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5 Complex Fourier Transforms

5.1 Introduction

Below we summarise the main properties of the standard Fourier transform. One of the main
restrictions on the Fourier transform is that it only applies to functions which decay suffi-
ciently rapidly at infinity. Here we will show how this restriction may be lifted by extending
the concept of the Fourier transform into the complex plane. We will then show how this
generalised Fourier transform may be used to solve some linear differential equations.

Basic properties of the Fourier transform

Given an integrable function f(x), we define the Fourier transform of f by

F [f(x)] = f̄(k) =

∫ ∞

−∞
f(x)eikx dx. (5.1)

Given the transform f̄(k), then we can recover f(x) using the inverse Fourier transform:

1

2

(
f(x−) + f(x+)

)
= F−1

[
f̄(k)

]
=

1

2π
−
∫ ∞

−∞
f̄(k)e−ikx dk, (5.2)

where the prinicipal value integral is defined by

−
∫ ∞

−∞
= lim

R→∞

∫ R

−R
. (5.3)

If f(x) is continuous, then the left-hand side of equation (5.2) is just f(x). Moreover, the
integrand on the right-hand side of equation (5.2) is integrable and the dash may be removed
from the integral sign.

We will just list without proof some useful properties of the Fourier transform, assuming
the required integrability where necessary. First, the Fourier transform of a derivative
is given by

F
[
f ′(x)

]
= −ikf̄(k), (5.4)

which is easily shown using integration by parts. Differentiation under the integral sign in
(5.1) gives the derivative of a Fourier transform, namely

df̄(k)

dk
= iF [xf(x)]. (5.5)

Equation (5.4) shows that F will turn a linear differential equation for f(x) into a linear
algebraic equation for f̄(k). Once we have solved for f̄(k), in principle we can recover f(x)
from the inversion formula (5.2), typically using contour integration in the complex k-plane.
In practice this is rarely necessary: one can look up very many Fourier transforms that often
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arise, and the following is also useful. The inverse Fourier transform of a product is
given by

F−1
[
f̄(k)ḡ(k)

]
= (f ? g)(x), (5.6)

where f ? g denotes the convolution of f and g, defined by

(f ? g)(x) =

∫ ∞

−∞
f(s)g(x− s) ds. (5.7)

Example: solving Laplace’s equation by Fourier transform. Find u(x, y) that satis-
fies Laplace’s equation in the half-space y > 0, with the boundary condition u(x, 0) = u0(x)
on y = 0, and such that u(x, y) is bounded as y → +∞.

Solution. We take the Fourier transform in x, i.e.

ū(k, y) =

∫ ∞

−∞
u(x, y)eikx dx. (5.8)

The whole problem is transformed as follows:

∇2u =
∂2u

∂x2
+
∂2u

∂y2
= 0 ⇒ ∂2ū

∂y2
− k2ū = 0, (5.9a)

u = u0(x) at y = 0 ⇒ ū = ū0(k) at y = 0, (5.9b)

u bounded as y →∞ ⇒ ū bounded as y →∞, (5.9c)

where ū0(k) is the Fourier transform of u0(x).
The general solution of (5.9a) is

ū(k, y) = A(k)eky +B(k)e−ky, (5.10)

where A and B are arbitrary integration functions. We need to make sure that ū is bounded
as y →∞. Which of the two exponentials in (5.11) should be kept depends on k: if k > 0 then
A must be zero, while if k < 0 then B must be zero. Both of these cases may be encompassed
by setting

ū(k, y) = C(k)e−|k|y, (5.11)

so that the decaying exponential is selected regardless of the sign of k. Finally we apply the
boundary condition (5.9b) to get

ū(k, y) = ū0(k)e−|k|y. (5.12)

This shows how the Fourier transform converts a PDE for u to an ODE for ū which is then
easily solved. However, it remains to invert (5.12) to find u. Here we can use the convolution
theorem (5.6) to get

u(x, y) = u0(x) ? g(x, y) =

∫ ∞

−∞
u0(s)g(x− s, y) ds, (5.13)

where

g(x, y) = F−1
[
e−|k|y

]
=

1

2π

∫ ∞

−∞
e−|k|y−ikx dk =

y

π (x2 + y2)
. (5.14)

