
Sheet 4: Transforms, Wiener-Hopf

Q1

(i) Since f+(x) = 0 for x < 0 and f+(x) = ex for x > 0, the Fourier transform of f+ is given by

f̄+(k) =

∫ ∞
−∞

f+(x)eikx dx =

∫ ∞
0

e(1+ik)x dx =

[
e(1+ik)x

1 + ik

]∞
0

=
−1

1 + ik
=

i

k − i

provided e(1+ik)x vanishes as x→∞, i.e. provided k is such that Re(1 + ik) < 0 or Im(k) > −1.
Similarly,

f̄−(k) =

∫ ∞
−∞

f−(x)eikx dx =

∫ 0

−∞
e(−1+ik)x dx =

[
e(−1+ik)x

−1 + ik

]0

−∞

=
1

−1 + ik
= − i

k + i

provided Im(k) < −1. Since f̄±(k) has a pole at k = ±i only, f+(k) can be analytically continued
to C\{i}, and f−(k) to C\{−i}.

(ii) The inversion contour for f+(x) needs to be above any of the singularities of f̄+(k). Since f̄+(k)
has a singularity at k = i only, we deduce from the inversion theorem that

1

2π

∫ ∞+iα

−∞+iα
f̄+(k)e−ikx dk = f+(x)

for α > 1. We verify this result by contour integration as follows. For x > 0 close the contour at
k = −i∞, as illustrated in (a) below. The integral over the semi-circle |k−iα| = R, Im(k−iα) < 0
tends to zero as R→∞, giving

1

2π

∫ ∞+iα

−∞+iα
f̄+(k)e−ikx dk = lim

R→∞
− i

2π

∮
Γ

e−ikx

k − i
dk = Resk=i

[
e−ikx

k − i

]
= ex.

Similarly, for x < 0 close the contour at k = i∞, as illustrated in (b) below, to obtain

1

2π

∫ ∞+iα

−∞+iα
f̄+(k)e−ikx dk = lim

R→∞

i

2π

∮
Γ

e−ikx

k − i
dk = 0,

since f+(k) doesn’t have any singularities inside Γ.

X

(a) Inversion contour for f̄+ for x > 0

X

(b) Inversion contour for f̄+ for x < 0

The inversion contour for f−(x) needs to be below any of the singularities of f̄−(k). Since f̄−(k)
has a simple pole at z = −i only, we deduce from the inversion theorem that

1

2π

∫ ∞+iβ

−∞+iβ
f̄−(k)e−ikx dk = f−(x)
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for β < −1. We verify this result by contour integration as before. We close the contour at
k = −i∞ for x > 0 and at k = i∞ for x < 0, as illustrated below. For x > 0, we find

1

2π

∫ ∞+iα

−∞+iα
f̄−(k)e−ikx dk = lim

R→∞
− 1

2π

∮
Γ+

−i e−ikx

k + i
dk = 0.

while for x < 0,

1

2π

∫ ∞+iα

−∞+iα
f̄+(k)e−ikx dk = lim

R→∞

1

2π

∮
Γ−

−i e−ikx

k + i
dk = Resk=i

[
e−ikx

k + i

]
= e−x.

X

(a) Inversion contour for f̄− for x > 0

X

(b) Inversion contour for f̄− for x < 0

(iii) We define

f̄(k) = f̄+(k) + f̄−(k) =
i

k − i
− i

k + i
=
−2

k2 + 1
,

which is holomorphic on C\{−i, i}. Since f̄+ is holomorphic on C\{i} and f̄− is holomorphic on
C\{−i}), we can deform the inversion contours for f̄+ and f̄− to the same contour Γ provided Γ
passes above i and below −i, as illustrated below, so that

f(x) = f−(x) + f+(x) =
1

2π
−
∫

Γ
f̄−(k)e−ikx dk +

1

2π
−
∫

Γ
f̄+(k)e−ikx dk =

1

2π
−
∫

Γ
f̄(k)e−ikx dk.

