
Sheet 0: Revision of core complex analysis

Q1

(a) Treating z = x+ iy and z̄ = x− iy as independent variables and using the chain rule, we find

∂

∂x
=
∂z

∂x

∂

∂z
+
∂z̄

∂x

∂

∂z̄
=

∂

∂z
+

∂

∂z̄
,

∂

∂y
=
∂z

∂y

∂

∂z
+
∂z̄

∂y

∂

∂z̄
= i

(
∂

∂z
− ∂

∂z̄

)
giving

∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

(b) Hence, if f = u+ iv, with u, v real, then

∂f

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
(u+ iv) =

1

2

(
∂u

∂x
− ∂v

∂y

)
+

i

2

(
∂u

∂y
+
∂v

∂x

)
,

so that
∂f

∂z̄
= 0

if and only if
∂u

∂x
=
∂v

∂y
and

∂v

∂x
= −∂u

∂y
,

which are the Cauchy-Riemann equations. Since

∂f

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
(u+ iv) =

1

2

(
∂u

∂x
+
∂v

∂y

)
+

i

2

(
−∂u
∂y

+
∂v

∂x

)
,

we obtain
∂f

∂z
=
∂u

∂x
+ i

∂v

∂x
=
∂f

∂x
,

∂f

∂z
=
∂v

∂y
− i

∂u

∂y
= −i

∂f

∂y

by the Cauchy-Riemann equations.

(c) Since f(z) = u− iv,

∂f(z)

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
(u− iv) =

1

2

(
∂u

∂x
− ∂v

∂y

)
+

i

2

(
−∂u
∂y
− ∂v

∂x

)
= 0,

again by the Cauchy-Riemann equations. By replacing z with z̄, we find ∂f(z̄)/∂z̄ = 0 so that
f(z) = f(z̄) is holomorphic. Similarly,

∂f(z)

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
(u− iv) =

1

2

(
∂u

∂x
+
∂v

∂y

)
+

i

2

(
∂u

∂y
− ∂v

∂x

)
=
∂u

∂x
− i

∂v

∂x
= f ′(z).

(d) It follows from (a) that

∂2

∂x2
=

(
∂

∂z
+

∂

∂z̄

)2

=
∂2

∂z2
+ 2

∂2

∂z∂z̄
+

∂2

∂z̄2
,

∂2

∂y2
= i2

(
∂

∂z
− ∂

∂z̄

)2

= − ∂2

∂z2
+ 2

∂2

∂z∂z̄
− ∂2

∂z̄2
,

giving

0 =
∂2u

∂x2
+
∂2u

∂y2
= 4

∂2u

∂z∂z̄
.
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Integrating with respect to z̄ and z gives

uz = g′(z), u = g(z) + h(z̄),

where g and h are arbitrary holomorphic functions of their arguments. Since u is real, u ≡ u,
leading to

g(z) + h(z) ≡ g(z) + h(z)

⇒ g(z) + h(z) ≡ g(z) + h(z)

⇒ g(z)− h(z) ≡ g(z)− h(z),

where we again use the definition of the conjugate function f(z) = f(z). Since this has to hold
for all z and z, which are independent variables, it follows that the left- and right-hand sides
must both be a real constant, C say. Therefore our equation for u becomes

u = g(z) + g(z)− C = f(z) + f(z), where f(z) = g(z)− C

2
.

Q2

(a) If ζ = ReiΘ, with R and Θ real, then

R2e2iΘ = ζ2 = z2 + 1 = (z − i)(z + i) = r1r2ei(θ1+θ2),

giving

R = (r1r2)1/2, Θ =
1

2
(θ1 + θ2) + πki,

where k ∈ Z. Thus
ζ = ζk = ±(r1r2)1/2ei(θ1+θ2)/2 (k ∈ Z),

where ± = (−1)k. Since the jumps

[
θ1

]
|z−a|=R =

{
0 for a 6= i
2π for a = i,

[
θ2

]
|z−a|=R =

{
0 for a 6= −i
2π for a = −i,

for all R > 0, ζk is continuous on ∂D(a, ε) := {z ∈ C : |z−a| = ε} as ε→ 0 unless a = ±i, which
are the only branch points because ζk is continuous on ∂D(0, R) as R→∞.

(b) By definition (alternatively sketch values on the imaginary axis in the z-plane)

θ1 + θ2

2
=


π/2 for z = ±0 + iy, y > 1,
0 for z = +0 + iy, |y| < 1,
π for z = −0 + iy, |y| < 1,
−π/2 for z = +0 + iy, y < −1,
3π/2 for z = −0 + iy, y < −1,

and (r1r2)1/2 = |y2 − 1|1/2 on the imaginary axis, giving

f(±0 + iy) =


i(y2 − 1)1/2 for y > 1,

±(1− y2)1/2 for |y| < 1,

−i(y2 − 1)1/2 for y < −1.

