Sheet 3: Porous medium flow, Plemelj formulae

Q1 (a) The harmonic moments of a domain D(t) are defined by

$$M_n(t) = \iint_{D(t)} z^n \, \mathrm{d}x \mathrm{d}y, \qquad n = 0, 1, 2, \dots,$$

where z = x + iy. What are the physical significance of $M_0(t)$ and $M_1(t)$? If the boundary $\partial D(t)$ has outward normal velocity V_n , show (e.g. using Reynolds' Transport Theorem; see Part A Fluids & Waves) that

$$\frac{\mathrm{d}M_n}{\mathrm{d}t} = \oint_{\partial D} z^n V_n \,\mathrm{d}s.$$

(b) Use Green's Theorem on a region $R \subset \mathbb{R}^2$ to show that

$$\iint_{R} \frac{\partial G}{\partial \overline{z}}(z,\overline{z}) \, \mathrm{d}x \, \mathrm{d}y = \frac{1}{2\mathrm{i}} \oint_{\partial R} G(z,\overline{z}) \, \mathrm{d}z$$

for any sufficiently smooth function $G(z, \overline{z})$. Deduce that

$$M_n(t) = \frac{1}{2i} \oint_{\partial D} z^n \overline{z} \, dz.$$

(c) The domain D(t) is a saturated region of a porous medium, in which flow is driven by a point source of strength Q at z = 0. The potential $\phi(x, y, t)$ satisfies Laplace's equation in D(t), with $\phi \sim (Q/2\pi) \log r$ at the origin (where $r^2 = x^2 + y^2$), together with $\phi = 0$, $\partial \phi/\partial n = V_n$ on $\partial D(t)$.

Use Green's Second Identity on D(t) with a small circle around z = 0 removed to show that

$$\frac{\mathrm{d}M_0}{\mathrm{d}t} = Q, \qquad \frac{\mathrm{d}M_n}{\mathrm{d}t} = 0, \quad n > 0.$$

(d) The map $z = F(\zeta, t)$ maps the unit disc $|\zeta| < 1$ onto D(t), with F(0, t) = 0. Show that

$$M_n(t) = \frac{1}{2i} \oint_{|\zeta|=1} F(\zeta, t)^n \overline{F(\zeta, t)} \frac{\partial F}{\partial \zeta} \,\mathrm{d}\zeta$$

Now suppose that $F(\zeta, t)$ is a polynomial of degree m, with coefficients $a_j(t)$, $j = 1 \dots m$. Making use of the fact that $\overline{\zeta} = 1/\zeta$ on $|\zeta| = 1$, show that $M_n(t) = 0$ for $n \ge m$.

Hence find the nonzero moments for the quadratic map $F(\zeta, t) = a_1(t)\zeta + a_2(t)\zeta^2$, and crosscheck with the solution of the differential equations given in lectures.

Find formulae for M_0 and M_{m-1} for a general polynomial of degree m with complex coefficients. [<u>Green's Theorem</u> states that for any (suitably smooth) scalar functions P(x, y) and Q(x, y) and region $R \subset \mathbb{R}^2$ with (suitably smooth) boundary ∂R .

$$\iint_{R} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} \right) \, \mathrm{d}x \mathrm{d}y = \oint_{\partial R} \left(P \, \mathrm{d}y - Q \, \mathrm{d}x \right).$$

A corollary is Green's Second Identity:

$$\iint_{R} \left(u \nabla^{2} v - v \nabla^{2} u \right) \, \mathrm{d}x \mathrm{d}y = \oint_{\partial R} \left(u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n} \right) \, \mathrm{d}s,$$

again for suitably smooth u(x, y) and v(x, y).]

Q2 State the Plemelj formulae for the function defined by

$$w(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta) d\zeta}{\zeta - z},$$

where Γ is a contour in the complex plane.

By defining an appropriate branch of $w(z) = (z-1)^{\alpha-1}/(z+1)^{\alpha}$, where $0 < \alpha < 1$, and using the Plemelj formulae, evaluate

$$\int_{-1}^{1} \frac{(1-t)^{\alpha-1} \, \mathrm{d}t}{(1+t)^{\alpha}(t-x)} \quad \text{for} \quad -1 < x < 1.$$

Q3 Many mechanics problems lead to the problem of finding $\phi(x, y)$ such that $\nabla^2 \phi = 0$ except on y = 0, $0 \le x \le c$; $\lim_{y \downarrow \uparrow 0} \partial \phi / \partial y = g_{\pm}(x)$ for 0 < x < c, where $g_{\pm}(x)$ is continuous on $0 \le x \le c$; $|\nabla \phi|$ is finite or has an inverse square-root singularity at (0, 0) and (c, 0); and $|\nabla \phi| \to 0$ as $x^2 + y^2 \to \infty$. If $w(z) = -d(\phi + i\psi)/dz$, where ψ is the harmonic conjugate of ϕ , then (I) w is holomorphic except on $\overline{\Gamma} = \{x + iy : 0 \le x \le c, y = 0\}$; (II) $\operatorname{Im} w_+ = g_+$, $\operatorname{Im} w_- = g_-$ on the contour

 $\Gamma = \{x + iy : 0 < x < c, y = 0\}$, where g_{\pm} is continuous on $\overline{\Gamma}$; (III) w is finite or has an inverse square-root singularity at z = 0 and z = c; and (IV) $w \to 0$ as $z \to \infty$.