Thus we obtain the general solution

u(x, y) =
y

π

∫ ∞

−∞

u0(s)

(x− s)2 + y2
ds. (5.15)
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5.2 Complex Fourier transform

Our aim is to generalise the Fourier transform to a wider class of functions by allowing k
to take complex values. For simplicity we will assume that f(x) is continuous, although
this assumption can be relaxed relatively easily. We also assume that f grows at most
exponentially at infinity, that is f(x) = O

(
ec|x|

)
as x → ±∞ for some constant c > 0; this

rules out f(x) = ex
2
, for example.

To investigate the convergence of the Fourier integral (5.1) as x→ ±∞, we split up f(x)
by writing

f(x) = f+(x) + f−(x), (5.16)

where

f+(x) = 0 for x < 0, f−(x) = 0 for x > 0. (5.17)

From the definition of the Fourier transform,

f̄+(k) =

∫ ∞

0
f+(x)eikx dx =

∫ ∞

0
f+(x)ei Re(k)xe− Im(k)x dx, (5.18)

we see that ∣∣f̄+(k)
∣∣ ≤

∫ ∞

0
|f(x)|e− Im(k)x dx, (5.19)

and the integral converges provided Im k > c. Thus f̄+(k) exists and is holomorphic for
Im k > c, since its derivative

df̄+

dk
= iF [xf+(x)] = i

∫ ∞

0
xf+(x)eikx dx (5.20)

likewise exists for Im k > c.
Next we need to extend the Fourier inversion theorem to recover f+(x) from f̄+(k). To

this end, let F+(x) = e−αxf+(x), where α > c, so that F̄+(k) = f̄+(k + iα) exists and is
holomorphic for Im k > c − α, in particular for k ∈ R, since α > c. Thus we can apply the
Fourier Inversion Theorem (5.2), which gives

F+(x) =
1

2π
−
∫ ∞

−∞
F̄+(k)e−ikx dk (5.21a)

⇒ e−αxf+(x) =
1

2π
−
∫ ∞

−∞
f̄+(k + iα)e−ikxdk (5.21b)

⇒ f+(x) =
1

2π
−
∫ ∞

−∞
f̄+(k + iα)e−i(k+iα)xdk. (5.21c)

The final integral corresponds to integration along a horizontal contour in the complex k-
plane, i.e.

f+(x) =
1

2π
−
∫ ∞+iα

−∞+iα
f̄+(k)e−ikx dk, (5.22)

where the integration contour is as shown in Figure 5.1.
Suppose f̄+(k) can be continued below Im k = c, so that it is holomorphic in some region

Ω+ ⊃ {k : Im k > c} except for singularities at k = a1, a2, · · · . By the deformation theorem,
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Figure 5.1: Inversion contour for complex Fourier transform f̄+(k), where f+(x) = O (ecx) as
x→∞.

the inversion contour Γ+ = {x + iα : −∞ < x < ∞} may be deformed into Ω+ provided it
passes above all the singularities of f̄+, as shown in Figure 5.2(a). Since the singularities of
f̄+(k) are below the inversion contour, for x < 0 we can close the inversion contour at +i∞,
as shown in Figure 5.2(b). This gives this expected result that f+(x) = 0 for x < 0. For
x > 0, we would need to close the contour in Im k < 0, picking up the contributions from the
singularities in f̄+(k) and giving a nonzero value of f+(x).

(a) (b)

Figure 5.2: (a) An inversion contour that passes above the singularities (?) in f̄+(k). (b)
Closing the contour at infinity when x < 0.

