Sheet 0: Revision of core complex analysis

 $\mathbf{Q1}$

(a) Treating z = x + iy and $\bar{z} = x - iy$ as independent variables and using the chain rule, we find

$$\frac{\partial}{\partial x} = \frac{\partial z}{\partial x}\frac{\partial}{\partial z} + \frac{\partial \bar{z}}{\partial x}\frac{\partial}{\partial \bar{z}} = \frac{\partial}{\partial z} + \frac{\partial}{\partial \bar{z}}, \qquad \frac{\partial}{\partial y} = \frac{\partial z}{\partial y}\frac{\partial}{\partial z} + \frac{\partial \bar{z}}{\partial y}\frac{\partial}{\partial \bar{z}} = i\left(\frac{\partial}{\partial z} - \frac{\partial}{\partial \bar{z}}\right)$$

giving

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right), \qquad \frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right).$$

(b) Hence, if f = u + iv, with u, v real, then

$$\frac{\partial f}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) (u + iv) = \frac{1}{2} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right),$$

so that

$$\frac{\partial f}{\partial \bar{z}} = 0$$

if and only if

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$,

which are the Cauchy-Riemann equations. Since

$$\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) (u + iv) = \frac{1}{2} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) + \frac{i}{2} \left(-\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right),$$

we obtain

$$\frac{\partial f}{\partial z} = \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} = \frac{\partial f}{\partial x}, \qquad \frac{\partial f}{\partial z} = \frac{\partial v}{\partial y} - i\frac{\partial u}{\partial y} = -i\frac{\partial f}{\partial y}$$

by the Cauchy-Riemann equations.

(c) Since
$$\overline{f(z)} = u - iv$$
,

$$\frac{\partial f(z)}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) (u - iv) = \frac{1}{2} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) + \frac{i}{2} \left(-\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} \right) = 0,$$

again by the Cauchy-Riemann equations. By replacing z with \bar{z} , we find $\partial \overline{f(\bar{z})}/\partial \bar{z} = 0$ so that $\overline{f(z)} = \overline{f(\bar{z})}$ is holomorphic. Similarly,

$$\frac{\partial \overline{f(z)}}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) (u - iv) = \frac{1}{2} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} \right) = \frac{\partial u}{\partial x} - i \frac{\partial v}{\partial x} = \overline{f'(z)}.$$

(d) It follows from (a) that

$$\frac{\partial^2}{\partial x^2} = \left(\frac{\partial}{\partial z} + \frac{\partial}{\partial \bar{z}}\right)^2 = \frac{\partial^2}{\partial z^2} + 2\frac{\partial^2}{\partial z \partial \bar{z}} + \frac{\partial^2}{\partial \bar{z}^2},$$
$$\frac{\partial^2}{\partial y^2} = i^2 \left(\frac{\partial}{\partial z} - \frac{\partial}{\partial \bar{z}}\right)^2 = -\frac{\partial^2}{\partial z^2} + 2\frac{\partial^2}{\partial z \partial \bar{z}} - \frac{\partial^2}{\partial \bar{z}^2},$$

giving

$$0 = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 4 \frac{\partial^2 u}{\partial z \partial \overline{z}}.$$

Integrating with respect to \bar{z} and z gives

$$u_z = g'(z), \qquad u = g(z) + h(\bar{z}),$$

where g and h are arbitrary holomorphic functions of their arguments. Since u is real, $u \equiv \overline{u}$, leading to

$$\begin{split} g(z) + h(\overline{z}) &\equiv \overline{g(z)} + \overline{h(\overline{z})} \\ \Rightarrow \qquad g(z) + h(\overline{z}) &\equiv \overline{g}(\overline{z}) + \overline{h}(z) \\ \Rightarrow \qquad g(z) - \overline{h}(z) &\equiv \overline{g}(\overline{z}) - h(\overline{z}), \end{split}$$

where we again use the definition of the conjugate function $\overline{f}(z) = \overline{f(\overline{z})}$. Since this has to hold for all z and \overline{z} , which are independent variables, it follows that the left- and right-hand sides must both be a real constant, C say. Therefore our equation for u becomes

$$u = g(z) + \overline{g}(\overline{z}) - C = f(z) + \overline{f(z)}, \quad \text{where} \quad f(z) = g(z) - \frac{C}{2}$$

