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2 Further conformal mapping

2.1 Introduction

Here we extend the ideas on conformal mapping introduced in the previous section. The
Riemann Mapping Theorem guarantees that any simply connected domain D can be mapped
onto the unit disc (for example). However, there is no general method to construct the
required map for any given domain. One exception occurs if D is a polygon. The Schwarz–
Christoffel formula in principle gives the conformal map from the upper half-plane to any
given polygonal region. We will also show how conformal mapping can be used in practice in
the solution of Laplace’s equation.

2.2 Schwarz–Christoffel mapping

A (rare) constructive method for finding conformal maps (as opposed to cataloguing them)
is the Schwarz–Christoffel formula. This lets us map a half-plane to a polygon (and there is
an extension to circular polygons), and hence the inverse maps a polygon to a half-plane.
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Figure 2.1: We seek a conformal map z 7→ ζ = f(z) from the upper half-plane to a polygon
with interior angles αnπ and corresponding exterior angles βnπ.

Our target domain is a polygon D with interior angles α1π ,α2π, . . . , αnπ, at the vertices
ζ = ζ1, ζ2, . . . , ζn, as shown in Figure 2.1. These vertices are ordered so that increasing n
means travelling round the polygon in the anticlockwise sense. We define

βjπ = π − αjπ, (2.1)

so that βjπ is the exterior angle. Generally, βj > 0 at a corner where we turn left and βj < 0
at a corner where we turn right. Then the conditions

n∑

j=1

βj = 2, −2 ≤ βj ≤ 2 (2.2)
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are necessary for the polygon to close. Now our aim is to find a mapping ζ = f(z) which
maps the upper half-plane y > 0 onto D with the real axis mapping to ∂D and x1, x2, . . . ,
xn mapping to the vertices ζ1, ζ2, . . . , ζn.
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Figure 2.2: The direction of the tangent to ∂D is given by arg f ′(z).

As shown schematically in Figure 2.2, the tangent to ∂D has direction angle arg f ′(z),
since dz = dx is real on ∂D. This angle is supposed to be constant on each edge of the polygon
∂D. At xj , the preimage of vertex j, the tangent angle increases by βjπ and therefore we
must have [

arg f ′(x)
]x+j
x−j

= βjπ. (2.3)

First consider the case of a single vertex, with pre-image at z = xj . A function fj(z) such
that

f ′j(z) = (z − xj)−βj (2.4)

(with a suitable branch defined) has the properties that

arg f ′j(x) =

{
0 x > xj ,

−βjπ x < xj ,
(2.5)

and therefore satisfies the jump condition (2.3). In addition, f ′j(z) 6= 0 for z 6= xj , and
therefore the resulting map is conformal away from the vertex.

When there are several vertices, the jump condition (2.3) is satisfied at each vertex by a
product of functions of the form (2.4). If we try

f ′(z) = C
n∏

j=1

f ′j(z), (2.6)

where C is some constant, then

arg f ′(z) = argC +
∑

j

arg f ′j(z) (2.7)

has exactly the right properties. Therefore a map from the upper-half plane to D is ζ = f(z),
where

df

dz
= C

n∏

j=1

(z − xj)−βj . (2.8)

Hence

ζ = f(z) = A+ C

∫ z n∏

j=1

(t− xj)−βj dt, (2.9)

where A and C fix the location and rotation/scaling of the polygon.
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Notes

1. It can be shown that (2.9) is a one-to-one map from Im z > 0 to D.

2. We are allowed by the Riemann Mapping Theorem to fix the pre-images of 3 boundary
points, i.e. 3 of the xj . Any more have to be found as part of the solution (by solving
f(xj) = ζj).

3. We can choose one of the xj to be at infinity. If (without loss of generality) xn = ∞,
then

f(z) = A+ C

∫ z n−1∏

j=1

(t− xj)−βj dt. (2.10)

4. The definition of a polygon is elastic: it includes those with vertices at ∞ and those
with interior angles of 2π. Some examples are shown in Figure 2.3.

