C5.4 Networks

R. Lambiotte

Network Science provides generic tools to model and analyse systems in a broad range of disciplines, including
biology, computer science and sociology. This course aims at providing an introduction to this interdisciplinary
field of research, by integrating tools from graph theory, statistics and dynamical systems. Most of the topics
to be considered are active modern research areas. This is a mathematical course, with theoretical results and
derivations, but with real-world applications in mind, as will be stressed at different points of this manuscript.
Several parts of these notes are based on the introductory chapters of ” A guide to temporal networks”, N.

Masuda and R. Lambiotte, World Scientific 2016.
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I. MOTIVATION

Graphs and networks have a long history, dating to the
seminal works of Euler and the famous story of the seven
bridges of Konigsberg. Since then, networks have become
a central toolbox in a range of disciplines, from social sys-
tems to the Web, passing by neuroscience. Within the
framework of Network Science, a system is modeled as
a set of nodes, representing the individual units of the
system, and a set of links, representing the dyadic rela-
tionships between these units. Once this abstraction has
been operated, standardized tools can then be applied to
otherwise very different systems.

There exist many libraries and software to analyse and
visualise networks. It is important to emphasise here
that the main aim of this course is not to learn how to
use these tools (even if you are expected to learn how
to use them along the way), but to understand the prin-
ciples behind them. In this spirit, tutorials will cover a
mixture of analytical problems and computational ones.
For the latter, useful libraries to manipulate networks
are NetworkX and iGraph. For network visualisation,
Gephi is a popular solution. For those interested in solv-
ing the problems in Python, the installation of jupyter
notebooks (and standard Python libraries) can be found
here: http://jupyter.org/install.html . Note that prob-
lem sheets can be solved in the language of your choice
and that libraries are ported in a variety of languages
(including Matlab, C, C++, etc.).

First, one should keep in mind that a network, for in-
stance a social network, is only an abstraction of the
original social system, because it simplifies the essence
of a social interaction by a binary value (exists or not),
without accounting for the richness of social interactions,
with different intensities (je l'aime un peu, beaucoup,
etc.) and different natures (my friends are not my en-
emies; acquaintances are not the same as family mem-
bers, etc.). One should also keep in mind that most
network measurements are subject to measurement er-
rors and missing data, and it is thus important to ensure
that observations are robust to noise. See for instance
”Subnets of scale-free networks are not scale-free: Sam-
pling properties of networks”, by Michael P. H. Stumpf,
Carsten Wiuf and Robert M. May for a discussion. With
these caveats in mind, here are some problems that we
should be able to solve at the end of this course:

e Quantify the structural properties of nodes, for in-
stance to estimate their importance or their cen-
trality.

e Quantify the structure of networks, in particu-
lar their connectivity patterns and their statistical
properties.

e Build random models of networks, in order to test
the importance of structural factors and develop
statistical tests.

FIG. 1. Map of Konigsberg in Euler’s time showing the ac-
tual layout of the seven bridges, highlighting the river Pregel
and the bridges. Graphs can be used to remove unnecessary
(geographical) details, in order to highlight the connectivity
patterns between different areas. Taken from Wikipedia.

FIG. 2. Graphical representation of the network structure
of the Internet (nodes are ”Class C subnets”), the seminal
sociogram of Moreno (nodes are kids in a primary school),
a functional brain network (nodes are brain regions) and a
foodweb (nodes are competing species).

e Extract groups of similar nodes, such as social cir-
cles, that is cluster the nodes into communities or
modules.

e Identify the structural properties that affect the
function and dynamics of the system, for instance
the spreading of information or of a virus on the
network.

We illustrate in Figure 3 such results on the so-called
Zachary Karate-Club network, representing the social in-
teractions between members of a Karate club, and one of
the most studied networks due to its small size and to its
so-called community structure.

Practical organisation: I plan to cover the material
of one chapter per lecture. As you will see, there are
suggested problems at the end of several sections. There
will be a strong overlap between them and those of the
problem sheets.
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FIG. 3. First two figures: graphical representation fo the so-
called Karate Club network. Node colors correspond to the
node degree and its participation in a community, as esti-
mated by the Louvain algorithm respectively. In the bottom
figure, visualisation of a realisation of an Erdés-Rényi with
the same original connectivity than the original network.

