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2 Further conformal mapping

2.1 Introduction

Here we extend the ideas on conformal mapping introduced in the previous section. The
Riemann Mapping Theorem guarantees that any simply connected domain D can be mapped
onto the unit disc (for example). However, there is no general method to construct the
required map for any given domain. One exception occurs if D is a polygon. The Schwarz—
Christoffel formula in principle gives the conformal map from the upper half-plane to any
given polygonal region. We will also show how conformal mapping can be used in practice in
the solution of Laplace’s equation.

2.2 Schwarz—Christoffel mapping

A (rare) constructive method for finding conformal maps (as opposed to cataloguing them)
is the Schwarz—Christoffel formula. This lets us map a half-plane to a polygon (and there is
an extension to circular polygons), and hence the inverse maps a polygon to a half-plane.

Ty X T3 - Tp—1Tn

pim
Figure 2.1: We seek a conformal map z — ( = f(z) from the upper half-plane to a polygon
with interior angles o, m and corresponding exterior angles 3, 7.

Our target domain is a polygon D with interior angles aym ,aom, ..., a,7, at the vertices
¢ =C(1, (2, ..., Cpn, as shown in Figure 2.1. These vertices are ordered so that increasing n
means travelling round the polygon in the anticlockwise sense. We define

Bjm =T — aym, (2.1)

so that ;7 is the exterior angle. Generally, 5; > 0 at a corner where we turn left and 8; < 0
at a corner where we turn right. Then the conditions

> B =2, —2< B <2 (2.2)
j=1
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are necessary for the polygon to close. Now our aim is to find a mapping ¢ = f(z) which
maps the upper half-plane y > 0 onto D with the real axis mapping to D and x1, x2, ...,
T, mapping to the vertices (1, (o, ..., G-

f(2) + f'(2)dz
f(z)

Figure 2.2: The direction of the tangent to D is given by arg f'(2).

As shown schematically in Figure 2.2, the tangent to dD has direction angle arg f'(z),
since dz = dx is real on dD. This angle is supposed to be constant on each edge of the polygon
0D. At xz;, the preimage of vertex j, the tangent angle increases by 3;m and therefore we
must have

g /'(2)]27 = ym. (2.3

First consider the case of a single vertex, with pre-image at z = x;. A function f;(z) such
that

fi(2) = (z = 2;)7" (2.4)
(with a suitable branch defined) has the properties that

0 T >z,

2.5
—,Bjﬂ' Tz <y, ( )

wesio=

and therefore satisfies the jump condition (2.3). In addition, fi(2) # 0 for 2z # z;, and
therefore the resulting map is conformal away from the vertex.

When there are several vertices, the jump condition (2.3) is satisfied at each vertex by a
product of functions of the form (2.4). If we try

f'z)y=C]] fi2), (2.6)
j=1
where C' is some constant, then
arg f'(z) = arg C' + Z arg f;(z) (2.7)
J

has exactly the right properties. Therefore a map from the upper-half plane to D is ¢ = f(z),
where

df - g,
Fi C’Jl;[l(z — ;) 7Hi (2.8)
Hence .
¢ = f(2) :A+C/ [ - =) at, (2.9)
j=1

where A and C' fix the location and rotation/scaling of the polygon.
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Notes

1. It can be shown that (2.9) is a one-to-one map from Im z > 0 to D.

2. We are allowed by the Riemann Mapping Theorem to fix the pre-images of 3 boundary
points, i.e. 3 of the ;. Any more have to be found as part of the solution (by solving

f(x5) = ¢).

3. We can choose one of the z; to be at infinity. If (without loss of generality) z,, = oo,
then

,n—1

f(z) = A+C/ [t =)~ ae (2.10)
j=1
4. The definition of a polygon is elastic: it includes those with vertices at co and those
with interior angles of 2m. Some examples are shown in Figure 2.3.