Hence, this branch of f(z) is continuous across the imaginary axis except across the branch cut
S = {x+ iy : x = 0, |y| ≤ 1}. Note that this branch is holomorphic on C\S. Note that writing
(z2 +1)1/2 = (z− i)1/2(z+i)1/2 shows that the selected branch is the same as choosing the branch
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of (z∓ i)1/2 that is real and positive on the positive real axis with a cut on the segment (−∞i,±i]
of the imaginary axis: the branches cuts annihilate each other on the segment (−∞i,−i) of the
imaginary axis in the sense that the product of (z − i)1/2 and (z + i)1/2 is continuous there.

For the behaviour at infinity, let θ = arg(z) where we choose the range for θ according to
−π/2 < θ ≤ 3π/2. As r := |z| → ∞, θ1,2 ∼ θ and r1,2 ∼ r, giving

f(z) ∼
√
r2e

i
2

(θ+θ) = reθi = z.

It follows that the image of C\S under the map ζ = f(z) is the whole of the ζ-plane with the
segment of the real axis from ζ = −1 to ζ = 1 removed (this segment is the image of the branch
cut S under ζ = f(z)).

(c) By definition (alternatively sketch values on the imaginary axis in the z-plane)

θ1 + θ2

2
=


±π/2 for z = ±0 + iy, y > 1,
0 for z = ±0 + iy, |y| < 1,
∓π/2 for z = ±0 + iy, y < −1,

and (r1r2)1/2 = |y2 − 1|1/2 on the imaginary axis, giving

f(±0 + iy) =


±i(y2 − 1)1/2 for y > 1,

(1− y2)1/2 for |y| < 1,

∓i(y2 − 1)1/2 for y < −1.

Hence, this branch of f(z) is continuous across the imaginary axis except across the branch cut
T = {x+ iy : x = 0, |y| ≥ 1}. Note that this branch is holomorphic on C\T . Note that writing
(z2 + 1)1/2 = (z− i)1/2(z+ i)1/2 shows that the selected branch is the same as choosing the same
branch for (z+i)1/2 as in (b), but the branch of (z− i)1/2 that is real and positive on the positive
real axis with a cut on the segment [i, i∞) of the imaginary axis.

Since θ1 + θ2 = 0 and (r1r2)1/2 = (1 + x2)1/2 on the real axis, it follows that f(x) = (1 + x2)1/2

for x ∈ R.

For the behaviour at infinity we proceed as (b). Let θ = arg(z), where −π/2 < θ ≤ 3π/2 as
before. As |z| → ∞, r1,2 ∼ |z| as before. In the case that Re(z) > 0, i.e. −π/2 < θ < π/2, we
again have θ1,2 ∼ θ as |z| → ∞. Hence, f(x) ∼ z as |z| → ∞ with Re(z) > 0. As |z| → ∞ with
Re(z) < 0, i.e. π/2 < θ < 3π/2, we still have θ2 ∼ θ, but since we defined θ1 to be in the range
−3π/2 < θ1 < π/2, we now have θ1 ∼ θ − 2π. Hence, f(z) ∼ −z as |z| → ∞ with Re(z) < 0.

It follows that the image of both Re(z) > 0 and Re(z) < 0 under the map ζ = f(z) is the half
plane Re(ζ) > 0 with the segment of the real axis from ζ = 0 to ζ = 1 removed (this segment is
the image of S under ζ = f(z), while T is mapped onto the imaginary ζ-axis).

Q3

Consider the function f(z) =
(
z2 − 1

)1/2
/(z2 +1) for z ∈ C. We choose the branch cut for

(
z2 − 1

)1/2
from z = −1 to z = 1 along the real axis and we take the sign of the square root such that

√
z2 − 1 > 0

for z = x > 1. Thus, f(z) is holomorphic on C\{[−1, 1],±i}. Consider the integral of f(z) over the
closed contour Γ2 illustrated in figure 1. By contour deformation and Cauchy’s Residue Theorem, the
contour Γ2 may be deformed to a contour Γ1 which just encloses the branch cut, provided we add the
residues of the poles at z = ±i, that is∮

Γ2

f(z) dz =

∮
Γ1

f(z) dz + 2πi Resz=i[f(z)] + 2πi Resz=−i[f(z)]. (1)
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Figure 1: The two closed contours of integration

Note that our definition of the multifunction means that
(
z2 − 1

)1/2
= ±i

√
2 at z = ±i. Hence

Resz=i[f(z)] = Resz=−i[f(z)] =
1√
2
.

As z →∞, our choice of branch means that f(z) ∼ 1/z +O
(
1/z2

)
, so that

lim
R→∞

∮
Γ2

f(z) dz ∼
∮

Γ2

(
1

z
+O

(
z−2
))

dz = 2πi.

