Sheet 3: Porous medium flow, Plemelj formulae

Q1 (a) The harmonic moments of a domain $D(t)$ are defined by

$$
M_n(t) = \iint_{D(t)} z^n dx dy, \qquad n = 0, 1, 2, \dots,
$$

where $z = x + iy$. What are the physical significance of $M_0(t)$ and $M_1(t)$? If the boundary $\partial D(t)$ has outward normal velocity V_n , show (e.g. using Reynolds' Transport Theorem; see Part A Fluids & Waves) that

$$
\frac{\mathrm{d}M_n}{\mathrm{d}t} = \oint_{\partial D} z^n V_n \,\mathrm{d}s.
$$

(b) Use Green's Theorem on a region $R \subset \mathbb{R}^2$ to show that

$$
\iint_{R} \frac{\partial G}{\partial \overline{z}}(z, \overline{z}) dx dy = \frac{1}{2i} \oint_{\partial R} G(z, \overline{z}) dz
$$

for any sufficiently smooth function $G(z,\overline{z})$. Deduce that

$$
M_n(t) = \frac{1}{2i} \oint_{\partial D} z^n \overline{z} \,dz.
$$

(c) The domain $D(t)$ is a saturated region of a porous medium, in which flow is driven by a point source of strength Q at $z = 0$. The potential $\phi(x, y, t)$ satisfies Laplace's equation in $D(t)$, with $\phi \sim (Q/2\pi) \log r$ at the origin (where $r^2 = x^2 + y^2$), together with $\phi = 0$, $\partial \phi / \partial n = V_n$ on $\partial D(t)$.

Use Green's Second Identity on $D(t)$ with a small circle around $z = 0$ removed to show that

$$
\frac{\mathrm{d}M_0}{\mathrm{d}t} = Q, \qquad \frac{\mathrm{d}M_n}{\mathrm{d}t} = 0, \quad n > 0.
$$

(d) The map $z = F(\zeta, t)$ maps the unit disc $|\zeta| < 1$ onto $D(t)$, with $F(0, t) = 0$. Show that

$$
M_n(t) = \frac{1}{2i} \oint_{|\zeta|=1} F(\zeta, t)^n \overline{F(\zeta, t)} \frac{\partial F}{\partial \zeta} d\zeta.
$$

Now suppose that $F(\zeta, t)$ is a polynomial of degree m, with coefficients $a_i(t)$, $j = 1...m$. Making use of the fact that $\overline{\zeta} = 1/\zeta$ on $|\zeta| = 1$, show that $M_n(t) = 0$ for $n \geq m$.

Hence find the nonzero moments for the quadratic map $F(\zeta, t) = a_1(t)\zeta + a_2(t)\zeta^2$, and crosscheck with the solution of the differential equations given in lectures.

Find formulae for M_0 and M_{m-1} for a general polynomial of degree m with complex coefficients. [Green's Theorem states that for any (suitably smooth) scalar functions $P(x, y)$ and $Q(x, y)$ and region $R \subset \mathbb{R}^2$ with (suitably smooth) boundary ∂R ,

$$
\iint_{R} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} \right) dxdy = \oint_{\partial R} \left(P dy - Q dx \right).
$$

A corollary is Green's Second Identity:

$$
\iint_R \left(u \nabla^2 v - v \nabla^2 u \right) dxdy = \oint_{\partial R} \left(u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n} \right) ds,
$$

again for suitably smooth $u(x, y)$ and $v(x, y)$.

Q2 State the Plemelj formulae for the function defined by

$$
w(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta) d\zeta}{\zeta - z},
$$

where Γ is a contour in the complex plane.

By defining an appropriate branch of $w(z) = (z-1)^{\alpha-1}/(z+1)^{\alpha}$, where $0 < \alpha < 1$, and using the Plemelj formulae, evaluate

$$
\int_{-1}^{1} \frac{(1-t)^{\alpha-1} dt}{(1+t)^{\alpha}(t-x)} \quad \text{for} \quad -1 < x < 1.
$$

Q3 Many mechanics problems lead to the problem of finding $\phi(x, y)$ such that $\nabla^2 \phi = 0$ except on $y = 0$, $0 \leq x \leq c$; $\lim_{u \to 0} \frac{\partial \phi}{\partial y} = g_{\pm}(x)$ for $0 < x < c$, where $g_{\pm}(x)$ is continuous on $0 \leq x \leq c$; $|\nabla \phi|$ is finite or has an inverse square-root singularity at $(0,0)$ and $(c, 0)$; and $|\nabla \phi| \to 0$ as $x^2 + y^2 \to \infty$.

