Sheet 4: Transforms, Wiener-Hopf

Q1 Suppose $f(x) = e^{|x|}$ for $-\infty < x < \infty$.

(a) If $f(x) = f_{+}(x) + f_{-}(x)$, where $f_{+}(x) = 0$ for $x < 0$ and $f_{-}(x) = 0$ for $x > 0$, show that the Fourier transforms of f_+ and f_- are given by

$$
\bar{f}_{+}(k) = \int_{-\infty}^{\infty} f_{+}(x)e^{ikx} dx = \frac{i}{k-i} \quad \text{for} \quad \text{Im}(k) > 1
$$

and

$$
\bar{f}_{-}(k) = \int_{-\infty}^{\infty} f_{-}(x)e^{ikx} dx = -\frac{i}{k+i} \quad \text{for} \quad \text{Im}(k) < -1
$$

To which parts of the complex k-plane may $\bar{f}_{\pm}(k)$ be analytically continued?

(b) Use contour integration to evaluate

$$
\frac{1}{2\pi} \int_{-\infty + i\alpha}^{\infty + i\alpha} \bar{f}_+(k) e^{-ikx} dk \quad \text{and} \quad \frac{1}{2\pi} \int_{-\infty + i\beta}^{\infty + i\beta} \bar{f}_-(k) e^{-ikx} dk
$$

for $x < 0$ and $x > 0$, where $\alpha > 1$ and $\beta < -1$.

(c) Over which part of the complex k-plane is it possible to define $\bar{f}(k)$? Sketch a suitable inversion contour Γ for which

$$
f(x) = \frac{1}{2\pi} \int_{\Gamma} \bar{f}(k) e^{-ikx} dk.
$$

Verify this result using contour integration.

Q2 (a) Show that

$$
w(z) = \int_{\Gamma} g(\zeta) e^{z\zeta} d\zeta
$$
 (*)

is a solution of Airy's equation

$$
\frac{\mathrm{d}^2 w}{\mathrm{d}z^2} + zw = 0
$$

only if $g(\zeta) = Ae^{\zeta^3/3}$ and $[g(\zeta)e^{z\zeta}]_{\Gamma} = 0$, where A is a constant. Identify two choices for Γ which lead to two independent solutions of the differential equation.

(b) Show that (∗) is a solution of Bessel's equation

$$
\frac{\mathrm{d}^2 w}{\mathrm{d}z^2} + \frac{1}{z} \frac{\mathrm{d}w}{\mathrm{d}z} + w = 0
$$

only if $g(\zeta) = A/(1+\zeta^2)^{1/2}$ and $[(1+\zeta^2)g(\zeta)e^{z\zeta}]_{\Gamma} = 0$. Identify two choices for Γ which lead to two independent solutions of the differential equation for $Re(z) > 0$.

- Q3 Suppose $w_+(z)$ is holomorphic in $Im(z) > \alpha$ and $w_-(z)$ is holomorphic in $Im(z) < \beta$, where $\alpha < \beta$, and neither w_+ nor $w_-\$ grows faster than a polynomial at infinity.
	- (a) Suppose $w_+(z) = w_-(z)$ in $\alpha < Im(z) < \beta$. Show that $w_+(z) = w_-(z)$ is a polynomial in z.
	- (b) Suppose $w_+(z) w_-(z) = G(z)$, where G is holomorphic in $\alpha < Im(z) < \beta$ and $G \to 0$ as $|z| \to \infty$ in the strip. Show that $w_+(z) - G_+(z) = w_-(z) - G_-(z)$ is a polynomial, where

$$
G_{\pm}(z) = \frac{1}{2\pi i} \int_{-\infty + i\gamma_{\pm}}^{\infty + i\gamma_{\pm}} \frac{G(\zeta) d\zeta}{\zeta - z},
$$

for $\alpha < \gamma_+ < Im(z) < \gamma_- < \beta$.

(c) Suppose that $F(z)w_+(z) = w_-(z)$, where F is holomorphic and non-zero in $\alpha < Im(z) < \beta$ and $F \to 1$ as $|z| \to \infty$ in the strip. Show that $F_+w_+ = F_-w_-$ is a polynomial, where

$$
F_{\pm}(z) = \exp\left(\frac{1}{2\pi i} \int_{-\infty + i\gamma_{\pm}}^{\infty + i\gamma_{\pm}} \frac{\log(F(\zeta)) d\zeta}{\zeta - z}\right) \tag{\dagger}
$$

for $\alpha < \gamma_+ < Im(z) < \gamma_- < \beta$.