The integral around Γ1 is found by integrating along the top of the branch cut, where
(
z2 − 1

)1/2
=

i
(
1− x2

)
, and then along the bottom of the branch cut, where

(
z2 − 1

)1/2
= −i

(
1− x2

)
. (It can

easily be verified that there is no contribution from the branch points z = ±1 themselves.) Therefore∫
Γ1

f(z) dz =

∫ −1

1

i
√

1− x2

x2 + 1
dx+

∫ 1

−1
− i
√

1− x2

x2 + 1
dx = −2i

∫ 1

−1

√
1− x2

x2 + 1
dx.

Finally plugging all the pieces into equation (1), we get∫ 1

−1

√
1− x2

x2 + 1
dx = π

(√
2− 1

)
.

Q4

(a) The Fourier transform of e−|x| is given by

F
(

e−|x|
)

=

∫ ∞
−∞

e−|x|eixk dx =

∫ ∞
0

e−x+ikx + e−x−ikx dx

=

[
e−x+ikx

−1 + ik
+

e−x−ikx

−1− ik

]∞
x=0

=
2

1 + k2
.

The integrals converge provided Re(−1 + ik) < 0 and Re(−1− ik) < 0, i.e. −1 < Im(k) < 1. We
may use analytic continuation to extend to domain of definition to C\{±i}. The inverse Fourier
transform is given by

F−1

(
2

1 + k2

)
=

1

π

∫ ∞
−∞

e−ikx

1 + k2
dk.

We evaluate this integral by closing the contour as illustrated in figure 2 and using the residue
theorem. We close the contour either in the upper or the lower half-plane depending on the sign
of x.
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(a) Closed contour for x > 0. (b) Closed contour for x < 0.

Figure 2: Closing the contour for the inversion of the Fourier transform.

If x > 0, close the contour in the lower half-plane as illustrated in figure 2(a). Since Re(−ikx) =
Im(k)x < 0 for k ∈ Γ+

2 ,

lim
R→∞

∫
Γ+
2

e−ikx

1 + k2
dk = 0

and the integral around Γ+ = Γ+
1 ∪ Γ+

2 becomes

lim
R→∞

∮
Γ+

e−ikx

1 + k2
dk = −

∫ ∞
−∞

e−ikx

1 + k2
dk.

The function f(k) = e−ikx/(1 + k2) has two single poles at k = ±i. Only the pole at k = −i lies
inside the closed contour Γ+, so∮

Γ+

e−ikx

1 + k2
dk = 2πi Resk=−i

[
e−ikx

1 + k2

]
= −πe−x.

Combining these results then gives

1

π

∫ ∞
−∞

e−ikx

1 + k2
dk = e−x for x > 0.

If x < 0, close the contour in the upper half-plane as illustrated in figure 2(b). Then f(z) has
one simple pole inside Γ− = Γ−1 ∪ Γ−2 at z = i, and Re(−ikx) = Im(k)x < 0 on Γ−2 . Similarly to
the case in which x > 0, we find

1

π

∫ ∞
−∞

e−ikx

1 + k2
dk = lim

R→∞

1

2π

∮
Γ−

e−ikx

1 + k2
dk = 2i Resk=i

[
e−ikx

1 + k2

]
= ex for x < 0.

Combining the results for x > 0 and x < 0, we deduce that F−1(2/(k2 + 1)) = e|x|, as required.

(b) The Fourier transform of e−a
2x2 , with a > 0, is given by

F
(

e−a
2x2
)

=

∫ ∞
−∞

e−a
2x2+ikx dx

= e−k
2/(4a2)

∫ ∞
−∞

e−(ax−ik/(2a))2 dx

=
1

a
e−k

2/4a2
∫ ∞−iRe(k)/2a

−∞−iRe(k)/2a
e−ξ

2
dξ

=

√
π

a
e−k

2/4a2 .

5



The last equality is obtained by integrating the entire function f(z) = e−z
2

around the rectangle
for which the vertical edges are given by Re(z) = ±R, with R� 1, and the horizontal edges by
Im(z) = 0, and Im(z) = −Re(k)/2a; since f(z) is holomorphic inside the rectangle, the contour
integral around the rectangle of f(z) is equal to 0. Also, since e−z

2 → 0 as Re(z) → ±∞, the
integrals of f(z) along the vertical edges of the rectangle tend to 0 as R→∞. It follows that∫ ∞−iRe(k)/2a

−∞−iRe(k)/2a
e−z

2
dz =

∫ ∞
−∞

e−z
2

dz =
√
π.

Since this argument holds for all k ∈ C and the transform is entire, it is not necessary to use
analytic continuation to derive the inverse Fourier transform, which is given by

F−1

(√
π

a
e−k

2/4a2
)

=
1

2a
√
π

∫ ∞
−∞

e−k
2/4a2e−ikx dk =

1

2a
√
π

e−a
2x2
∫ ∞
−∞

e−(k/2a+iax)2 dk

=
1√
π

e−a
2x2
∫ ∞+iax

−∞+iax
e−κ

2
dκ = e−a

2x2

using the same arguments as above.
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