$\mathbf{Q2}$

(a) If $\zeta = Re^{i\Theta}$, with R and Θ real, then

$$R^2 e^{2i\Theta} = \zeta^2 = z^2 + 1 = (z - i)(z + i) = r_1 r_2 e^{i(\theta_1 + \theta_2)}$$

giving

$$R = (r_1 r_2)^{1/2}, \qquad \Theta = \frac{1}{2}(\theta_1 + \theta_2) + \pi ki$$

where $k \in \mathbb{Z}$. Thus

$$\zeta = \zeta_k = \pm (r_1 r_2)^{1/2} \mathrm{e}^{\mathrm{i}(\theta_1 + \theta_2)/2} \qquad (k \in \mathbb{Z}),$$

where $\pm = (-1)^k$. Since the jumps

$$\begin{bmatrix} \theta_1 \end{bmatrix}_{|z-a|=R} = \begin{cases} 0 & \text{for } a \neq i \\ 2\pi & \text{for } a = i, \end{cases} \qquad \begin{bmatrix} \theta_2 \end{bmatrix}_{|z-a|=R} = \begin{cases} 0 & \text{for } a \neq -i \\ 2\pi & \text{for } a = -i, \end{cases}$$

for all R > 0, ζ_k is continuous on $\partial D(a, \epsilon) := \{z \in \mathbb{C} : |z - a| = \epsilon\}$ as $\epsilon \to 0$ unless $a = \pm i$, which are the only branch points because ζ_k is continuous on $\partial D(0, R)$ as $R \to \infty$.

(b) By definition (alternatively sketch values on the imaginary axis in the z-plane)

$$\frac{\theta_1 + \theta_2}{2} = \begin{cases} \pi/2 & \text{for } z = \pm 0 + \mathrm{i}y, \ y > 1, \\ 0 & \text{for } z = +0 + \mathrm{i}y, \ |y| < 1, \\ \pi & \text{for } z = -0 + \mathrm{i}y, \ |y| < 1, \\ -\pi/2 & \text{for } z = +0 + \mathrm{i}y, \ y < -1, \\ 3\pi/2 & \text{for } z = -0 + \mathrm{i}y, \ y < -1, \end{cases}$$

and $(r_1r_2)^{1/2} = |y^2 - 1|^{1/2}$ on the imaginary axis, giving

$$f(\pm 0 + iy) = \begin{cases} i(y^2 - 1)^{1/2} & \text{for } y > 1, \\ \pm (1 - y^2)^{1/2} & \text{for } |y| < 1, \\ -i(y^2 - 1)^{1/2} & \text{for } y < -1. \end{cases}$$

Hence, this branch of f(z) is continuous across the imaginary axis except across the branch cut $S = \{x + iy : x = 0, |y| \le 1\}$. Note that this branch is holomorphic on $\mathbb{C}\backslash S$. Note that writing $(z^2+1)^{1/2} = (z-i)^{1/2}(z+i)^{1/2}$ shows that the selected branch is the same as choosing the branch

of $(z \mp i)^{1/2}$ that is real and positive on the positive real axis with a cut on the segment $(-\infty i, \pm i]$ of the imaginary axis: the branches cuts annihilate each other on the segment $(-\infty i, -i)$ of the imaginary axis in the sense that the product of $(z - i)^{1/2}$ and $(z + i)^{1/2}$ is continuous there.

For the behaviour at infinity, let $\theta = \arg(z)$ where we choose the range for θ according to $-\pi/2 < \theta \leq 3\pi/2$. As $r := |z| \to \infty$, $\theta_{1,2} \sim \theta$ and $r_{1,2} \sim r$, giving

$$f(z) \sim \sqrt{r^2} e^{\frac{1}{2}(\theta+\theta)} = r e^{\theta i} = z.$$

It follows that the image of $\mathbb{C}\backslash S$ under the map $\zeta = f(z)$ is the whole of the ζ -plane with the segment of the real axis from $\zeta = -1$ to $\zeta = 1$ removed (this segment is the image of the branch cut S under $\zeta = f(z)$).