5. Most tractable examples are degenerate (e.g. they have a vertex at co) and use symmetry
to simplify the integration.

3 3
1
1 2
(a)n=1,a1=-1, 1 =2 (b) n = 2, ar=a2=0, (¢c)n = 3,
fr=p2=1 o =az=1/2, a3 =0,
Br=p02=1/2,p3=1
3 3
1
3
2
S 1
1 24 . 1
(d) n = 4, (e) n = 3,
ar=—-1,ac=0a4a=1/2, ag =2, ar=a3=—1/2, as = 2,

Br=2,Pa=p1=1/2, 5= —1 B1=PB3=3/2, B2 =—1
Figure 2.3: Examples of polygonal regions and the corresponding values of the normalised

interior angles «; and exterior angles 3;. Note that in each case the exterior angles 8; sum
to 2.

Example. Map a half-plane to a strip with the vertices corresponding to z = 0 and z = oc.
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Solution. Here (; and (5 are both at oo, with 8; = 82 = 1. We choose x1 = 0 and x5 = o
and thus the Schwarz—Christoffel formula (2.10) gives

C—A+C/ %:A—i—Clogz. (2.11)

If instead we wanted to map general points z = x1 and z = x2 on the real axis to the ends
of the strip we would have

Z dt ~ z—x
Q:A+C’/ (t—xl)(t—xg):A+ClOg<z—x2>' (2.12)

The values of A and C' set the location, orientation, and width of the strip.

Example. Map a half-plane to a half-strip.

B=1/2

B=1/2

Solution. Here n =3, f1 = f2 = 1/2, 3 = 1. It is convenient to take z; = —1, x9 = 1,
T3 = 00, to give

C—A—i—C/ \/t;dtil—A—i—Ccoshlz. (2.13)

Example. Map the upper half-plane to the slit domain shown.
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Solution. Here we have four vertices, with §; = 1/2, 82 = —1, f3 = 1/2, B4 = 2. In general
we can only choose three locations for the z;, but here symmetry allows us to take 1 = —1,
o =0, z3 =1, x4 = co. Thus

g:A+c/ \/;;ldt:A—i—C\/zQ—l. (2.14)

To fix the values of the constants A and C, we must ensure that the vertices end up in the
right places:

I

¢ =0 when z = £1 = A=0, (2.15a)
(=iwhen z2=0 = C=1. (2.15b)

G1=¢G=0
G2 =1

4

Thus the required map is
(=V2z22-1. (2.16)

Although this example has 4 vertices, symmetry gives an exact solution.

2.3 Solving Laplace’s equation by conformal maps

Models leading to Laplace’s equation

Laplace’s equation crops up in a wide variety of practically motivated models. Here are three
examples.

Example 1: Steady heat flow

Fourier’s law of heat conduction states that the heat flux in a homogeneous isotropic medium
D of constant thermal conductivity & is

q = —kVu, (2.17)

where u is the temperature. When the temperature is time-independent, conservation of
energy imples that V - ¢ = 0, and hence u satisfies Laplace’s equation:

Viu=0 inD. (2.18)

At a boundary typically either the temperature u or the heat flux q - n is known. The former
case leads to a Dirichlet boundary condition, where u is specified on the boundary. The
latter case corresponds to the Neumann boundary condition, where du/dn is specified on the
boundary. In particular, du/dn = 0 at an insulated boundary.

Example 2: Electrostatics

In a steady state, the electric field E satisfies V x E = 0, and may therefore be written in
terms of an electric potential ¢ such that

E=-V¢. (2.19)
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Moreover, in the absence of any space charge, Gauss’s Law implies that V - E = 0, and
therefore ¢ satisfies Laplace’s equation

Vi =0. (2.20)

The potential ¢ is the usual voltage we talk about in the context of batteries, mains electricity,
lightning etc.

A common and useful boundary condition for ¢ is that it is constant on a good conductor
like a metal. Thus a canonical problem is to determine the potential between two perfect
conductors each of which is held at a given constant potential (for example in a capacitor).

