Sheet 0: Revision of core complex analysis
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(a) Treating z = x + iy and Z = x — iy as independent variables and using the chain rule, we find
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(b) Hence, if f = u + iv, with u, v real, then
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which are the Cauchy-Riemann equations. Since
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we obtain
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(c) Since f(z) =u —iv,
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again by the Cauchy-Riemann equations. By replacing 2 with z, we find 0f(2)/9z = 0 so that
f(2) = f(z) is holomorphic. Similarly,
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(d) It follows from (a) that
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Q2

Integrating with respect to z and z gives
Uz :gl(z)7 uzg(z)—l—h(i),

where ¢ and h are arbitrary holomorphic functions of their arguments. Since u is real, u = 7,
leading to

9(2) + h(z) = g(z) + h(Z)
= g(2) + h(2) = 9(Z) + h(z)
= g(2) = h(z) =39(z) - n(z),

where we again use the definition of the conjugate function f(z) = f(%). Since this has to hold
for all z and Z, which are independent variables, it follows that the left- and right-hand sides
must both be a real constant, C' say. Therefore our equation for u becomes

u=g(:)+3E) ~C = [+ (), where f(2)= ()~ 5.

If ¢ = Re'®, with R and © real, then
R2e219 — =2+1= (z—1)(z+1) = rlrgei(91+02),
giving
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where + = (—1)*. Since the jumps
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27 for a =1, 27 for a = —i,

for all R > 0, (i, is continuous on dD(a,¢€) :={z € C: |z —a| = €} as ¢ — 0 unless a = +i, which
are the only branch points because (j is continuous on 9D(0, R) as R — oo.

By definition (alternatively sketch values on the imaginary axis in the z-plane)

w/2  for z=40+1y, y > 1,
0 for z = +0+ iy, |y| <1,
=<7 for z = —-0+1y, |y| <1,
—m/2 for z =4+0+1iy, y < —1,
3r/2 for z=-0+iy, y < —1,
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and (r172) ly? — 1|/2 on the imaginary axis, giving

i(y? — 1Y% fory > 1,
f(EO+iy) = £(1—y>)Y2  for |y| <1,
—i(y? = 1)/2 fory < —1.
Hence, this branch of f(z) is continuous across the imaginary axis except across the branch cut

S={x+iy:x =0, |y| <1}. Note that this branch is holomorphic on C\S. Note that writing
(224 1)1/2 = (2—1)"/2(2+1)1/2 shows that the selected branch is the same as choosing the branch



Q3

Consider the function f(z) = (2? — 1)1/2 /(22 +1) for z € C. We choose the branch cut for (2* — 1)

of (zF1)"/? that is real and positive on the positive real axis with a cut on the segment (—ooi, =i

of the imaginary axis: the branches cuts annihilate each other on the segment (—ooi, —i) of the
imaginary axis in the sense that the product of (z —1)"/? and (z 4+ 1)/? is continuous there.

For the behaviour at infinity, let § = arg(z) where we choose the range for 6 according to
—7/2 <60 <3m/2. Asr:=|z| = o0, 612 ~ 0 and 715 ~ r, giving
f(z) ~ Vi2esO0) — pefi — 5

It follows that the image of C\\S under the map ¢ = f(z) is the whole of the (-plane with the
segment of the real axis from ( = —1 to { = 1 removed (this segment is the image of the branch
cut S under ¢ = f(2)).

By definition (alternatively sketch values on the imaginary axis in the z-plane)

+7/2 for z=40+1y, y > 1,
=<0 for z = £0 4+ 1y, |y| < 1,
Fr/2 for z=40+1y, y < —1,
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and (7“11"2)1/2 = |y - 1\1/2 on the imaginary axis, giving

+i(y? — 1)Y? fory > 1,
fEO+iy) =4 (1—yHY2  for [yl <1,
Fi(y? - DY? fory < —1.

Hence, this branch of f(z) is continuous across the imaginary axis except across the branch cut
T={x+iy:2 =0, |y| > 1}. Note that this branch is holomorphic on C\T. Note that writing
(22 +1)/2 = (z —1)/2(2 +1) /2 shows that the selected branch is the same as choosing the same
branch for (z+1i)'/2 as in (b), but the branch of (z —i)'/? that is real and positive on the positive
real axis with a cut on the segment [i,ico) of the imaginary axis.

Since 01 + 62 = 0 and (r179)"/? = (1 + 2%)/2 on the real axis, it follows that f(z) = (1 4 22)'/2
for x € R.