5. Most tractable examples are degenerate (e.g. they have a vertex at∞) and use symmetry
to simplify the integration.
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33

(e) n = 3,
α1 = α3 = −1/2, α2 = 2,
β1 = β3 = 3/2, β2 = −1

3

Figure 2.3: Examples of polygonal regions and the corresponding values of the normalised
interior angles αj and exterior angles βj . Note that in each case the exterior angles βj sum
to 2.

Example. Map a half-plane to a strip with the vertices corresponding to z = 0 and z =∞.



2–4 OCIAM Mathematical Institute University of Oxford

2 We can choose 3 pre-vertices freely. The best choice depends on the problem (e.g. using
symmetry). Sometimes we take xn = ∞ and then

f(z) = A + C

∫ z n−1∏

j=1

(t − xj)
−βj dt.

3 There is also a formula for the map from a disc: see the problem sheets.

Most tractable examples are degenerate (e.g. they have a vertex at ∞.)

Example: Map a half-plane to a strip with the vertices corresponding to z = 0 and z = ∞.

z
ζ

Solution Here ζ1 and ζ2 are both at ∞, with β1 = β2 = 1. Thus

ζ = A + C

∫ z dt

t
= A + C log z.

If we want to map z = x1 and z = x2 to the ends of the strip we have

ζ = A + C

∫ z dt

(t − x1)(t − x2)
= A + C̃ log

(
z − x1

z − x2

)
.

Example: Map a half-plane to a half-strip

z

1

β = 1/2

β = 1

ζ

-1 β = 1/2

Here n = 3, β1 = β2 = 1/2, β3 = 1. It is convenient to take x1 = −1, x2 = 1, x3 = ∞, to give

ζ = A + C

∫ z dt√
t2 − 1

= A + C cosh−1 z.

Example:

Map UHP to the slit domain

4

Solution. Here ζ1 and ζ2 are both at ∞, with β1 = β2 = 1. We choose x1 = 0 and x2 =∞
and thus the Schwarz–Christoffel formula (2.10) gives

ζ = A+ C

∫ z dt

t
= A+ C log z. (2.11)

If instead we wanted to map general points z = x1 and z = x2 on the real axis to the ends
of the strip we would have

ζ = A+ C

∫ z dt

(t− x1)(t− x2)
= A+ C̃ log

(
z − x1
z − x2

)
. (2.12)

The values of A and C set the location, orientation, and width of the strip.
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= A + C cosh−1 z.

Example:

Map UHP to the slit domain

4

Solution. Here n = 3, β1 = β2 = 1/2, β3 = 1. It is convenient to take x1 = −1, x2 = 1,
x3 =∞, to give

ζ = A+ C

∫ z dt√
t2 − 1

= A+ C cosh−1 z. (2.13)

Example. Map the upper half-plane to the slit domain shown.

ζ4 = ∞ζ1 = ζ3 = 0

ζ2 = i

ζ4 = ∞

Here take x1 = −1, x2 = 0, x3 = 1, x4 = ∞. We have β1 = 1/2, β2 = −1, β3 = 1/2, β4 = 2.
Thus

ζ = A + C

∫ z t√
t2 − 1

dt = A + C
√

z2 − 1.

ζ1 = ζ3 = 0 ⇒ ζ = 0 when z = ±1 ⇒ A = 0.

ζ2 = i ⇒ ζ = i when z = 0 ⇒ C = 1.

Thus
ζ =

√
z2 − 1.

Although this example has 4 vertices, symmetry gives an exact solution. In general, if the image is
a quadrilateral we can only fix 3 vertices.

5
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Solution. Here we have four vertices, with β1 = 1/2, β2 = −1, β3 = 1/2, β4 = 2. In general
we can only choose three locations for the xj , but here symmetry allows us to take x1 = −1,
x2 = 0, x3 = 1, x4 =∞. Thus

ζ = A+ C

∫ z t√
t2 − 1

dt = A+ C
√
z2 − 1. (2.14)

To fix the values of the constants A and C, we must ensure that the vertices end up in the
right places:

ζ1 = ζ3 = 0 ⇒ ζ = 0 when z = ±1 ⇒ A = 0, (2.15a)

ζ2 = i ⇒ ζ = i when z = 0 ⇒ C = 1. (2.15b)

Thus the required map is

ζ =
√
z2 − 1. (2.16)

Although this example has 4 vertices, symmetry gives an exact solution.