The same procedure works for f−(x) with everything upside down: f̄−(k) exists and
is holomorphic for Im k < −c, while an application of the Fourier Inversion Theorem to
F−(x) = eβxf−(x) gives

f−(x) =
1

2π
−
∫ ∞−iβ

−∞−iβ
f̄−(k)e−ikx dk (5.23)

provided −β < −c. Suppose f̄−(k) can be continued above Im k = −c, so that it is holomor-
phic in some region Ω− ⊃ {k : Im k < −c} except for singularities at k = b1, b2, · · · . By the
deformation theorem, the inversion contour Γ− = {x− iβ : −∞ < x <∞} may be deformed
into Ω− provided it passes underneath the singularities bj of f̄−.

If there is a non-empty overlap region Ω = Ω+ ∩ Ω− \ ({aj} ∪ {bj}), then the Fourier
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Similarly for f̄−(k) we must choose an inversion contour with Im(k) sufficiently large and

negative to pass underneath the singularities of f̄−(k).
If the singularities of f̄±(k) are labelled + and − respectively, the inversion contour must

be of the form:

Re(k)

Im(k)

4

Figure 5.3: An inversion contour that passes above the singularities (⊕) in f̄+(k) and below
the singularities (	) in f̄−(k).

transform of f is defined by
f̄(k) = f̄+(k) + f̄−(k) (5.24)

for k ∈ Ω. Moreover, if Γ+ and Γ− can be deformed into the same contour Γ ⊂ Ω, with Γ
above the singularities of f̄+(k) and below the singularities of f̄−(k), as illustrated in figure
5.3, then

f(x) =
1

2π
−
∫

Γ
f̄(k)e−ikx dk. (5.25)

Note that we need Γ to extend from Re k = −∞ to Re k = +∞ and {aj} ∩ {bj} to be empty,
i.e. no singularities are shared by f̄+(k) and f̄−(k).

Example. Fourier transform of the Heaviside function The Heaviside function

H(x) =

{
0 x < 0,

1 x > 0,
(5.26)

has Fourier transform

H̄(k) =

∫ ∞

0
eikx dx =

[
eikx

ik

]∞

0

=
i

k
(5.27)

provided Im k > 0. We can analytically continue H̄(k) into C\{0} because i/k is holomorphic
except for a simple pole at k = 0. When we invert, the inversion contour must pass above the
pole at k = 0:

H(x) =
i

2π

∫ ∞+iα

−∞+iα

e−ikx

k
dk, where α > 0. (5.28)

If x < 0 we can close the contour in the upper half plane to find by Cauchy’s Theorem that
H(x) = 0 for x < 0. For x > 0 we need to close the contour in the lower half plane, and we
pick up a residue contribution from the pole at the origin (note the minus sign since we are
integrating clockwise round the pole) to find

H(x) = −2πi×
(

i

2π

)
= 1 for x > 0. (5.29)

The inversion contours for x > 0 and x < 0 are illustrated in Figure 5.4.
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Example:

We have seen that

H̄(k) =

∫ ∞

0
eikx dx =

[
eikx

ik

]∞

0

= − 1

ik
providing Im(k) > 0.

Thus when we invert the inversion contour must have Im(k) > 0:

H(x) = − 1

2πi

∫ ∞+iα

−∞+iα

e−ikx

k
dk.

Now, if x < 0 we can close the contour in the upper half plane to find by Cauchy’s Theorem
that H(x) = 0 for x < 0. For x > 0 we need to close the contour in the lower half plane, and
we pick up a residue contribution from the pole at the origin [note the minus sign since we
are integrating clockwise round the pole] to find

H(x) = −2πi ×
(

− 1

2πi

)
= 1 for x > 0.

Re(k)

Im(k)

In fact, you have seen this idea before:

Laplace transforms

When we set k = ip (p complex), f̄+(k) = f̂+(p) we get

f+(x) =
1

2πi

∫ α+i∞

α−i∞
f̂+(p)epx dd

where

f̂+(p) =

∫ ∞

0
f+(x)e−px dx,

which is just the Laplace transform and inversion formula. Now α must be sufficiently large
that the inversion contour lies to the right of any singularities of f̂(p).