Example 3: Inviscid fluid flow

The simplest model for a fluid is that it is inviscid, incompressible and irrotational. Fortu-
nately this is a remarkably accurate model in many circumstances. In an incompressible fluid,
the velocity field w satisfies V - u = 0, while an irrotational flow satisfies V x u© = 0. In two
dimensions, with w = (u(z,y),v(z,y)), the velocity components u and v satisfy the equations
ou  Ov ou Ov
or Oy Jdy Oz
in an incompressible, irrotational flow. Finally, the pressure p may be found using Bernoulli’s
Theorem, which states that

1 2
Pty plu|”* = constant (2.22)

in a steady incompressible, irrotational flow, where p is the density of the fluid.
From equation (2.21a), we deduce the existence of a potential function ¥ (z,y), called the
streamfunction, such that
o 9

- 7v - 27 2.2
U dy’ v e (2.23)

Similarly, equation (2.21b) implies the existence of a wvelocity potential ¢(z,y), such that

99 _ 09

U = — V= —.
0y

o (2.24)

Thus V¢ is everywhere tangent to the flow, while V1) is everyhere normal to the velocity.
It follows that the contours of i are streamlines for the flow, i.e. curves everywhere parallel
to the velocity. Moreover, the change in the value of ¥ on two neighbouring streamlines is
equal to the flux of fluid between them. To see this, calculate the net flow across a curve C
connecting two streamlines, as shown in Figure 2.4:

ﬂuxz/u'nds
C
B oy oY

B oY oY
= /C (&cdx+ aydy)

= [l = 2 — 11, (2.25)
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Figure 2.4: Schematic of a curve C joining two streamlines on which 1 = 11 and ¥ = ¥».

where 11 and 1 are the constant values of 1) on the two streamlines.

Elimination between (2.23) and (2.24) shows that both ¢ and ¢ satisfy Laplace’s equation.
Alternatively, by combining (2.23) and (2.24), we see that ¢ and 1 satisfy the Cauchy—
Riemann equations

9 _ 0Y 9¢ oY
— = — =——\ 2.2
ox Oy’ oy Ox (2.26)
Therefore ¢ + it is a holomorphic function of z = x + iy:
o+ 1 = w(z), (2.27)

where w is called the complex potential. The velocity components can be recovered from w
using

dw

— =u —iv. 2.28

P (2.28)
At a fixed impenetrable boundary, the normal component of w must be zero. In terms of

the velocity potential and streamfunction, this is equivalent to
09
on

and therefore, in terms of the complex potential,

0, 1) = constant, (2.29)

Imw(z) = constant at a fixed impenetrable boundary. (2.30)

Solution by conformal mapping

In all the above examples, we end up having to find a harmonic function u (or ¢ or ) in
some region D subject to given boundary conditions on 0D. The general idea is to write u as
the real or imaginary part of a holomorphic function w(z) = u(x,y) + iv(x,y) and then map
D onto a simpler domain f(D) by a conformal map

¢=f(2), (2.31)

in the hope that we can more easily find the corresponding function in the (-plane, i.e.

W(C) =U(&n) +iV(E,n). (2.32)
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Because a composition of holomorphic functions is holomorphic, W(¢) is holomorphic, and
its real and imaginary parts satisfy Laplace’s equation in f(D). We then recover the solution
in the original domain D by reversing the conformal mapping:

w(z) = W(f(2)). (2.33)

Example. Find the temperature u in a domain D exterior to the circles |z—i| = 1, |z+i| =1
with w = +1 on |z Fi| =1 and v — 0 at oo, as depicted in Figure 2.5.

u=1

u — 0 at oo

Figure 2.5: Steady heat flow in the region outside two touching circles.

[NIE

U££ + Unn =0

N[

Figure 2.6: The image of the problem from Figure 2.5 under the mapping ( = 1/z.

Solution. The map ( = 1/z takes D onto the strip —1/2 < Im ¢ < 1/2, so the corresponding
problem in the (-plane is as shown in Figure 2.6. By inspection, the solution is

U = —2n = 2Re(i(), (2.34)
and hence
— 9Re(i/z) = Y (2.35)
U= i/z) = Rl .

Note that u is bounded in all of D, since |y| < 2%/2 as (z,y) — (0,0).

Example. Calculate the complex potential for flow past the unit circle with uniform velocity
(Uso, 0) at oo.
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Solution. The complex potential is w = ¢ + iy and we can take ¥ = 0 on the z-axis and
unit circle. Also w ~ Uy z at oo. Under the Jowkowski map

¢— % (z 4 %) (2.36)

the exterior of the unit circle maps to the (-plane cut from —1 to 1, as shown in Figure 2.7.

