energy of a biomembrane with surface Σ is given by

E =

∫
Σ

dS
[
γ + 2κ(H −H0)

2 + κ̄KG

]
(22)

where

• H and KG are the mean and Gaussian curvatures defined in the previous section,

• γ is the surface tension (as usually found in a theory of surfactant),

• κ is the bending modulus (confusing but standard notation),

• κ̄ is the saddle-splay modulus,

• H0 is the intrinsic mean curvature of the biomembrane.

In general, one can find the shape of the surface by minimising the energy E with respect to all continuous
deformations of a given reference shape. Typically, the system is subject to other constraints such as
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constant volume or constant pressure. In such cases, we can introduce the corresponding Lagrange
multiplier and minimise an amended function. For instance, for constant volume V = V0, the shape will
be obtained by minimising

EP = E − P (V − V0) (23)

subject to the condition V = V0. Here P is the Lagrange multiplier (which, of course can be identified
as the pressure). Similarly for the case of constant pressure, we will need to minimise

EV = E − PV. (24)

Note that the set of extrema of EP and EV are the same but their stability will be in general different.

Remember that from the Gauss-Bonnet theorem for a closed surface, we have∫
Σ
KGdS = 4π(1− p). (25)

Therefore, for a closed surface the energy contribution of the Gaussian curvature during deformation is
constant (as long as the topology of the surface does not change) and can be ignored when determining
the shape of the membrane.

Dimensionally, κ is an energy and γ is an energy per length squared. Therefore, we can define a typical
length scale of tension versus bending given by

λtb =

√
κ

γ
. (26)

� Estimates
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Figure 5: The height function (or Monge parameterisation) of a surface. Note that this representation is
not valid if the surface curves back on itself (for instance in the case on the right).

2.2 The shape equation in the Monge representation

In order to find the shape of the surface we need to minimise the corresponding energy. This is in general
a difficult task as the variations of the curvatures with respect to the deformation need to be found in
general. To illustrate this process, we consider here a simpler, but important, case where the surface Σ
can be represented by a height function h = h(x, y) of class C2. That is,

h : U ∈ R2 → R, (∇h)2 < ∞, (27)

where ∇ = ex∂x + ey∂y. The position vector for points on the surface is simply

r = (x, y, h(x, y)) (28)

� Normal and metric

We first compute the normal and metric

So that, we have for example, n = g−1/2 (−∇h+ ez) , g = det(G) = 1 + (∇h)2.
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We can now compute the mean and Gaussian curvatures

� Curvatures in Monge representation

So that, we have
2H = −g−3/2

[
hxx(1 + h2y) + hyy(1 + h2x)− 2hxyhxhy

]
, (29)

and
KG = g−2

(
hxxhyy − h2xy

)
. (30)

The mean curvature can also be written in a coordinate free form as

2H = ∇ ·
(
g−1/2∇h

)
= −∇ · n (31)

2.2.1 Area minimisation

Note that if κ = κ̄ = H0 = 0 and γ is constant, the energy for the biomembrane simplifies to the
well-known energy given in the theory of surface tension (in the absence of gravity)

ES = γ

∫
Σ

dS. (32)

We can now use Monge representation to obtain the condition for area minimisation
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� Condition for area minimisation

And we find the two equivalent local conditions for the existence of a minimal surface

∇.n = 0 ⇐⇒ H = 0. (33)

Note that this condition remains valid even in the general case (where a surface cannot be represented
by a height function) but only provides necessary conditions.

2.2.2 Small gradient approximation

We further restrict our analysis to the case of κ̄ = H0 = 0 and for small gradients |(∇h)| � 1.
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� Energy

That is, the energy now reads

E2 =
1

2

∫∫
dxdy

[
κ(4h)2 + γ(∇h)2

]
. (34)

This form of the energy is now sufficiently simple as to allow us to compute the first variation with respect
to h (that is h → h+ δh). To keep track of terms on the domain boundary we need to do the variation
from first principles, analogously to the derivation of the Euler-Lagrange equations



CONTENTS 16

� First variation of the energy

That is, we have

δE2 =

∫∫
dxdy4 [κ(4h)− γh] δh

+

∮
ds N · [κ(4h)∇δh+ (γ∇h− κ∇4h)δh] . (35)

where N is the outer normal to the projected surface contour on the x− y plane.



CONTENTS 17

A necessary condition for minimisation is δE2 = 0. The vanishing of the area integral provides the shape
equation

4
(
4− λ−2

)
h = 0 (36)

where λ = λtb is the typical length scale introduced in (26).

The vanishing of the line integral leads to boundary conditions for our fourth-order problem. We have
two sets of conditions to satisfy.