X
X

Figure 1: Inversion contour for f̄(k)

NB: We can verify the inversion via contour integration. Close Γ at −i∞ for x > 0 and at i∞
for x < 0 (with a semi-circle of radius R), as illustrated below. For x > 0,

1

2π

∫
Γ
f̄(k)e−kix dk = lim

R→∞
− 1

2π

∮
Γ+

−2e−kix

k2 + 1
dk = −i Resk=i

[
−2e−kix

k2 + 1

]
= ex,

while for x < 0

1

2π

∫
Γ
f̄(k)e−kix dk = lim

R→∞

1

2π

∮
Γ−

−2e−kix

k2 + 1
dk = i Resk=−i

[
−2e−kix

k2 + 1

]
= e−x.
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X
X

(a) Closed contour for f̄ for x > 0

X
X

(b) Closed contour for f̄ for x < 0

Q2

(a) Differentiate under the integral sign to obtain

w′(z) =

∫
Γ
g(ζ)ζezζ dζ,

w′′(z) =

∫
Γ
g(ζ)ζ2ezζ dζ,

Integrate by parts to find

zw(z) =

∫
Γ
zg(ζ)ezζ dζ =

[
g(ζ)ezζ

]
Γ
−
∫

Γ
g′(ζ)ezζ dζ,

zw′′(z) =

∫
Γ
zg(ζ)ζ2ezζ dζ =

[
g(ζ)ζ2ezζ

]
Γ
−
∫

Γ

(
g′(ζ)ζ2 + 2g(ζ)ζ

)
ezζ dζ.

It follows from Airy’s equation that

d2w

dz2
+ zw = −

∫
Γ

(
g′(ζ)− ζ2g(ζ)

)
eζz dζ +

[
g(ζ)ezζ

]
Γ

= 0.

Hence, Airy’s equation is satisfied only if g(ζ) is such that

g′(ζ)− ζ2g(ζ) = 0

for ζ ∈ Γ and the contour Γ is such that[
g(ζ)ezζ

]
Γ

= 0.

Since g(ζ) = C exp(ζ3/3), where C is an arbitrary constant, the constraint on Γ becomes[
Ceζ

3/3+zζ
]

Γ
= 0.

Thus, either Γ is a closed contour or eζ
3/3+zζ must be equal to zero at the end points of Γ.

Since eζ
3/3+zζ is an entire function of ζ, the integral of this function over any closed contour in

the ζ-plane will be equal to zero, which would give w(z) = 0 for all z ∈ C . Therefore, for a
non-trivial solution w(z), we need that eζ

3/3+ζz to be equal to zero at the end points of Γ. Let
a1,2 denote the end points of Γ. Since eaz+a

3/3 → 0 iff Re(az+ a3/3)→ −∞, it follows that a1,2

are at ∞ with
π

6
+

2kπ

3
< arg(a1,2) <

π

2
+

2kπ

3
,

where k = 0, 1 or 2. Note that if a1 and a2 lie in the same range, e.g. π/6 < arg(a1) < π/2
and π/6 < arg(a2) < π/2, we can close Γ at infinity, which would result in a trivial solution

3



(iii) Airy’s equation (iv) Bessel’s equation

Figure 2: Contours of Integration for Airy’s equation and Bessel’s equation.

for w. Therefore the three possible contours are as illustrated below. Integrating along any two
of these contours gives two linearly independent solutions for w(z). The solution which follows
from integrating along the third contour is a linear combination of these linearly independent
solutions.

(b) Similarly, for Bessel’s equation, we deduce that

z
d2w

dz2
+

dw

dz
+ zw = −

∫
Γ

(
g′(ζ)(ζ2 + 1) + g(ζ)ζ

)
ezζ dζ +

[
g(ζ)

(
ζ2 + 1

)
ezζ
]

Γ
= 0.