2.3 Solving Laplace’s equation by conformal maps

Models leading to Laplace’s equation

Laplace’s equation crops up in a wide variety of practically motivated models. Here are three
examples.

Example 1: Steady heat flow

Fourier’s law of heat conduction states that the heat flux in a homogeneous isotropic medium
D of constant thermal conductivity k is

q = −k∇u, (2.17)

where u is the temperature. When the temperature is time-independent, conservation of
energy imples that ∇ · q = 0, and hence u satisfies Laplace’s equation:

∇2u = 0 in D. (2.18)

At a boundary typically either the temperature u or the heat flux q ·n is known. The former
case leads to a Dirichlet boundary condition, where u is specified on the boundary. The
latter case corresponds to the Neumann boundary condition, where ∂u/∂n is specified on the
boundary. In particular, ∂u/∂n = 0 at an insulated boundary.

Example 2: Electrostatics

In a steady state, the electric field E satisfies ∇ × E = 0, and may therefore be written in
terms of an electric potential φ such that

E = −∇φ. (2.19)
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Moreover, in the absence of any space charge, Gauss’s Law implies that ∇ · E = 0, and
therefore φ satisfies Laplace’s equation

∇2φ = 0. (2.20)

The potential φ is the usual voltage we talk about in the context of batteries, mains electricity,
lightning etc.

A common and useful boundary condition for φ is that it is constant on a good conductor
like a metal. Thus a canonical problem is to determine the potential between two perfect
conductors each of which is held at a given constant potential (for example in a capacitor).

Example 3: Inviscid fluid flow

The simplest model for a fluid is that it is inviscid, incompressible and irrotational. Fortu-
nately this is a remarkably accurate model in many circumstances. In an incompressible fluid,
the velocity field u satisfies ∇ · u = 0, while an irrotational flow satisfies ∇× u = 0. In two
dimensions, with u =

(
u(x, y), v(x, y)

)
, the velocity components u and v satisfy the equations

∂u

∂x
+
∂v

∂y
= 0,

∂u

∂y
− ∂v

∂x
= 0, (2.21)

in an incompressible, irrotational flow. Finally, the pressure p may be found using Bernoulli’s
Theorem, which states that

p+
1

2
ρ|u|2 = constant (2.22)

in a steady incompressible, irrotational flow, where ρ is the density of the fluid.
From equation (2.21a), we deduce the existence of a potential function ψ(x, y), called the

streamfunction, such that

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (2.23)

Similarly, equation (2.21b) implies the existence of a velocity potential φ(x, y), such that

u =
∂φ

∂x
, v =

∂φ

∂y
. (2.24)

Thus ∇φ is everywhere tangent to the flow, while ∇ψ is everyhere normal to the velocity.
It follows that the contours of ψ are streamlines for the flow, i.e. curves everywhere parallel
to the velocity. Moreover, the change in the value of ψ on two neighbouring streamlines is
equal to the flux of fluid between them. To see this, calculate the net flow across a curve C
connecting two streamlines, as shown in Figure 2.4:

flux =

∫

C
u · nds

=

∫

c

(
∂ψ

∂y
,−∂ψ

∂x

)
· (dy,−dx)

=

∫

c

(
∂ψ

∂x
dx+

∂ψ

∂y
dy

)

= [ψ]C = ψ2 − ψ1, (2.25)
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n

x

y

u

C

ψ2

ψ1

Figure 2.4: Schematic of a curve C joining two streamlines on which ψ = ψ1 and ψ = ψ2.

where ψ1 and ψ2 are the constant values of ψ on the two streamlines.
Elimination between (2.23) and (2.24) shows that both φ and ψ satisfy Laplace’s equation.