Il. READING LIST

There exist several books and reviews covering differ-
ent aspects of network science and graph mining. Here
is a non-exhaustive list covering some aspects covered in
this course.

e Solid piece of work on spectral properties of net-
works:  Spectral Graph Theory, Chung, F.R.K.
(1997, American Mathematical Society, Provi-
dence).

e Comprehensive book on networks. Excellent entry
point: Networks — An Introduction, Newman, M.
E. J. (2010). (Oxford University Press, Oxford).

e Review on epidemic spreading on networks: Epi-
demic processes in complex networks, Pastor-
Satorras, R., Castellano, C., Van Mieghem, P. and
Vespignani, A. (2015), Reviews of Modern Physics
87, pp. 925-979.

e Bible of random networks: Random Graphs, Second
Edition, Bollobds, B. (2001, Cambridge University
Press, Cambridge).

e Exhaustive review of community detection on net-
works: Community detection in graphs, Fortunato,
S. (2010). Physics Reports 486, pp. 75-174.

e Nice introductory book on the computational as-
pects of Pagerank: Google’s PageRank and beyond:
The Science of Search Engine Rankings, Langyville,
A. N. and Meyer, C. D. (2006, Princeton University
Press, Princeton).

e Short overview of recent on dynamics on net-
work: Dynamical systems on networks: A tutorial,
Porter, M. A. and Gleeson, J. P. (2014), Preprint:
arXiv:1403.7663v2.

e Recent book with a focus on kernels methods and
similarity measures: Algorithms and Models for
Network Data and Link Analysis, Frans Fouss,

Marco Saerens, Masashi Shimbo (2016, Cambridge
University Press)

In addition, for the reader interested to know more on
power-laws:

e Newman, M. E. J. (2005). Power laws, Pareto dis-
tributions and Zipf’s law, Contemporary Physics
46, pp. 323-351.

e Clauset, A., Shalizi, C. R. and Newman, M. E. J.
(2009). Power-law distributions in empirical data,
SIAM Review 51, pp. 661-703.

and, for an introduction to stochastic processes, I would
recommend:

e Feller, W. (1971). An Introduction to Probabil-
ity Theory and Its Applications, Volume II, Second
Edition (John Wiley & Sons).

e Klafter, J. and Sokolov, I. M. (2011). First Steps
in Random Walks — From Tools to Applications
(Oxford University Press, Oxford).

e P.L. Krapivsky, S. Redner, A Kinetic View of Sta-
tistical Physics, Boston University, E. Ben-Naim,



1. MATHEMATICAL TOOLBOX

In this section, we introduce mathematical tools used
in the subsequent chapters. They are a collection of ele-
mentary probability theory and linear algebra, and some-
what advanced materials on stochastic processes.

A. Probability
1. Discrete variables

A random variable is a variable that takes its value
stochastically. A discrete random variable X is defined
on a set S of possible values x such that p(x) > 0 for any
v € Sand ) gp(x) =1, where p(x) is the probability
that X takes value x; we use p to denote the probability
throughout these notes. A common example is a fair dice
for which S = {1,2,3,4,5,6} and p(x) = 1/6 for each
x € S. If one throws the dice many times, the fraction
of times with which one observes 1 tends to 1/6.

A probabilistic event is specified by a certain subset of
possible values in X. In the previous example, the event
that a dice produces an odd number is represented as
the event X € {1,3,5}. When two events X; and X are
mutually exclusive, i.e., no value x belongs to both sets,
we obtain

p(X1 or Xy) = p(X1) + p(X2). (1)

Information about one event may inform the proba-
bility of another event. For instance, knowing that the
dice produces an odd number increases the probability
of X = 1 and decreases the probability of X = 2 to
zero. Such information is quantified by the conditional
probability. The conditional probability of X given Y is

p(X and Y)
p(Y)