Hence, Bessel’s equation is satisfied only if g(ζ) is such that

g′(ζ)(ζ2 + 1) + g(ζ)ζ = 0

for ζ ∈ Γ and the contour Γ is such that[
g(ζ)

(
ζ2 + 1

)
ezζ
]

Γ
= 0.

Since

g(ζ) =
A√
ζ2 + 1

,

where A is an arbitrary constant and we choose the branch cut for
√
ζ2 + 1 from ζ = −i to ζ = i

along the imaginary axis, the constraint on Γ becomes[√
ζ2 + 1 ezζ

]
Γ

= 0.

Similar to before, we then have that Γ is either a closed contour or
√
ζ2 + 1ezζ disappears at

the endpoints of Γ. Thus, a closed contour Γ1 around the branch cut, as illustrated above,
generates a solution valid for all z ∈ C. Since

√
ζ2 + 1 = 0 for ζ = ±i and ezζ → 0 as ζ →∞ for

Re(ζz) < 0, another valid choice is a contour Γ2 that goes from ζ = i to ζ = −∞ for Re(z) > 0
and a contour Γ′2 from ζ = i to ζ = +∞ for Re(z) < 0, as illustrated above. Since Γ1 cannot be
deformed into Γ2, these two contours generate two linearly independent solutions for Re(z) > 0.

Q3

This is all covered in the lecture notes.
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Q4

Take the Fourier transform

ū(k, y) =

∫ ∞
−∞

u(x, y)eikx dx

of the partial differential equation to obtain

ūyy − (k2 − ik)ū = 0 in y > 0.

Since ū(k, y)→ 0 as y →∞ by the far-field condition, the solution is

ū(k, y) = A(k)e−(k2−ik)1/2y,

where the branch of the square root must be chosen so that Re
(
k2 − ik

)1/2
> 0 on the inversion

contour. Thus we choose a branch cut along the imaginary k-axis from −∞i to 0 and from i to ∞i,
that is, with θ1 = arg(k) and θ2 = arg(k − i),(

k2 − ik
)1/2

= k1/2(k − i)1/2, k1/2 = |k|1/2eiθ1/2, (k − i)1/2 = |k − i|1/2eiθ2/2,

with −π/2 < θ1 < 3π/2, −3π/2 < θ2 < π/2, so that Re
(
k2 − ik

)1/2
> 0 everywhere on the cut

k-plane.

We write the boundary conditions on y = 0 as

u(x, 0) = f−(x) + H(x)e−ax,
∂u

∂y
(x, 0) = g+(x),

where H(x) is the Heaviside function, and suppose that g+(x) = O (eαx) as x → ∞ and f−(x) =
O
(
eβx
)

as x → −∞ for some constants α, β such that α < β. Then ḡ+(k) is holomorphic in
Im(k) > α and f̄−(k) is holomorphic in Im(k) < β, so that both functions are holomorphic in the
overlap strip α < Im(k) < β.

Since ∫ ∞
0

e−ax+ikx dx =
i

k + ia

for Im(k) > −a, the boundary conditions on y = 0 give

ū(k, 0) = f̄−(k) +
i

k + ia
for − a < Im(k) < β,

∂ū

∂y
(k, 0) = ḡ+(k) for Im(k) > α,

provided β > −a, so that

A(k) = f̄−(k) +
i

k + ia
, −A(k)

(
k2 − ik

)1/2
= ḡ+(k).

Eliminating A(k) gives
1

(k2 − ik)1/2
ḡ+(k) + f̄−(k) = − i

k + ia
.

If −a ≤ α < β ≤ 1, we can apply the Wiener-Hopf method.

Splitting (k2 − ik)1/2, we have

ḡ+(k)

k1/2
+ (k − i)1/2f̄−(k) = − i(k − i)1/2

k + ia
.
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Splitting the right-hand side, we have

(k − i)1/2

k + ia
=

(k − i)1/2 − (−ia− i)1/2

k + ia
+

(−ia− i)1/2

k + ia
, (1)

where (−ia− i)1/2 = (1 + a)1/2e−iπ/4 comes from evaluating (k − i)1/2 at k = −ia. The first-term on
the right-hand side of (1) is holomorphic in the lower half-plane Im(k) < 1, while the last term on the
right-hand side is holomorphic in the upper half-plane Im(k) > −a.