Alternatively, by combining (2.23) and (2.24), we see that φ and ψ satisfy the Cauchy–
Riemann equations

∂φ

∂x
=
∂ψ

∂y
,

∂φ

∂y
= −∂ψ

∂x
. (2.26)

Therefore φ+ iψ is a holomorphic function of z = x+ iy:

φ+ iψ = w(z), (2.27)

where w is called the complex potential. The velocity components can be recovered from w
using

dw

dz
= u− iv. (2.28)

At a fixed impenetrable boundary, the normal component of u must be zero. In terms of
the velocity potential and streamfunction, this is equivalent to

∂φ

∂n
= 0, ψ = constant, (2.29)

and therefore, in terms of the complex potential,

Imw(z) = constant at a fixed impenetrable boundary. (2.30)

Solution by conformal mapping

In all the above examples, we end up having to find a harmonic function u (or φ or ψ) in
some region D subject to given boundary conditions on ∂D. The general idea is to write u as
the real or imaginary part of a holomorphic function w(z) = u(x, y) + iv(x, y) and then map
D onto a simpler domain f(D) by a conformal map

ζ = f(z), (2.31)

in the hope that we can more easily find the corresponding function in the ζ-plane, i.e.

W (ζ) = U(ξ, η) + iV (ξ, η). (2.32)
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Because a composition of holomorphic functions is holomorphic, W (ζ) is holomorphic, and
its real and imaginary parts satisfy Laplace’s equation in f(D). We then recover the solution
in the original domain D by reversing the conformal mapping:

w(z) = W
(
f(z)

)
. (2.33)

Example. Find the temperature u in a domain D exterior to the circles |z−i| = 1, |z+i| = 1
with u = ±1 on |z ∓ i| = 1 and u→ 0 at ∞, as depicted in Figure 2.5.

A second example is steady heat flow with temperature u in a medium:

u = 0

∇2u = 0

u = 1

u → 0 at ∞

The idea is to write u (or φ or ψ) as the real or imaginary part of a holomorphic function
w(z) = u + iv and then map D onto a simpler domain f(D) by a conformal map

ζ = f(z),

in the hope that we can find
W (ζ) = U + iV = w(z(ζ))

easily. Because a composition of holomorphic functions is holomorphic, W (ζ) is holomorphic (and
its real and imaginary parts satisfy Laplace’s equation in f(D)).

Example: Find the temperature u in a domain D exterior to the circles |z − i| = 1, |z + i| = 1

with u = ±1 on |z ∓ i| = 1 and u → 0 at ∞.

u → 0 at ∞

∇2u = 0

u = 1

u = −1

6

Figure 2.5: Steady heat flow in the region outside two touching circles.

Solution The map ζ = 1/z takes D onto the strip

− 1

2i
< Im(ζ) <

1

2i

and so we have

1
2

Uξξ + Uηη = 0

U = −1

U = 1−1
2

with solution
U = −2η = 2Re(iζ) = 2Re(i/z).

Hence

u = 2Re(i/z) =
2y

x2 + y2
.

[Note that this is bounded in all of D.]

Example:

Calculate the complex potential for flow past the unit circle with constant velocity (U∞, 0) at
∞.

Solution The complex potential is w = φ + iψ and we can take ψ = 0 on the x-axis and unit
circle. Also w ∼ U∞z at ∞. Under the Jowkowski map

ζ =
1

2

(
z +

1

z

)

the exterior of the unit circle maps to the ζ-plane cut from −1 to 1:

We need a function W (ζ) which is real on the ξ axis and at ∞ looks like U∞z ∼ 2U∞ζ. The
solution is just

W (ζ) = 2U∞ζ = U∞

(
z +

1

z

)
.

7

Figure 2.6: The image of the problem from Figure 2.5 under the mapping ζ = 1/z.

Solution. The map ζ = 1/z takes D onto the strip −1/2 < Im ζ < 1/2, so the corresponding
problem in the ζ-plane is as shown in Figure 2.6. By inspection, the solution is

U = −2η = 2 Re(iζ), (2.34)

and hence

u = 2 Re(i/z) =
2y

x2 + y2
. (2.35)

Note that u is bounded in all of D, since |y| . x2/2 as (x, y)→ (0, 0).

Example. Calculate the complex potential for flow past the unit circle with uniform velocity
(U∞, 0) at ∞.
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Solution. The complex potential is w = φ + iψ and we can take ψ = 0 on the x-axis and
unit circle. Also w ∼ U∞z at ∞. Under the Jowkowski map

ζ =
1

2

(
z +

1

z

)
(2.36)

the exterior of the unit circle maps to the ζ-plane cut from −1 to 1, as shown in Figure 2.7.
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.
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2

(
z +

1
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(
z +

1

z

)
.