1) For the first term in the bracket, we fix either the normal component of the contour so that

N ·∇h = Cst ⇒ N ·∇δh = 0 (37)

or, we impose 4h = 0 on ∂Σ.

2) Similarly, we need to either fix h at the boundary so that δh = 0 at the boundary, or we impose

N ·∇h = λ−2N ·∇4h, (38)

for h on the boundary.

Together, this leads to four different possible sets of boundary conditions (or any combinations in different
parts of the domain).

2.3 Examples

2.3.1 One-dimensional fluid membranes

As a first particular case of the shape equation (36), we consider the case where h = h(x) only, that is
we assume that the sheet is uniform along the y axis. In this case, we have

∂4xh− λ−2∂2xh = 0, (39)

which is exactly the form of the beam equation in module 1, where λ−2 = F/(EI) plays the role of an
effective tension. We conclude that in the small gradient approximation and in one dimension, a uniform
elastic fluid membrane behaves as an elastic beam under tension.

2.3.2 Flicker spectroscopy

A possible method to measure the elastic parameters of the membrane is provided by measuring the
spectrum of thermal undulations via light microscopy [? ? ]. This is known as Flicker spectroscopy.
It is typically performed on closed membranes but the analysis of a square membrane will still provide
interesting information.

Consider a square membrane of size L× L with periodic boundary conditions. We expand the height of
the membranes h(r) = h(x, y) as a double Fourier series:

h =
∑
q

hqeiq·r , q =
2π

L

(
nx

ny

)
, nx, ny ∈ Z . (40)

Next, we compute the fluctuations of this membrane in thermal equilibrium.
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� Flicker Fluctuation

That is, we have 〈
|hq|2

〉
=

2kbT

L2(κq4 + σq2)
(41)

The coefficients
〈
|hq|2

〉
(known as the static structure factors) can be measured from the spectrum.

Fitting it to Eq. (41) yields the bending modulus and surface tension of the membrane (see Fig. 6).
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Figure 6: Flicker spectrum of a fluctuating membrane. The dashed line is a fit of the form (kBT/κ +
c1(qγ)c2)

−1 which helps to find the asymptotic value; the inset shows the unscaled spectrum. The fit
leads to κ = 12.5kBT , with an error estimated to be ±1kbT . (Figure 1 from The Journal of Chemical
Physics 125(20):204905 · December 2006, reproduced without permission).
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3 Axisymmetric Membranes and Shells

� Elastic membranes and shells

We consider the axisymmetric deformation of membranes and shells in linear and nonlinear
elasticity. These have biological application in modelling the dformation and mechanics of red
blood cells in physiological flows and also modelling filamentous growth of biological structures
in the context of fungi and hyphae for instance. We start with a simple elastic membrane before
considering the general case. Most of these notes follow the derivations from [? ? ? ? ], which
are motivated by in the context of filamentous growth.

3.1 Elastic membranes with linear constitutive laws

We begin by considering an extensible axisymmetric elastic membrane filled with an incompressible
viscous fluid under pressure and that there is no normal shear stress. This type of formulation has been
used successfully to describe the shape of red blood cells and other biomembranes [? ? ] and we adapt it
here to include the effects of pressure induced stretch, growth and geometry dependent elastic properties
of the membrane. We assume that the shape of the membrane remains axisymmetric in the deformation.
Here, to derive a full set of equations, we use a method based on rational mechanics, we proceed in three
steps: kinematics, mechanics, and constitutive laws.

3.1.1 Kinematics

θ(σ)

σ        

(σ) r

s=s(σ)   

s = σ=0

C

n

nt
t

x

y

zφ

Figure 7: Basic membrane and shell geometry. A material point σ is measured by its arc-length, s(σ)
from the apex of the shell and its axial position r(σ) on a curve C, n and t denotes the normal and
tangent vectors at that point. The angle θ(s) is the angle between the normal direction. The membrane
is taken to be axisymmetric where ϕ is the azimuthal angle.

We assume that the shape of the membrane remains axisymmetric in the deformation. As shown in
Figure 7, the membrane surface S is defined by revolving a planar curve C around the z-axis. The
reference planar curve C is parameterized by a parameter σ counted from the intersection O of the
surface with the z-axis. The shell geometry is characterized by the distance from the axis r = r(σ) and
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the angle θ = θ(σ) between the normal to C at σ and the z-axis. The arclength at any time s = s(σ)
is measured from O. Before deformation or growth, the material parameter σ is chosen to be the arc
length, s = σ, and the initial shell configuration is referred to as the reference configuration. If we
consider axisymmetric deformation of the surface, we can define the radial stretch ratio

λϕ =
r

ρ
, (42)

at a given (material) point as the ratio between the original radius ρ at that point and the new radius r,
and the stretch ratio

r

ρ
r

Figure 8: Definitions of stretches. We consider a reference curve before and after deformation.