For the behaviour at infinity we proceed as (b). Let 0 = arg(z), where —7/2 < 6 < 37/2 as
before. As |z| = 00, 712 ~ |z| as before. In the case that Re(z) > 0, i.e. —7/2 < 6§ < /2, we
again have 0; 2 ~ 6 as |z| — oco. Hence, f(z) ~ z as |z| — oo with Re(z) > 0. As |z| — oo with
Re(z) <0, i.e. m/2 < 0 < 31/2, we still have 63 ~ 0, but since we defined 6; to be in the range
—371/2 < 61 < /2, we now have 01 ~ 0 — 27. Hence, f(z) ~ —z as |z| = oo with Re(z) < 0.

It follows that the image of both Re(z) > 0 and Re(z) < 0 under the map ¢ = f(z) is the half
plane Re(¢) > 0 with the segment of the real axis from ¢ = 0 to ( = 1 removed (this segment is
the image of S under ¢ = f(z), while T is mapped onto the imaginary (-axis).

1/2

from z = —1 to z = 1 along the real axis and we take the sign of the square root such that v/22 —1 > 0
for z = > 1. Thus, f(z) is holomorphic on C\{[—1, 1], £i}. Consider the integral of f(z) over the
closed contour I's illustrated in figure 1. By contour deformation and Cauchy’s Residue Theorem, the
contour I'y may be deformed to a contour I'y which just encloses the branch cut, provided we add the
residues of the poles at z = =i, that is

d f(z)dz = 4 f(z) dz + 2miRes,=i[f(2)] + 2mi Res,—_i[f(2)]. (1)
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Figure 1: The two closed contours of integration

Note that our definition of the multifunction means that (z2 - 1)1/ 7 +iv/2 at z = +i. Hence

1
R,eSZZI[f(Z)] = ReSZ:_i[f(z)] = E
As z — oo, our choice of branch means that f(z) ~1/z+ O (1/22)’ 5o that
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The integral around I'; is found by integrating along the top of the branch cut, where (z2 — 1)1/ 2 =

i(l — 1‘2), and then along the bottom of the branch cut, where (22 — 1)1/2 = —i (1 — xQ). (It can
easily be verified that there is no contribution from the branch points z = +1 themselves.) Therefore
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dx + T =—2i dzx.
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Finally plugging all the pieces into equation (1), we get

/ Vi-a?, w(ﬂ—l).
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(a) The Fourier transform of e~ 1%l is given by
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The integrals converge provided Re(—1+ik) < 0 and Re(—1—ik) <0, i.e. —1 < Im(k) < 1. We
may use analytic continuation to extend to domain of definition to C\{+£i}. The inverse Fourier

transform is given by
2 1 0 e—ikx
—1
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We evaluate this integral by closing the contour as illustrated in figure 2 and using the residue
theorem. We close the contour either in the upper or the lower half-plane depending on the sign
of x.
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(a) Closed contour for z > 0. (b) Closed contour for z < 0.

Figure 2: Closing the contour for the inversion of the Fourier transform.

If z > 0, close the contour in the lower half-plane as illustrated in figure 2(a). Since Re(—ikz) =
Im(k)z < 0 for k € 'y,
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and the integral around I'" = I‘f U F; becomes
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The function f(k) = e~*** /(1 4+ k?) has two single poles at k = +i. Only the pole at k = —i lies
inside the closed contour I'*, so
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Combining these results then gives
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/ = dk=e" for x>0,
T o 1+Ek

If z < 0, close the contour in the upper half-plane as illustrated in figure 2(b). Then f(z) has
one simple pole inside I'" =T'7 UT, at z =i, and Re(—ikz) = Im(k)z < 0 on I'; . Similarly to
the case in which = > 0, we find
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Combining the results for z > 0 and z < 0, we deduce that F~1(2/(k* + 1)) = el®l, as required.

a2$
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(b) The Fourier transform of e~



The last equality is obtained by integrating the entire function f(z) = e~** around the rectangle

for which the vertical edges are given by Re(z) = £R, with R > 1, and the horizontal edges by
Im(z) =0, and Im(z) = —Re(k)/2a; since f(z) is holomorphic inside the rectangle, the contour
integral around the rectangle of f(z) is equal to 0. Also, since e 5 0 as Re(z) — +oo, the
integrals of f(z) along the vertical edges of the rectangle tend to 0 as R — oo. It follows that
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Since this argument holds for all £ € C and the transform is entire, it is not necessary to use
analytic continuation to derive the inverse Fourier transform, which is given by
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using the same arguments as above.