7

Figure 2.7: Uniform flow past a circle transformed by the Joukowski map.

In the ζ-plane we need a function W (ζ) which is real on the ξ axis and at ∞ looks like
U∞z ∼ 2U∞ζ. The solution is just

W (ζ) = 2U∞ζ ⇒ w(z) = U∞

(
z +

1

z

)
. (2.37)

Example. Find the complex potential for flow over a step of height 1, from y = 1, x < 0
to y = 0, x > 0, with velocity (U∞, 0) at ∞.

NB we can now do Jowkowski by mapping to a slit via a circle.

Example:

Find the complex potential for flow over a step of height 1, from y = 1, x < 0 to y = 0, x > 0,
with velocity (U∞, 0) at ∞.

A

AC

B

Solution We map the half-plane Im(Z) > 0 onto D by Schwarz-Christoffel (using Z not ζ because
the roles are reversed). We have

αA = −1, βA = 2, αB =
3

2
, βB = −1

2
, αC =

1

2
, βB =

1

2
.

Let us map
Z = −1 to B, Z = +1 to C, Z = ∞ to A.

Then
dz

dZ
= C

(
Z + 1

Z − 1

)1/2

from which

z = A + C

∫ Z (
t + 1

t − 1

)1/2

dt = A + C

∫ Z t + 1

(t2 − 1)1/2
dt = A + C

(
(Z2 − 1)1/2 + cosh−1 Z

)
.

When Z = 1 we want z = 0 so A = 0. When Z = −1 we want z = i so i = C cosh−1(−1), i.e.
C = 1/π. Hence

z =
1

π

(
(Z2 − 1)1/2 + cosh−1 Z

)
.

At infinity z ∼ Z/π. Thus

w(z) ∼ U∞z at ∞ ⇒ W (Z) = w(z(Z)) ∼ U∞Z

π
at ∞.

Thus the flow in the Z plane is given by

W (Z) =
U∞Z

π
,

so that w(z) is given implicitly by

z =
1

π

((
π2w2

U2∞
− 1

)1/2

+ cosh−1 πw

U∞

)
.

8

Figure 2.8: Flow over a step.

Solution. The flow is depicted in Figure 2.8. We map the half-plane ImZ > 0 onto D by
Schwarz–Christoffel (using Z not ζ because the roles are reversed). The exterior angles at
the marked vertices are given by

βA = 2, βB = −1

2
, βB =

1

2
. (2.38)

Since there are just three vertices, we can choose to map

Z = −1 to B, Z = +1 to C, Z =∞ to A. (2.39)

Then the Schwarz–Christoffel formula (2.10) gives

z = A+ C

∫ Z ( t+ 1

t− 1

)1/2

dt = A+ C
(

(Z2 − 1)1/2 + cosh−1 Z
)
. (2.40)
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From the conditions (2.39) we find A = 0 and C = 1/π, so the required mapping function is
given by

z =
1

π

(
(Z2 − 1)1/2 + cosh−1 Z

)
. (2.41)

At infinity z ∼ Z/π, so the specified uniform flow at infinity implies that

w(z) ∼ U∞z at ∞ ⇒ W (Z) = w(z(Z)) ∼ U∞Z
π

at ∞. (2.42)

Thus the flow in the Z plane is given by

W (Z) =
U∞Z
π

, (2.43)

so that w(z) is given implicitly by

z =
1

π

((
π2w2

U2∞
− 1

)1/2

+ cosh−1
πw

U∞

)
. (2.44)

Note that the velocity components may be found using

u− iv =
dw

dz

=
dW/dZ

dz/dZ

= U∞

(
Z − 1

Z + 1

)1/2

. (2.45)

Therefore the velocity is zero at C (Z = 1) and infinite at B (Z = −1). In general, at a
corner with interior angle γ, the complex potential locally is of the form w ∼ constant× zπ/γ
and therefore u− iv ∼ constant× zπ/γ−1, which implies that:

The velocity is zero at a corner with interior angle < π

and infinite at a corner with interior angle > π. (2.46)

Example. A lightning conductor is modelled by the boundary-value problem illustrated in
Figure 2.9. The potential u is equal to zero at x = 0 and satisfies Laplace’s equation in the
half-space x > 0, except on the line y = 0, x > 1, where u = 1. We also require u to be
bounded at infinity.