λs =
∂s

∂σ
, (43)

as the amount of stretching of the body coordinates with respect to arclength. These two stretches
(λϕ, λs) completely define the deformation of an axisymmetric reference shape. The geometric variables
satisfy the equations

dr

ds
= cos(θ),

dz

ds
= − sin(θ), (44)

Two other important measures of the geometry of the surface are the principal curvatures which are given
by

κs =
dθ

ds
, κϕ =

sin θ

r
. (45)

Note 1: If the we have an incompressible shell the third deformation variable, λ3, measuring changes in
the normal thickness of the shell, is simply related to λs and λϕ through the incompressibility condition
λsλϕλ3 = 1.

Note 2: A modelling choice must be made at this point. Is the membrane, the reduction to a surface
of a 3D body (as one would expect say of a rubber balloon), or is the membrane a true elastic surface
(called “an elastic sheet”) with no transverse structure (as one would model a lipid bilayer)? This leads
to slightly different formulation of the problem. Haughton has a nice review paper on the subject [? ].
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Figure 9: The surface S with stresses (ts, tϕ).

3.1.2 Mechanics

We now define the stresses acting on the membrane surface: let ts be the tension on the surface along the
tangent es, in the direction of increasing arclength; and let tϕ be the tension along the unit vector eϕ,
normal to es in a plane tangent to S, and in the direction of increasing azimuthal angle ϕ (see Figure 9).

The equations for mechanical equilibrium for a surface of revolution in the normal and tangential direction
results from the balance of force and moments acting on a surface element.
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� Mechanical force balance

That is, we have,

P = κsts + κϕtϕ, (46)
∂(rts)

∂s
− tϕ

∂r

∂s
+ rf = 0, (47)

where P is the pressure difference across the membrane, and f is the shear stress on the membrane.

This last term could be taken to represent the drag forces exerted by the surrounding medium on the
membrane. Appropriate modeling of this effect is nontrivial. For now, this term will be set to zero in
our analysis.

We proceed to consider moments.
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� Mechanical moment balance

Hence

∂

∂s
(rms)−mϕ cos θ = 0. (48)

Note: The two equations (46, 47) can be written in terms of r and θ by using the geometric relation
es = cos θer + sin θez, and ∂θ/∂s = κs, and take the form

ts
∂θ

∂s
+

sin θ

r
tϕ = P, (49)

∂ts
∂s

=
cos θ

r
(tϕ − ts). (50)

In the case of constant pressure P we can verify that there is an integral of equations (49, 50), i.e. a
function of the variables constant along the curve C, given by:

C = r2 (2tsκϕ − P ) . (51)

In particular, for all solutions (r(σ), θ(σ)) crossing the z-axis, we have C = 0 and P = 2tsκϕ.

3.1.3 Constitutive laws

From the general theory of elasticity for isotropic incompressible material, the tensions in the directions
of the stretches are given by

ti = λi
∂W

∂λi
− p, i = s, ϕ, 3. (52)

Here p is a Lagrange multiplier for incompressibility. A 3D membrane relationship is derived by using
the membrane assumption, that states t3 = 0, to eliminate p, whilst λ3 is eliminated as incompressibility
gives λ3λ2λφ = 1.
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Regardless of the general model of material properties, one can generally write the constitutive relation-
ships in the form

ts = Afs(λs, λϕ). (53)
tϕ = Afϕ(λs, λϕ), (54)

Moments. Finally, we need to specify a constitutive relationship for the bending moments. The bending
moments are assumed to be isotropic and proportional to the change in the surface’s mean curvature,
i.e.

mϕ = ms = B(κs + κϕ −K0), (55)

where K0 K0 is the sum of membrane curvtaures in the absence of bending moments and B is the bending
modulus [E. A. Evans and R. Skalak. Mechanics and thermodynamics of biomembranes. CRC Press,
Inc, Boca Raton, Florida, 1980].

Combining this with equation (48) immediately implies

κs + κϕ = K1,

where K1 is a constant.

In summary To find the membrane shape, that is r, z, with constant pressure the complete system of
membrane equations can be written as the closed system

ds

dσ
= λs, (56)

dz

dσ
= −λs sin(θ), (57)

dr

dσ
= λs cos(θ), (58)

dθ

dσ
= λsκs = λs

(
K1 −

sin θ

r

)
, (59)

dts
dσ

= λsA

[
cos θ

r
(fϕ − fs)

]
. (60)

with fs = fs(λs,
r
ρ), fϕ = fϕ(λs,

r
ρ), with initial profile z = z0(s), r = ρ(s), from which initial curvatures

and thus K1 can be found.