If $w(z) = -d(\phi + i\psi)/dz$, where ψ is the harmonic conjugate of ϕ , then (I) w is holomorphic except on $\bar{\Gamma} = \{x + iy : 0 \le x \le c, y = 0\};$ (II) $\text{Im } w_+ = g_+$, $\text{Im } w_- = g_-$ on the contour $\Gamma = \{x + iy : 0 < x < c, y = 0\}$, where g_{\pm} is continuous on $\overline{\Gamma}$; (III) w is finite or has an inverse square-root singularity at $z = 0$ and $z = c$; and (IV) $w \to 0$ as $z \to \infty$.

(a) Suppose $g_{+}(x) = -g_{-}(x)$. Use (I) and (II) to deduce that a possible solution is given by

$$
w(z) = \frac{1}{\pi} \int_0^c \frac{g_+(\xi) \, d\xi}{\xi - z} + h(z),
$$

where $h(z)$ is an arbitrary function of z that is holomorphic on $\mathbb{C}\backslash\{0, c\}$ and real on Γ. Use (III), (IV) and Liouville's theorem to deduce that $h = 0$.

(b) Now suppose that $g_+(x) = g_-(x) = g(x)$. Show that, if $\tilde{w}(z)$ is holomorphic and non-zero away from $\overline{\Gamma}$, with $\widetilde{w}_+(x) = -\widetilde{w}_-(x) \neq 0$ on Γ , then a possible solution for $w(z)$ is given by

$$
\frac{w(z)}{\widetilde{w}(z)} = \frac{1}{\pi} \int_0^c \frac{g(\xi) \, d\xi}{\widetilde{w}_+(\xi)(\xi - z)} + H(z),
$$

where $H(z)$ is an arbitrary function of z holomorphic on $\mathbb{C}\backslash\{0, c\}.$

(c) An aerofoil problem has $g_+(x) = g_-(x) = -\alpha$, constant, together with the requirement that w has an inverse square-root singularity at $z = 0$, is finite at $z = c$, and $w \to 0$ as $z \to \infty$. By defining the branch of $\tilde{w}(z) = (c-z)^{1/2} z^{-1/2}$ that has a cut along Γ and satisfies $\tilde{w}_+(\xi) > 0$
for $0 < \xi < a$ show that a possible solution is given by for $0 \le \xi \le c$, show that a possible solution is given by

$$
w(z) = -\frac{\alpha (c-z)^{1/2}}{\pi z^{1/2}} \left[\int_0^c \frac{\xi^{1/2} d\xi}{(c-\xi)^{1/2} (\xi-z)} + H(z) \right],
$$

and determine $H(z)$.

(d) By relating the integral term to a suitable contour integral that can be deformed to a large circle, show that

$$
w(z) = -\alpha \left(\frac{c-z}{z}\right)^{1/2} - i\alpha.
$$

Noting that the behaviour of w at infinity is related to the circulation $\tilde{\Gamma}$ about the aerofoil by $w \sim i\Gamma/2\pi z$, deduce that the circulation in this case is $\Gamma = -\pi c\alpha$.

 $Q4$ Suppose f satisfies the Cauchy singular integral equation

$$
a(t)f(t) + \frac{b(t)}{\pi i} \int_{\Gamma} \frac{f(\zeta) d\zeta}{\zeta - t} = c(t) \quad \text{on } \Gamma,
$$
 (1)

where a, b and c are holomorphic in a neighbourhood of Γ .

(a) Show that, if

$$
w(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta) \, d\zeta}{\zeta - z},
$$

then $(a + b)w_+ + (b - a)w_ - = c$ on Γ .

(b) Now suppose $a + b$ and $a - b$ are not zero on Γ, and that \tilde{w} is holomorphic and non-zero away from Γ and that $(a + b)\tilde{w}_+ = -(b - a)\tilde{w}_-\neq 0$ on Γ . Show that

$$
\left(\frac{w}{\tilde{w}}\right)_+-\left(\frac{w}{\tilde{w}}\right)_- = \frac{c}{(a+b)\tilde{w}_+} \quad \text{on} \quad \Gamma.
$$

(c) Hence show that

$$
w(z) = \frac{\tilde{w}(z)}{2\pi i} \int_{\Gamma} \frac{c(\zeta) \, d\zeta}{(a(\zeta) + b(\zeta))\tilde{w}_+(\zeta)(\zeta - z)}
$$

is a possible solution for $w(z)$ and that (1) is satisfied by

$$
f(t) = -\frac{b(t)\tilde{w}_+(t)}{(a(t)-b(t))}\frac{1}{\pi i}\int_{\Gamma} \frac{c(\zeta)}{(a(\zeta)+b(\zeta))\tilde{w}_+(\zeta)}\frac{d\zeta}{\zeta-t} + \frac{c(t)a(t)}{a(t)^2 - b(t)^2}.
$$