(d) When $F(z) = (z^2 - a^2)/(z^2 - b^2)$, where a and b are distinct complex numbers with $\gamma = \min(Im(a), Im(b)) > 0$, verify directly that

$$
F_{+}(z) = \frac{z+a}{z+b}, \qquad F_{-}(z) = \frac{z-b}{z-a}
$$
 (†)

is a possible factorization.

(e) Suppose that

$$
I_{\pm}(a) = \int_{-R+i\gamma_{\pm}}^{R+i\gamma_{\pm}} \frac{\log(\zeta - a)}{\zeta - z} d\zeta
$$

where a is as in (d) and $-\gamma < \gamma_+ < Im(z) < \gamma_- < \gamma$. Show that $\partial I_+/\partial a \to 0$, but that $\partial I_{-}/\partial a \rightarrow 2\pi i/(z-a)$, as $R \rightarrow \infty$. Hence *deduce* (†) from (†).

Q4 Suppose $u(x, y)$ satisfies the mixed boundary value problem

$$
\nabla^2 u = \frac{\partial u}{\partial x} \quad \text{in } y > 0,
$$

with

$$
u = e^{-ax}
$$
 on $y = 0$, $x > 0$, $\frac{\partial u}{\partial y} = 0$ on $y = 0$, $x < 0$,

where $a > 0$, and $u \to 0$ as $x^2 + y^2 \to \infty$. Define

$$
f_{-}(x) = \begin{cases} u(x,0) & x < 0, \\ 0 & x > 0, \end{cases} \qquad g_{+}(x) = \begin{cases} 0 & x < 0, \\ \frac{\partial u}{\partial y}(x,0) & x > 0. \end{cases}
$$

Show that the Fourier transforms $\bar{f}_-(k)$ and $\bar{g}_+(k)$ of $f_-(x)$ and $g_+(x)$ respectively satisfy

$$
\frac{1}{(k^2 - ik)^{1/2}} \bar{g}_+(k) + \bar{f}_-(k) = -\frac{i}{k + ia},
$$

where you should define precisely the branch of the multifunction $(k^2 - ik)^{1/2}$. Deduce that

$$
u(x,y) = \frac{1}{2\pi} \int_{\Gamma} \frac{i(-ia-i)^{1/2}}{(k+ia)(k-i)^{1/2}} e^{-y(k^2-ik)^{1/2}-ikx} dk,
$$

where you should define precisely the branch of $(k-i)^{1/2}$, the appropriate value of $(-ia-i)^{1/2}$ and a suitable inversion contour Γ.

[You may assume without proof that $k^{1/2}\bar{g}_+(k)$ and $k\bar{f}_-(k)$ are bounded as $k \to \infty$.]

Q5 Suppose $u(x, y)$ satisfies partial differential equation $\nabla^2 u = u$ in $y > 0$ subject to the mixed boundary conditions

$$
\frac{\partial u}{\partial y}(x,0) = 0 \quad \text{for } x < 0, \qquad u(x,0) = x \quad \text{for } x > 0,
$$

and $u(x, y) \to 0$ as $y \to \infty$. By taking a Fourier transform and using the Wiener–Hopf method, show that

$$
u(x,0) = \frac{1}{2\pi} \int_{\Gamma} A(k)e^{-ikx} dx, \qquad \text{where} \quad A(k) = -\frac{e^{-i\pi/4}(2+ik)}{2k^2(k-i)^{1/2}}, \tag{§}
$$

giving precise definitions of $(k - i)^{1/2}$ and the integration contour Γ. [You may assume without proof that the Fourier transforms of $u(x,0)$ and of $\partial u/\partial y(x,0)$ satisfy $\bar{u}(k,0) = O(k^{-3/2})$ and $\partial \bar{u}/\partial y(k,0) = O(k^{-1/2})$ as $k \to \infty$.]

Verify that (§) gives the correct expression for $u(x, 0)$ when $x > 0$. Show that, for $x < 0$,

$$
u(x, 0) = \frac{1}{2\pi} \int_1^{\infty} \frac{(2-t)e^{tx}}{t^2 \sqrt{t-1}} dt.
$$