(c) By definition (alternatively sketch values on the imaginary axis in the z-plane)

$$\frac{\theta_1 + \theta_2}{2} = \begin{cases} \pm \pi/2 & \text{for } z = \pm 0 + \mathrm{i}y, \ y > 1, \\ 0 & \text{for } z = \pm 0 + \mathrm{i}y, \ |y| < 1, \\ \mp \pi/2 & \text{for } z = \pm 0 + \mathrm{i}y, \ y < -1, \end{cases}$$

and $(r_1r_2)^{1/2} = |y^2 - 1|^{1/2}$ on the imaginary axis, giving

$$f(\pm 0 + iy) = \begin{cases} \pm i(y^2 - 1)^{1/2} & \text{for } y > 1, \\ (1 - y^2)^{1/2} & \text{for } |y| < 1, \\ \mp i(y^2 - 1)^{1/2} & \text{for } y < -1. \end{cases}$$

Hence, this branch of f(z) is continuous across the imaginary axis except across the branch cut $T = \{x + iy : x = 0, |y| \ge 1\}$. Note that this branch is holomorphic on $\mathbb{C}\setminus T$. Note that writing $(z^2 + 1)^{1/2} = (z - i)^{1/2}(z + i)^{1/2}$ shows that the selected branch is the same as choosing the same branch for $(z + i)^{1/2}$ as in (b), but the branch of $(z - i)^{1/2}$ that is real and positive on the positive real axis with a cut on the segment $[i, i\infty)$ of the imaginary axis.

Since $\theta_1 + \theta_2 = 0$ and $(r_1 r_2)^{1/2} = (1 + x^2)^{1/2}$ on the real axis, it follows that $f(x) = (1 + x^2)^{1/2}$ for $x \in \mathbb{R}$.

For the behaviour at infinity we proceed as (b). Let $\theta = \arg(z)$, where $-\pi/2 < \theta \leq 3\pi/2$ as before. As $|z| \to \infty$, $r_{1,2} \sim |z|$ as before. In the case that $\operatorname{Re}(z) > 0$, *i.e.* $-\pi/2 < \theta < \pi/2$, we again have $\theta_{1,2} \sim \theta$ as $|z| \to \infty$. Hence, $f(x) \sim z$ as $|z| \to \infty$ with $\operatorname{Re}(z) > 0$. As $|z| \to \infty$ with $\operatorname{Re}(z) < 0$, *i.e.* $\pi/2 < \theta < 3\pi/2$, we still have $\theta_2 \sim \theta$, but since we defined θ_1 to be in the range $-3\pi/2 < \theta_1 < \pi/2$, we now have $\theta_1 \sim \theta - 2\pi$. Hence, $f(z) \sim -z$ as $|z| \to \infty$ with $\operatorname{Re}(z) < 0$.

It follows that the image of both $\operatorname{Re}(z) > 0$ and $\operatorname{Re}(z) < 0$ under the map $\zeta = f(z)$ is the half plane $\operatorname{Re}(\zeta) > 0$ with the segment of the real axis from $\zeta = 0$ to $\zeta = 1$ removed (this segment is the image of S under $\zeta = f(z)$, while T is mapped onto the imaginary ζ -axis).

$\mathbf{Q3}$

Consider the function $f(z) = (z^2 - 1)^{1/2} / (z^2 + 1)$ for $z \in \mathbb{C}$. We choose the branch cut for $(z^2 - 1)^{1/2}$ from z = -1 to z = 1 along the real axis and we take the sign of the square root such that $\sqrt{z^2 - 1} > 0$ for z = x > 1. Thus, f(z) is holomorphic on $\mathbb{C} \setminus \{[-1, 1], \pm i\}$. Consider the integral of f(z) over the closed contour Γ_2 illustrated in figure 1. By contour deformation and Cauchy's Residue Theorem, the contour Γ_2 may be deformed to a contour Γ_1 which just encloses the branch cut, provided we add the residues of the poles at $z = \pm i$, that is

$$\oint_{\Gamma_2} f(z) \, \mathrm{d}z = \oint_{\Gamma_1} f(z) \, \mathrm{d}z + 2\pi \mathrm{i} \operatorname{Res}_{z=\mathrm{i}}[f(z)] + 2\pi \mathrm{i} \operatorname{Res}_{z=-\mathrm{i}}[f(z)]. \tag{1}$$