Hence,

ḡ+(k)

k1/2
+

i(−ia− i)1/2

k
= −(k − i)1/2f̄−(k)−

i
(
(k − i)1/2 − (−ia− i)1/2

)
k + ia

for α < Im(k) < β (2)

with the left-hand side holomorphic in Im(k) > α and the right-hand side holomorphic in Im(k) < β.
The right-hand side of (2) is the analytic continuation of the left-hand side of (2) into the lower half-
plane, so together they define an entire function, E(k) say. Since k1/2ḡ(k) and kf̄(k) are bounded at
infinity, E(k) tends to zero at infinity, so by Liouville’s theorem, E(k) ≡ 0.

It follows that

A(k) = f̄−(k) +
i

k + ia
=

i(−ia− i)1/2

(k + ia)(k − i)1/2
,

giving

ū(k, y) =
i(−ia− i)1/2

(k + ia)(k − i)1/2
e−(k2−ik)

1/2
y.

Hence, the solution is given by

u(x, y) =
1

2π

∫
Γ

i(−ia− i)1/2

(k + ia)(k − i)1/2
e−(k2−ik)

1/2
y−ikx dk,

where analytic continuation of ū(k, y) and the deformation theorem allow us to deform the inversion
contour Γ out of the overlap strip α < Im(k) < β provided we do not cross the branch cuts of ū(k, y)
(along the imaginary k-axis from −∞i to 0 and from i to ∞i).

Q5

Define

f−(x) =

u(x, 0) x < 0,

0 x > 0,
g+(x) =


0 x < 0,

∂u

∂y
(x, 0) x > 0,

so that u(x, y) satisfies the boundary conditions

u(x, 0) = f−(x) + xH(x),
∂u

∂y
(x, 0) = g+(x),

where H(x) is the Heaviside function. Note that∫ ∞
−∞

xH(x)eikx dx =

∫ ∞
0

xeikx dx = − 1

k2

for Im(k) > 0. We suppose that g+(x) = O (eαx) as x→ +∞ and that f−(x) = O
(
eβx
)

as x→ −∞,
where 0 ≤ α < β. Then ḡ+(k) exists for Im(k) > α and f̄−(k) exists for Im(k) < β, so that they are
both defined on the overlap strip Ω = {k ∈ C : α < Im(k) < β}.
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Now take the Fourier transform of the whole problem:

∂2ū

∂y2
=
(
k2 + 1

)
u y > 0

ū = f̄−(k)− 1

k2
,

∂ū

∂y
= ḡ+(k) y = 0,

ū→ 0 y →∞,

on the overlap strip Ω. The general solution is

ū(k, y) = A(k)e−y(k
2+1)

1/2

,

where the square root must be defined to have positive real part on the inversion contour. Specifically,
define (

k2 + 1
)1/2

= (k + 1)1/2(k − 1)1/2,

where

(k + 1)1/2 = |k + 1|1/2 exp

(
i arg(k + 1)

2

)
, (k − 1)1/2 = |k − 1|1/2 exp

(
i arg(k − 1)

2

)
,

arg(k + 1) ∈ [−π/2, 3π/2), arg(k − 1) ∈ [−3π/2, π/2),

so the branch cut is along the imaginary axis, from k = +i to +i∞ and from k = −i∞ to −i.

Plug in the boundary conditions to get

A(k) = f̄−(k)− 1

k2
, −

(
k2 + 1

)1/2
A(k) = ḡ+(k),

and elimination of A(k) leads to the Wiener–Hopf problem

ḡ+(k) +
(
k2 + 1

)1/2
f̄−(k) =

(
k2 + 1

)1/2
k2

for 0 ≤ α < Im(k) < β ≤ 1.