(a) Suppose $g_+(x) = -g_-(x)$. Use (I) and (II) to deduce that a possible solution is given by

$$w(z) = \frac{1}{\pi} \int_0^c \frac{g_+(\xi) \,\mathrm{d}\xi}{\xi - z} + h(z).$$

where h(z) is an arbitrary function of z that is holomorphic on $\mathbb{C}\setminus\{0, c\}$ and real on Γ . Use (III), (IV) and Liouville's theorem to deduce that h = 0.

(b) Now suppose that $g_+(x) = g_-(x) = g(x)$. Show that, if $\tilde{w}(z)$ is holomorphic and non-zero away from $\bar{\Gamma}$, with $\tilde{w}_+(x) = -\tilde{w}_-(x) \neq 0$ on Γ , then a possible solution for w(z) is given by

$$\frac{w(z)}{\widetilde{w}(z)} = \frac{1}{\pi} \int_0^c \frac{g(\xi) \, \mathrm{d}\xi}{\widetilde{w}_+(\xi)(\xi-z)} + H(z),$$

where H(z) is an arbitrary function of z holomorphic on $\mathbb{C}\setminus\{0, c\}$.

(c) An aerofoil problem has $g_+(x) = g_-(x) = -\alpha$, constant, together with the requirement that w has an inverse square-root singularity at z = 0, is finite at z = c, and $w \to 0$ as $z \to \infty$. By defining the branch of $\tilde{w}(z) = (c-z)^{1/2} z^{-1/2}$ that has a cut along Γ and satisfies $\tilde{w}_+(\xi) > 0$ for $0 < \xi < c$, show that a possible solution is given by

$$w(z) = -\frac{\alpha (c-z)^{1/2}}{\pi z^{1/2}} \left[\int_0^c \frac{\xi^{1/2} \,\mathrm{d}\xi}{(c-\xi)^{1/2} \,(\xi-z)} + H(z) \right],$$

and determine H(z).

(d) By relating the integral term to a suitable contour integral that can be deformed to a large circle, show that

$$w(z) = -\alpha \left(\frac{c-z}{z}\right)^{1/2} - i\alpha.$$

Noting that the behaviour of w at infinity is related to the circulation $\tilde{\Gamma}$ about the aerofoil by $w \sim i\tilde{\Gamma}/2\pi z$, deduce that the circulation in this case is $\tilde{\Gamma} = -\pi c \alpha$.

Q4 Suppose f satisfies the Cauchy singular integral equation

$$a(t)f(t) + \frac{b(t)}{\pi i} \oint_{\Gamma} \frac{f(\zeta) \, \mathrm{d}\zeta}{\zeta - t} = c(t) \qquad \text{on} \quad \Gamma,$$
(1)

where a, b and c are holomorphic in a neighbourhood of Γ .

(a) Show that, if

$$w(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta) \, \mathrm{d}\zeta}{\zeta - z},$$

then $(a+b)w_+ + (b-a)w_- = c$ on Γ .

(b) Now suppose a + b and a - b are not zero on Γ , and that \tilde{w} is holomorphic and non-zero away from Γ and that $(a + b)\tilde{w}_{+} = -(b - a)\tilde{w}_{-} \neq 0$ on Γ . Show that

$$\left(\frac{w}{\tilde{w}}\right)_{+} - \left(\frac{w}{\tilde{w}}\right)_{-} = \frac{c}{(a+b)\tilde{w}_{+}}$$
 on Γ .

(c) Hence show that

$$w(z) = \frac{\tilde{w}(z)}{2\pi i} \int_{\Gamma} \frac{c(\zeta) \, \mathrm{d}\zeta}{(a(\zeta) + b(\zeta))\tilde{w}_{+}(\zeta)(\zeta - z)}$$

is a possible solution for w(z) and that (1) is satisfied by

$$f(t) = -\frac{b(t)\tilde{w}_{+}(t)}{(a(t) - b(t))} \frac{1}{\pi i} \int_{\Gamma} \frac{c(\zeta)}{(a(\zeta) + b(\zeta))\tilde{w}_{+}(\zeta)} \frac{d\zeta}{\zeta - t} + \frac{c(t)a(t)}{a(t)^{2} - b(t)^{2}}.$$