Figure 1: The two closed contours of integration

Note that our definition of the multifunction means that $(z^2 - 1)^{1/2} = \pm i\sqrt{2}$ at $z = \pm i$. Hence

$$\operatorname{Res}_{z=i}[f(z)] = \operatorname{Res}_{z=-i}[f(z)] = \frac{1}{\sqrt{2}}.$$

As $z \to \infty$, our choice of branch means that $f(z) \sim 1/z + O(1/z^2)$, so that

$$\lim_{R \to \infty} \oint_{\Gamma_2} f(z) \, \mathrm{d}z \sim \oint_{\Gamma_2} \left(\frac{1}{z} + O\left(z^{-2}\right) \right) \, \mathrm{d}z = 2\pi \mathrm{i}.$$

The integral around Γ_1 is found by integrating along the top of the branch cut, where $(z^2 - 1)^{1/2} = i(1 - x^2)$, and then along the bottom of the branch cut, where $(z^2 - 1)^{1/2} = -i(1 - x^2)$. (It can easily be verified that there is no contribution from the branch points $z = \pm 1$ themselves.) Therefore

$$\int_{\Gamma_1} f(z) \, \mathrm{d}z = \int_1^{-1} \frac{\mathrm{i}\sqrt{1-x^2}}{x^2+1} \, \mathrm{d}x + \int_{-1}^1 -\frac{\mathrm{i}\sqrt{1-x^2}}{x^2+1} \, \mathrm{d}x = -2\mathrm{i}\int_{-1}^1 \frac{\sqrt{1-x^2}}{x^2+1} \, \mathrm{d}x.$$

Finally plugging all the pieces into equation (1), we get

$$\int_{-1}^{1} \frac{\sqrt{1-x^2}}{x^2+1} \, \mathrm{d}x = \pi \left(\sqrt{2}-1\right).$$

$\mathbf{Q4}$

(a) The Fourier transform of $e^{-|x|}$ is given by

$$\mathcal{F}\left(e^{-|x|}\right) = \int_{-\infty}^{\infty} e^{-|x|} e^{ixk} \, dx = \int_{0}^{\infty} e^{-x + ikx} + e^{-x - ikx} \, dx$$
$$= \left[\frac{e^{-x + ikx}}{-1 + ik} + \frac{e^{-x - ikx}}{-1 - ik}\right]_{x=0}^{\infty} = \frac{2}{1 + k^2}.$$

The integrals converge provided $\operatorname{Re}(-1+ik) < 0$ and $\operatorname{Re}(-1-ik) < 0$, *i.e.* $-1 < \operatorname{Im}(k) < 1$. We may use analytic continuation to extend to domain of definition to $\mathbb{C} \setminus \{\pm i\}$. The inverse Fourier transform is given by

$$\mathcal{F}^{-1}\left(\frac{2}{1+k^2}\right) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\mathrm{e}^{-\mathrm{i}kx}}{1+k^2} \,\mathrm{d}k.$$

We evaluate this integral by closing the contour as illustrated in figure 2 and using the residue theorem. We close the contour either in the upper or the lower half-plane depending on the sign of x.

Figure 2: Closing the contour for the inversion of the Fourier transform.

If x > 0, close the contour in the lower half-plane as illustrated in figure 2(a). Since $\operatorname{Re}(-ikx) = \operatorname{Im}(k)x < 0$ for $k \in \Gamma_2^+$,

$$\lim_{R \to \infty} \int_{\Gamma_2^+} \frac{\mathrm{e}^{-\mathrm{i}kx}}{1+k^2} \,\mathrm{d}k = 0$$

and the integral around $\Gamma^+=\Gamma_1^+\cup\Gamma_2^+$ becomes

$$\lim_{R \to \infty} \oint_{\Gamma^+} \frac{\mathrm{e}^{-\mathrm{i}kx}}{1+k^2} \, \mathrm{d}k = -\int_{-\infty}^{\infty} \frac{\mathrm{e}^{-\mathrm{i}kx}}{1+k^2} \, \mathrm{d}k.$$