Note 1: computationally, this is a BVP for 4 unknowns r, z, θ, s. It can easily be solved numerically.
Some care is needed to find the correct boundary value at σ = 0 It can also be solved asymptotically for
simple configurations.

Note 2: If volume rather than pressure is kept constant, then the pressure becomes a Lagrange multiplier
that enforces the volume constraint. Starting from a guess pressure, one can iterate the computation by
computing the solution for each pressure under a volume constraint).

Note 3: In the case of a surface incompressibility (typical for bilayers), one needs to modify the strain
energy density with the constraint, the associated new “‘surface pressure” will then need to be determined
as part of the unknowns. This is a possible way to relate this theory to the fluid membranes section above.
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3.1.3.1 Variable moduli. A deformation of the membrane can follow from either an increase in
pressure or a softening of the walls. The softening can easily be taken into account by using a material
dependent elastic function A = A(σ). A general form of p = P/A can be taken as

p =
P

2

[
1− tanh(

σ − σ1
α

)

]
+ β, (61)

where P is the internal pressure and the parameters σ1 and α describe the length of the extension zone.
Since limσ→∞ p = β, the parameter β describes the effective pressure in distal regions. Close to the
deformation tip (σ = 0), the walls are soft and the elastic coefficient minimal. In the distal regions,
the walls are set and the elastic coefficient A is, comparatively, very large, so that the effective pressure
is small (equal to β). Note that a decreased modulus or increased pressure (or vice versa) are, at the
mechanical level, indistinguishable, trivial mathematically, highly non-trivial biologically.

3.1.4 Inflation of a spherical membrane

It is of interest to consider the inflation of a spherical membrane.

� The spherical membrane

We start with a shell of initial radius Q and deform it to a new shell of radius q and we define
λ = q/Q.

3.2 Nonlinear elastic shells

We now briefly discuss axisymmetric shells, that is, elastic objects that can be represented by a surface,
support bending, and have a non-flat unstressed shape. At the level of kinematics, there is no difference
in the geometric description of the deformations. Therefore, we move directly to mechanics.
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3.2.1 Mechanics

The mechanical equilibrium, including bending moments can be obtained by balancing linear and angular
momenta on a small surface element. Long and tedious force and couple balances via a complex body
diagram that are better done in the privacy of one’s office lead to a system of three equations

r r

Figure 10: A rather complex balance of forces and moments acting on a surface element, where the
difference in the normal stress across the membrane is qn, which has a pressure contribution, but may
have other contributions as well, as detailed further in the text.

d(rqs)

ds
= rqn − r (κsts + κϕtϕ) , (62)

d(rts)

ds
= tϕ cos θ + rκsqs, (63)

d(rms)

ds
= mϕ cos θ + rqs, (64)

where ts and tϕ are, respectively, the meridional and azimuthal stresses; ms and mϕ are the bending
moments; and qs is the shear stress normal to the surface.

In equation (62), which represents the balance of normal stresses, qn represents the total normal stress
exerted on the shell. If the problem is pressure driven then qn = ∆P , namely the pressure difference
across the shell; and if it is a combination of pressure and cytoskeletal action, represented by some
function τn, then qn = ∆P + τn.

Note: If the normal forces acting on the shell are due to, say, cytoskeletal action represented by some
function τn, then qn = τn; and if the total normal forces are a combination of both of these effects,
qn = ∆P + τn.

In Equation (63), which represents the balance of tangential stresses, τs is the external tangential shear
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stress acting on the shell and will be used here to represent the friction between the deformed shell and
its environment.

3.2.2 Constitutive relationship

For the stresses ts, tϕ, we use the same relationships as for the case of membranes (??-??). Finally, we
need to specify a constitutive relationship for the bending moments. Similarly for the moments we use
as previously

mϕ = ms = B(κs + κϕ −K0), (65)

where B is the bending modulus and K0 is the sum of membrane curvatures in the absence of bending
moments.