So Laplace transforms are just a special case of Fourier Transforms if you allow complex
k.

5

Figure 5.4: The inversion contours for the Heaviside function. For x < 0 we close in the upper
half-plane; for x > 0 we close in the lower half-plane, picking up the residue from the pole at
k = 0.

The Laplace transform

If we set k = ip (with p complex) and f̄+(k) = f̂+(p), then the Fourier transform (5.18) takes
the form

f̄+(k) = f̂+(p) =

∫ ∞

0
f+(x)e−px dx, (5.30)

while the inversion formula (5.22) is transformed to

f+(x) =
1

2πi

∫ α+i∞

α−i∞
f̂+(p)epx dp. (5.31)

Equation (5.30) defines the Laplace transform of a function f+(x) : [0,∞) 7→ R such that
f+(x) = O (ecx) as x→∞. Equation (5.31) is the Laplace transform inversion formula, where
now α must be sufficiently large that the inversion contour lies to the right of any singularities
of f̂(p), as illustrated in Figure 5.5. So we see that the Laplace transform is just a special
case of the Fourier Transform if we allow complex values of k.

5.3 Complex Fourier transform with multifunctions

Example. Find a function u(x, y) which satisfies Laplace’s equation in the upper half-plane
y > 0, which is bounded as x2 + y2 → ∞ and which is equal to the Heaviside function on
y = 0, that is u(x, 0) = H(x).

Solution. As we will see, it is straightforward to spot the appropriate harmonic function
u(x, y), but the aim of this example is to illustrate the solution procedure using the complex
Fourier transform. The Fourier transform of u(x, y) satisfies the problem

∂2ū

∂y2
− k2ū = 0 in y > 0, (5.32a)

ū = H̄(k) =
i

k
at y = 0, (5.32b)

|ū| <∞ as y →∞. (5.32c)
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Re(p)

Im(p)

α − i∞

α + i∞

Lecture 10

Integral solutions of differential equations

Consider the differential equation
dy

dx
= xy.

Suppose we represent the solution as an integral

y(x) =

∫

Γ
g(ζ)exζ dζ

around some contour Γ. Then

dy

dx
= xy ⇔

∫

Γ
ζg(ζ)exζ dζ =

∫

Γ
xg(ζ)exζ dζ

=

∫

Γ

d

dζ

(
g(ζ)exζ

)
− g′(ζ)exζ dη

=
[
g(ζ)exζ

]
Γ

−
∫

Γ
g′(ζ)exζ dη.

Thus we will have a solution to the equation if

g′ = −ζg

and the change in gexζ around Γ is zero. This gives

g = Ce−ζ2/2,

6

Figure 5.5: The Laplace transform inversion contour passes to the right of all singularities
in f̂+(p).

We recall that the Fourier transform H̄(k) is defined for Im k > 0 and can be analytically
extended onto C \ {0}.

As we found in equation (5.11), the general solution to (5.32a) which does not grow
exponentially as y →∞ is C(k)e−|k|y if k is real. When k ∈ C, this approach does not work,
since |k| is not a holomorphic function of k so that none of the tools of complex analysis (e.g.
Cauchy’s theorems) can be used for the Fourier inversion.

To avoid this difficulty, we approximate k by a function that is holomorphic in a neigh-
bourhood of the real k-axis, namely

|k| ≈ |k|ε =
(
k2 + ε2

)1/2
, (5.33)

where 0 < ε � 1. The branch of this multifunction is chosen such that the branch cuts are
along the imaginary k-axis on the intervals (−i∞,−iε] and [iε, i∞), as shown in Figure 5.6, and(
k2 + ε2

)1/2
=
√
k2 + ε2 > 0 when k is real. Then |k|ε defines a function that is holomorphic

on the cut complex plane, and |k|ε → |k| as ε→ 0 when k is real.
Using this approximation, we write the solution for ū as

ū(k, y) =
i

k
e−y(k

2+ε2)
1/2

. (5.34)

Note that the solution (5.34) corresponds to solving the modified Helmholtz equation

∇2u = ε2u (5.35)

instead of Laplace’s equation. The idea now is to invert (using contour integration) to find
u(x, y), and then let ε→ 0. The inversion formula (5.22) gives

u(x, y) =
i

2π

∫

Γ
e−y(k

2+ε2)
1/2−ikx dk

k
, (5.36)

where the inversion contour Γ passes between the pole at k = 0 and the branch point at k = ε,
as shown in Figure 5.6. Now the contour used to evaluate u(x, y) depends on the sign of x.