Figure 2.7: Uniform flow past a circle transformed by the Joukowski map.

In the (-plane we need a function W({) which is real on the ¢ axis and at oo looks like
Usoz ~ 2Us(. The solution is just

W(C) = 20Ut N w(z) = Un (z + %) . (2.37)

Example. Find the complex potential for flow over a step of height 1, from y =1, z < 0
toy =0, z > 0, with velocity (Us,0) at oc.

Figure 2.8: Flow over a step.

Solution. The flow is depicted in Figure 2.8. We map the half-plane Im Z > 0 onto D by
Schwarz—Christoffel (using Z not ¢ because the roles are reversed). The exterior angles at
the marked vertices are given by

Ba =2, B = —1, BB = % (2.38)

2
Since there are just three vertices, we can choose to map

Z = —1to B, Z =41 to C, 7 = o0 to A. (2.39)

Then the Schwarz—Christoffel formula (2.10) gives

A 1/2
z=A+C/ (%) d15:A+C<(Z2—1):l/2+(:osh_1 Z) . (2.40)
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From the conditions (2.39) we find A =0 and C = 1/7, so the required mapping function is
given by

r= - ((Z2 ~1)/2 4 cosh™! Z) . (2.41)
At infinity z ~ Z/m, so the specified uniform flow at infinity implies that
UsnZ

w(z) ~ Usoz at 0o = W(Z) =w(z(2)) at 0o. (2.42)
T
Thus the flow in the Z plane is given by
UsnZ
W(Z) = ) (2.43)
T

so that w(z) is given implicitly by

1 2,2 1/2
z== ((WUEU - 1> + cosh™! g,—w . (2.44)
> 50 o]

Note that the velocity components may be found using

u—iv = d—w
- dz
_dW/dZ

- dz/dZ

71 1/2

Therefore the velocity is zero at C (Z = 1) and infinite at B (Z = —1). In general, at a
corner with interior angle ~, the complex potential locally is of the form w ~ constant x z™/7
and therefore u — iv ~ constant x 2™~ which implies that:

The velocity is zero at a corner with interior angle < 7

and infinite at a corner with interior angle > . (2.46)

Example. A lightning conductor is modelled by the boundary-value problem illustrated in
Figure 2.9. The potential u is equal to zero at x = 0 and satisfies Laplace’s equation in the
half-space = > 0, except on the line y = 0, x > 1, where u = 1. We also require u to be
bounded at infinity.

Solution. The domain D is the image of the strip 0 < X < 7/2, —00 < Y < oo under
the map z = sin Z. In the Z-plane we have V2U = 0 with U =0 at X =0 and U = 1 at
X = 7/2, as shown in Figure 2.10. The solution in the Z-plane is U = ReW = Re(2Z/7),
and therefore

u= %Re (sin™'z2). (2.47)

di <2 sin~! z) _2 1 (2.48)

z ™

Note that
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C
V2u =0
B - A
0 u=1
1 C
u=0
A

Figure 2.9: A model for a lightning conductor.

Y
i

VU =0

Figure 2.10: The problem from Figure 2.9 transformed by the map Z = sin™! 2.

and it follows that |Vu| — oo as z — 1, i.e. at the tip of the spike.

This example could also have been solved by using a Schwarz—Christoffel mapping to map
the upper half Z-plane to D. The vertices marked A, B, C in Figure 2.9 have the exterior
angles

3 3

Ba=5 B = —1, pe = 3. (2.49)

We can choose to map
Z =—1to A, Z =0to B, Z =1to C, (2.50)

and, because of symmetry, we are also free to map Z = oo to z = 0. Then the Schwarz—

Christoffel formula gives

- \/11—22 (2.51)

The problem in the Z plane is shown in Figure 2.11. The solution bounded at Z = +1 is
simply

U— %(arg(Z 4 1) —arg(Z 1)) = Im LlT log @I)] , (2.52)
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V2U =0

Figure 2.11: The problem from Figure 2.9 transformed by the map z = 1/v1 — Z2.

and by inverting the conformal map we find

u:%Im [log( 22_1_Z> ) (2.53)

V22 —14z2

which is equivalent to (2.47).