3.2.3 The shell equations

The geometric and mechanical equations can be combined to give a closed system. It is convenient to
express all the derivatives in terms of the material coordinate, σ, leading to

dz

dσ
= −λs sin(θ), (66)

dr

dσ
= λs cos(θ), (67)

dθ

dσ
= λsκs, (68)

dκs
dσ

= λs

[
cos θ

r

(
sin θ

r
− κs

)
+

qs
B

]
(69)

dts
ds

= λsA

[
cos θ

r
(fϕ − fs) + κs

qs
A

]
, (70)

dqs
dσ

= λsA

[
qn
A

− κsfs −
sin θ

r
fϕ − qs

A

cos θ

r

]
, (71)

where (69) is obtained from (64) using the constitutive relation (65) and equation (45) is used to express
κϕ in terms of r and θ. In equations (70) and (71) ts and tϕ are expressed in terms of λs and λϕ through
the scaled constitutive relations (53,54), and equation (70) is converted into a differential equation for λs

by eliminating λϕ through the relation λϕ = r/ρ.

The six ordinary differential equations (66-71) together with the relationships (53,54) and λϕ = r/ρ
form a closed system for the variables (z, r, θ, κs, λs, qs) that can be solved for given initial profile ρ(σ),
elastic parameters A,B, prescribed normal and tangential stresses qn and τn, and appropriate boundary
conditions.

When bending moments can be neglected the shell no longer supports an out-of-plane shear force, i.e.
qs = 0 and equation (71) reduces to

qn
A

= κsfs + κϕfϕ, (72)

which is just a generalized form of the Young-Laplace law as seen before. The system of shell equations
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then simplifies to the membrane equations from the previous section.

ds

dσ
= λs, (73)

dz

dσ
= −λs sin(θ), (74)

dr

dσ
= λs cos(θ), (75)

dθ

dσ
= λsκs = λs

(
K1 −

sin θ

r

)
(76)

dts
dσ

= λsA

[
cos θ

r
(fϕ − fs)

]
. (77)
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4 Problems

1) Show that the definitions of area (Eq. (6)) and length (Eq. (9)) are invariant under a change of
parameterisation.

2) The matrices G and K associated with the first and second fundamental form are symmetric.
However, the combination L = G−1K is not necessarily symmetric. Prove that, nevertheless, the
eigenvalues of L are real and that eigenvectors with distinct eigenvalues are orthogonal with respect
to the scalar product < a,b >= aTGb.

3) Prove Euler’s theorem given in Eq. (17).

4) Draw and compute all the curvatures (principal, mean, Gaussian) for the monkey-saddle defined
by z = x3 − 3xy2. Show that every point has negative Gaussian curvature, except the origin.

5) The Enneper-Weierstrass parameterization of a minimal surface is given by two complex function
f(z) and g(z) such that

x = <
(∫

f(1− g2)dz
)

(78)

y = <
(∫

if(1 + g2)dz
)

(79)

x = <
(∫

2fgdz
)

(80)

Use this parameterisation to draw and compute the curvatures of the Enneper surface (f = 1, g(z) =
z) and the Sherk surface (f = 4(1− z2), g(z) = iz). (Hint: use z = r exp(iθ) so that (r, θ) are the
parameters for the surface).

6) Compute the mean and Gaussian curvatures of a slightly deformed sphere. That is, find to order
O(ε), the curvatures of

x(θ, φ) = R(1 + εh(θ, φ)) [cos(φ) sin(θ), sin(φ) sin(θ), cos(θ)] (81)

and show that they can be expressed as

H =
tr(L)
2

=
1

R

(
1− ε

2
∆(θ, φ)

)
+O(ε2) (82)

K = det(L) = 1

R2
(1− ε∆(θ, φ)) +O(ε2). (83)

where
∆ = 2h+

1

sin2 θ
∂φφh+ cot θ ∂θh+ ∂θθh. (84)

7) Show the equivalence between the two formulations of the mean curvature in the Monge represen-
tation given by Eqs.(29) and (31).

8) Show that the addition of the constraint of fixed volume or fixed pressure adds a constant P term
to the shape equation (36), so that it reads now

4
(
4− λ−2

)
h = P. (85)

Hint: you may want to rewrite the volume integral
∫

dV as 1/3
∫
∇ · r dV so that you can use the

divergence theorem to transform it into a surface integral.
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9) Compute the shape of a membrane that smoothly covers a step-edge of height h0 and touches the
lower level a distance L away (see Fig. 11). Assume that the height only depends on x.

Figure 11: Find the shape of a fluid membrane attached at height h0.

10) Consider a family of cylindrical vesicles of unstressed radius R0, current radius R, and length L
under constant pressure P . Ignoring all boundary conditions at the face of the cylinder, compute
the pressure P = P (R) and surface tension γ = γ(R) necessary to maintain this cylindrical shape by
minimising the energy (24) with respect to both R and L (assume κ = 1 without loss of generality).
Plot P as a function of R and find the maximal value of the pressure and the radius at which it
occurs. Discuss this profile and the possibility of an instability.
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