If x is negative, then to ensure that the exponential in (5.36) decays at infinity, we close
the integration contour in the upper half-plane, as illustrated in Figure 5.7(a). This results
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Figure 5.6: Inversion contour for (5.36) passing between the pole at k = 0 and the branch

point at k = ε. The branch cuts for the multifunction
(
k2 + ε2

)1/2
are on the intervals

(−i∞,−iε] and [iε, i∞) along the imaginary k-axis.

in two integrals along either side of the branch cut, which may be parameterised using k = it

with t ∈ (ε,∞) and
(
k2 + ε2

)1/2
= ±i

√
t2 − ε2 on k = it±0. The resulting integrals may then

be combined to give

u(x, y) =
1

π

∫ ∞

ε
sin
(
y
√
t2 − ε2

)
etx

dt

t
for x < 0. (5.37)

Letting ε→ 0, we find

u(x, y) =
1

π

∫ ∞

0
sin (yt) etx

dt

t
=

1

π

∫ ∞

0
sin (r sinα) e−r cosα dr

r
for x < 0, (5.38)

where sinα = y/
√
x2 + y2 and cosα = −x/

√
x2 + y2. By applying Cauchy’s Theorem to the

function e−z/z on the closed contour sketched in Figure 5.8, we obtain

lim
ε→0

{∫ ∞

ε

e−x dx

x
−
∫ ∞

ε
e−r cosα

[
cos(r sinα)− i sin(r sinα)

] dr

r
− iα

}
= 0, (5.39)

and the imaginary part gives
∫ ∞

0
e−r cosα sin(r sinα)

dr

r
= α. (5.40)

Therefore the integral in (5.38) may be evaluated to give the solution

u(x, y) =
1

π
tan−1

(
y

−x

)
for x < 0. (5.41)
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(a) (b)

Figure 5.7: Inversion contours for (5.36). (a) If x < 0 the contour is closed in the upper
half-plane. (b) If x > 0 the contour is closed in the lower half-plane, picking up the residue
from the pole at k = 0.

If x is positive, then we evaluate (5.36) by closing the integration contour in the lower
half-plane, as illustrated in Figure 5.7(b). This time we get two integrals along either side
of the branch cut on the negative imaginary k-axis, as well as the residue from the pole at
k = 0, resulting in

u(x, y) = 1− 1

π

∫ ∞

0
sin (yt) e−xt

dt

t
= 1− 1

π
tan−1

(y
x

)
for x > 0. (5.42)

Finally, combining the solutions (5.41) and (5.42) in x < 0 and x > 0, we see that the
solution is simply

u(x, y) = 1− θ

π
, (5.43)

where θ is the usual polar angle. As pointed out earlier, we might have spotted this simple
solution of Laplace’s equation straight away, either by using polar coordinates or by writing
it as 1− 1/π Im(log z).

5.4 Integral solutions of differential equations

Now we show how a class of linear ordinary differential equations may be solved by a gen-
eralised complex Fourier transform. We illustrate the general method using the simple first-
order differential equation

dy

dx
= xy. (5.44)

Our aim is to represent the solution as a generalised Fourier integral

y(x) =

∫

Γ
g(ζ)exζ dζ, (5.45)
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Figure 5.8: Closed contour for the integral of e−z/z.

where both the function g(ζ) and the integration contour Γ are to be determined.