The function $f(k) = e^{-ikx}/(1+k^2)$ has two single poles at $k = \pm i$. Only the pole at k = -i lies inside the closed contour Γ^+ , so

$$\oint_{\Gamma^+} \frac{e^{-ikx}}{1+k^2} \, \mathrm{d}k = 2\pi \mathrm{i} \operatorname{Res}_{k=-i} \left[\frac{e^{-ikx}}{1+k^2} \right] = -\pi e^{-x}.$$

Combining these results then gives

$$\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\mathrm{e}^{-\mathrm{i}kx}}{1+k^2} \,\mathrm{d}k = \mathrm{e}^{-x} \quad \text{for} \quad x > 0.$$

If x < 0, close the contour in the upper half-plane as illustrated in figure 2(b). Then f(z) has one simple pole inside $\Gamma^- = \Gamma_1^- \cup \Gamma_2^-$ at z = i, and $\operatorname{Re}(-ikx) = \operatorname{Im}(k)x < 0$ on Γ_2^- . Similarly to the case in which x > 0, we find

$$\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{e^{-ikx}}{1+k^2} \, dk = \lim_{R \to \infty} \frac{1}{2\pi} \oint_{\Gamma^-} \frac{e^{-ikx}}{1+k^2} \, dk = 2i \operatorname{Res}_{k=i} \left[\frac{e^{-ikx}}{1+k^2} \right] = e^x \quad \text{for} \quad x < 0.$$

Combining the results for x > 0 and x < 0, we deduce that $\mathcal{F}^{-1}(2/(k^2 + 1)) = e^{|x|}$, as required. (b) The Fourier transform of $e^{-a^2x^2}$, with a > 0, is given by

$$\mathcal{F}\left(e^{-a^{2}x^{2}}\right) = \int_{-\infty}^{\infty} e^{-a^{2}x^{2} + ikx} dx$$

= $e^{-k^{2}/(4a^{2})} \int_{-\infty}^{\infty} e^{-(ax - ik/(2a))^{2}} dx$
= $\frac{1}{a} e^{-k^{2}/4a^{2}} \int_{-\infty - i\operatorname{Re}(k)/2a}^{\infty - i\operatorname{Re}(k)/2a} e^{-\xi^{2}} d\xi$
= $\frac{\sqrt{\pi}}{a} e^{-k^{2}/4a^{2}}.$

The last equality is obtained by integrating the entire function $f(z) = e^{-z^2}$ around the rectangle for which the vertical edges are given by $\operatorname{Re}(z) = \pm R$, with $R \gg 1$, and the horizontal edges by $\operatorname{Im}(z) = 0$, and $\operatorname{Im}(z) = -\operatorname{Re}(k)/2a$; since f(z) is holomorphic inside the rectangle, the contour integral around the rectangle of f(z) is equal to 0. Also, since $e^{-z^2} \to 0$ as $\operatorname{Re}(z) \to \pm \infty$, the integrals of f(z) along the vertical edges of the rectangle tend to 0 as $R \to \infty$. It follows that

$$\int_{-\infty-i\operatorname{Re}(k)/2a}^{\infty-i\operatorname{Re}(k)/2a} e^{-z^2} dz = \int_{-\infty}^{\infty} e^{-z^2} dz = \sqrt{\pi}.$$

Since this argument holds for all $k \in \mathbb{C}$ and the transform is entire, it is not necessary to use analytic continuation to derive the inverse Fourier transform, which is given by

$$\mathcal{F}^{-1}\left(\frac{\sqrt{\pi}}{a}e^{-k^{2}/4a^{2}}\right) = \frac{1}{2a\sqrt{\pi}}\int_{-\infty}^{\infty} e^{-k^{2}/4a^{2}}e^{-ikx} dk = \frac{1}{2a\sqrt{\pi}}e^{-a^{2}x^{2}}\int_{-\infty}^{\infty} e^{-(k/2a+iax)^{2}} dk$$
$$= \frac{1}{\sqrt{\pi}}e^{-a^{2}x^{2}}\int_{-\infty+iax}^{\infty+iax} e^{-\kappa^{2}} d\kappa = e^{-a^{2}x^{2}}$$

using the same arguments as above.