First split the singularities in
(
k2 + 1

)1/2
:

ḡ+(k)

(k + i)1/2
+ (k − i)1/2 f̄−(k) =

(k − i)1/2

k2
. (3)

On the right-hand side, we need to split the pole at k = 0 from the branch point at k = i. Do this by
Taylor expanding the numerator to eliminate the pole:

(k − i)1/2

k2
=

(−i)1/2(1 + ik/2)

k2
+

(k − i)1/2 − (−i)1/2(1 + ik/2)

k2
.

Now in the second term on the right-hand side, the singularity at k = 0 has been removed. Here
(−i)1/2 is (k − i)1/2 evaluated at k = 0, and therefore equal to e−iπ/4 by our choice of branch.

Thus we rearrange (3) to

ḡ+(k)

(k + i)1/2
− (−i)1/2(1 + ik/2)

k2
= − (k − i)1/2 f̄−(k) +

(k − i)1/2 − (−i)1/2(1 + ik/2)

k2

for 0 ≤ α < Im(k) < β ≤ 1, where the left-hand side is holomorphic in Im(k) > α and the right-hand
side is holomorphic in Im(k) < β. Therefore the right-hand side is the analytic continuation of the
left-hand side into the lower half-plane, and between them they define an entire function E(k), say. By
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the hint, we know that the left- and right-hand sides both tend to zero in their respective half-planes,
and it follows by Liouville’s Theorem that E(k) ≡ 0.

We then solve for f̄−(k) and use it to evaluate

ū(k, 0) = A(k) = f̄−(k)− 1

k2
= −e−iπ/4(2 + ik)

2k2(k − i)1/2
,

so the inversion theorem gives

u(x, 0) = −e−iπ/4

4π

∫
Γ

(2 + ik)e−ikx

k2(k − i)1/2
dk,

where the integration contour Γ passes between the pole at k = 0 and the branch point at k = i.

For x > 0, we close the contour in the lower half k-plane as shown in (a) below, just picking up the
residue from the pole at k = 0:

u(x, 0) = −2πi res

[
−e−iπ/4

4π

(2 + ik)e−ikx

k2(k − i)1/2
; k = 0

]
,

=
eiπ/4

2
res

[
(2 + ik)e−ikx

k2(k − i)1/2
; k = 0

]
for x > 0, (4)

where the minus sign comes from the clockwise sense of the integration contour.

*

�

��(�)

��(�)

*

�

��(�)

��(�)

(a) Closing the integration contour for x > 0. (b) Integration around the branch cut for x < 0.

To calculate the residue, expand about k = 0:

(2 + ik)e−ikx

k2(k − i)1/2
=

2

e−iπ/4

1

k2

(
1 +

ik

2

)
(1 + ik)−1/2 e−ikx

∼ 2eiπ/4

k2

(
1 +

ik

2

) (
1− ik

2
+ · · ·

)
(1− ikx+ · · · )

∼ 2eiπ/4

k2
(1− ikx+ · · · ).
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Therefore the residue is −2xe3iπ/4, and (4) gives

u(x, 0) =
eiπ/4

2

(
−2xe3iπ/4

)
= x for x > 0,

as required.

For x < 0, we have to close the integration contour in the upper half-plane, integrating along the
branch cut as shown in diagram (b) above. Just to the right of the branch cut, with Re(k) = 0+,
we have k = it, where t > 1, and (k − i)1/2 = eiπ/4

√
t− 1. Just to the left of the branch cut, with

Re(k) = 0−, we again have k = it, where t > 1, but now (k − i)1/2 = e−3iπ/4
√
t− 1. Combining the

two contributions, we get

u(x, 0) = −e−iπ/4

4π

{∫ ∞
1

(2− t)exti dt

−t2eiπ/4
√
t− 1

−
∫ ∞

1

(2− t)exti dt

−t2e−3iπ/4
√
t− 1

}
=

1

2π

∫ ∞
1

(2− t)ext

t2
√
t− 1

dt for x < 0,

as required.
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