Solution. The domain D is the image of the strip 0 < X < π/2, −∞ < Y < ∞ under
the map z = sinZ. In the Z-plane we have ∇2U = 0 with U = 0 at X = 0 and U = 1 at
X = π/2, as shown in Figure 2.10. The solution in the Z-plane is U = ReW = Re(2Z/π),
and therefore

u =
2

π
Re
(
sin−1 z

)
. (2.47)

Note that
d

dz

(
2

π
sin−1 z

)
=

2

π

1√
1− z2

, (2.48)
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∇2u = 0

u = 0

u = 1

1
O

C

A

C

AB

Because of symmetry we are also free to map Z = ∞ to z = 0. Then

dz

dZ
=

CZ

(1 − Z2)3/2
.

Thus

z = A − C

(1 − Z2)1/2
.

Z = ∞ when z = 0 ⇒ A = 0.

Z = 0 when z = 1 ⇒ C = −1.

Thus

z =
1√

1 − Z2
.

The solution in the Z plane is

CA B

∇2U = 0

U = 0 U = 1 U = 1 U = 0

u = Im

(
1

π
log

(
Z − 1

Z + 1

))
.

Thus

u =
1

π
Im log

(√
z2 − 1 − z√
z2 − 1 + z

)
,

10

Figure 2.9: A model for a lightning conductor.

Example:

Solve the BVP (∼ lightning conductor):

∇2u = 0

u = 0

u = 1

1
O

Solution The domain D is the image of the strip 0 < X < π/2, −∞ < Y < ∞ under the map
z = sin Z (see previous examples). In the Z-plane we have

O
π/2

X

Y

U = 0 U = 1

∇2U = 0

so that U = Re(W ) = Re(2Z/π). Thus

u = Re

(
2 sin−1 z

π

)
.

Note that |∇u| → ∞ at the tip of the spike.
Alternative solution using Schwarz-Christoffel:

αA = −1

2
, βA =

3

2
, αB = 2, βB = −1, αC = −1

2
, βC =

3

2
.

Map
Z = −1 to A, Z = 0 to B, Z = 1 to C.

9

Figure 2.10: The problem from Figure 2.9 transformed by the map Z = sin−1 z.

and it follows that |∇u| → ∞ as z → 1, i.e. at the tip of the spike.
This example could also have been solved by using a Schwarz–Christoffel mapping to map

the upper half Z-plane to D. The vertices marked A, B, C in Figure 2.9 have the exterior
angles

βA =
3

2
, βB = −1, βC =

3

2
. (2.49)

We can choose to map

Z = −1 to A, Z = 0 to B, Z = 1 to C, (2.50)

and, because of symmetry, we are also free to map Z = ∞ to z = 0. Then the Schwarz–
Christoffel formula gives

z =
1√

1− Z2
. (2.51)

The problem in the Z plane is shown in Figure 2.11. The solution bounded at Z = ±1 is
simply

U =
1

π

(
arg(Z + 1)− arg(Z − 1)

)
= Im

[
1

π
log

(
Z − 1

Z + 1

)]
, (2.52)
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∇2u = 0

u = 0

u = 1

1
O

C

A

C

AB

Because of symmetry we are also free to map Z = ∞ to z = 0. Then

dz

dZ
=

CZ

(1 − Z2)3/2
.

Thus

z = A − C

(1 − Z2)1/2
.

Z = ∞ when z = 0 ⇒ A = 0.

Z = 0 when z = 1 ⇒ C = −1.

Thus

z =
1√

1 − Z2
.

The solution in the Z plane is

CA B

∇2U = 0

U = 0 U = 1 U = 1 U = 0

u = Im

(
1

π
log

(
Z − 1

Z + 1

))
.

Thus

u =
1

π
Im log

(√
z2 − 1 − z√
z2 − 1 + z

)
,

10

Figure 2.11: The problem from Figure 2.9 transformed by the map z = 1/
√

1− Z2.

and by inverting the conformal map we find

u =
1

π
Im

[
log

(√
z2 − 1− z√
z2 − 1 + z

)]
, (2.53)

which is equivalent to (2.47).