By differentiating under the integral sign and then integrating by parts, we get

0 =
dy

dx
− xy

=

∫

Γ

(
ζg(ζ)− xg(ζ)

)
exζ dζ

=
[
−g(ζ)exζ

]
Γ

+

∫

Γ

(
ζg(ζ) + g′(ζ)

)
exζ dζ. (5.46)

We require this equation to be satisfied for all x, and also the integration contour Γ to be
independent of x. It follows that we will have a solution to the differential equation (5.44)
only if

g′(ζ) = −ζg(ζ) (5.47)

and the change in g(ζ)exζ around Γ is zero. Integration of (5.47) gives

g(ζ) = Ce−ζ
2/2, (5.48)

for some constant C, and hence

y(x) = C

∫

Γ
exζ−ζ

2/2 dζ. (5.49)

For the integral to exist, we need the integrand to decay as |ζ| → ∞, which is true provided
Re
[
ζ2
]
> 0, which occurs in two sectors −π/4 < arg ζ < π/4 and 3π/4 < arg ζ < 5π/4. Thus

the contour Γ must start and end in one of these “valleys”. If Γ starts and ends in the same
valley the integral (5.49) evaluates to zero by Cauchy’s Theorem. Thus there is just one
independent solution, corresponding to a contour Γ which starts in one valley and ends in
the other, as shown in Figure 5.9. For example, we can simply take Γ along the real axis to
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Figure 5.9: A possible integration contour Γ for equation (5.49).

obtain

y(x) = C

∫ ∞

−∞
exξ−ζ

2/2 dξ = Cex
2/2

∫ ∞

−∞
e−(x−ξ)2/2 dξ = C

√
2π ex

2/2. (5.50)

Of course we could easily have found the solution (5.50) directly from the first-order ODE
(5.44). The method becomes more useful when applied to higher-order ODEs which are not
directly solvable in terms of elementary functions. For example, consider Airy’s equation

d2y

dx2
+ xy = 0. (5.51)

We again seek a solution for y(x) in the form of the generalised Fourier integral (5.45), and
again differentiate under the integral and integrate by parts, this time arriving at

[
g(ζ)exζ

]
Γ

+

∫

Γ

(
ζ2g(ζ)− g′(ζ)

)
exζ dη = 0. (5.52)

Hence, Airy’s equation (5.51) is satisfied only if

g′(ζ) = ζ2g(ζ) and
[
g(ζ)exζ

]
Γ

= 0. (5.53)

Thus, g(ζ) = Ceζ
3/3, where C is an arbitrary constant, and

y(x) = C

∫

Γ
exζ+ζ

3/3 dζ. (5.54)

Now the integrand decays at infinity in three sectors: either π/6 < arg ζ < π/2, or
5π/6 < arg ζ < 7π/6, or −π/2 < arg ζ < −π/6. Therefore, the integration contour Γ should
start and end as ζ → ∞ in one of these sectors. Since the integrand in (5.54) is entire, the
integral will be nonzero only if Γ begins and ends in two different sectors. Therefore there are
three possibilities for Γ, as shown in Figure 5.10, leading to three distinct solutions for y(x).
However, by contour deformation we can write

∫

Γ1

exζ+ζ
3/3 dζ +

∫

Γ2

exζ+ζ
3/3 dζ =

∫

Γ3

exζ+ζ
3/3 dζ, (5.55)

so there are only two independent solutions, as expected for the second-order linear ODE
(5.51).
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Figure 5.10: Three integration contours for Airy’s equation.

This method is equivalent to formally taking a Fourier transform of the equation, and then
choosing an inversion contour so that the resulting solution exists. Note that if there was a
coefficient of x2 in the ODE, then integration by parts would lead to a second-order ODE for
g(ζ), which might be just as hard to solve as the original ODE for y(x). The coefficient of x
in the Airy equation (5.51) produced a first-order ODE (5.53) for g(ζ) and thus apparently a
single integral solution (5.54). However, the freedom in the choice of the integration contour
Γ gave us the required two independent solutions.