By swapping X and Y in Eq. (2), we obtain p(Y|X) =
p(X and Y)/p(X). By combining this equation with
Eq. (2), we obtain the Bayes rule for conditional proba-
bilities:

p(X[Y) = (2)

p(Y[X)p(X)
p(Y)
Two events X and Y are said to be independent if the

probability that X occurs is not affected by whether Y
has occurred and vice versa. In other words,

p(X[Y) = 3)

p(X[Y) = p(X[not Y) = p(X). (4)

When two events are independent, the probability that
both events occur is the product of the probabilities that
each event occurs, i.e.,

p(X and Y) = p(X)p(Y). (5)

In terms of the values of X and Y, we obtain

p(z,y) = p(x)p(y), (6)

where p(x,y) is the joint probability that X = z and
Y = y. The marginal distribution, i.e., the probability
that X = x regardless of the value of Y, is obtained by

p(e) = 3 pla.y). (@)

In principle, the random variable X can be either nu-
merical (e.g., 1,2,3) or non-numerical (e.g., white, red,
black). In the former case, mostly relevant in these notes,
there exist different types of tools to characterise its prop-
erties. For instance, the expected value, or average, is
defined as

(@) =) ap(x). (8)

We use (-) to denote the mean throughout these notes.
The nth moment of X is defined by

(@) = a"p(x), 9)

where n is typically a positive integer, generalising
Eq. (8). The second moment (z?) is related to the vari-
ance as follows:

0% ={(z = (2))?) = (=*) - ()?, (10)

where o is the standard deviation. Moments can be gen-
eralised to the case of multiple random variables, often
to evaluate correlations between them. A familiar mea-
sure of linear dependence between two variables is the
Pearson correlation coefficient defined by

oy = LE =@ W) )
Ox0y

where ox and oy are the standard deviations of X and
Y, respectively.

Here is a short list of frequently used discrete distribu-
tions:

1. The Bernoulli distribution takes only two possible
values, 0 or 1, i.e., failure or success, with proba-
bilities 1 — p and p respectively. The mean (z) = p
and the variance 02 = p(1 — p).

2. The binomial distribution describes the outcome of
n independent and identically distributed random
variables generated by the Bernoulli distribution
with parameter p. The probability that exactly m
successes are observed is given by

o) = (1 )omca=o (12)



where 0 < m < n. Note that p™(1 — p)"~™ is the
probability that a particular sequence containing
exactly m successes is realised, and

() = (13

is the number of sequences of length n that possess
exactly m successes. We obtain (m) = np and 0 =

np(1 — p).

3. The geometric distribution is defined via the wait-
ing time before a success is observed, in a sequence
of independent and identically distributed random
variables obeying the Bernoulli distribution. The
geometric distribution is defined as

p(m) = (1 —p)"p, (14)

where m = 0,1,.... The factor (1 — p)™ corre-
sponds to m consecutive failures, and p to the suc-
cess on the (m + 1)th trial. We obtain (m) =

(1—p)/p and 0 = (1 — p)/p*.

4. The Poisson distribution is given as the limit of the
binomial distribution as n — oo while the mean
np tends to a constant A (therefore p — 0). The
Poisson distribution is given by

mre=?

p(m) = , (15)

m!

We obtain (m) = o2 = \.

where m =0,1,....

2. Continuous variables

Continuous random variables describe variables that
take any value in a continuum of values, typically any real
values or non-negative real values. Continuous random
variables are set by their probability density function,
f(@)(> 0), defined such that the probability of observing
any value between a and b is equal to

b
pla< X <b)= / F@)ds, (16)

where [%_ f(z)dz = 1.

Most operations for discrete random variables are eas-
ily transferred to continuous random variables via re-
placement of sums by integrals. For instance, the joint
probability density function f(z,y) for continuous ran-
dom variables satisfies

b d
pesX<besy<d= [ [ fydey a7

The moments of the distribution are given by

(™) = /00 2" f(z)d. (18)

If two random variables are independent, their joint dis-
tribution factorises into the product of their marginals:

fx,y) = f(2)f(y). (19)

Finally, it is often practical to focus on the cumulative
probability F'(x), defined as the probability that the vari-
able takes a value smaller than z:

F(z) = /jc f(z')da'. (20)

By definition, F(—o00) = 0 and F(c0) = 1. We also
often use the complementary cumulative probability, also
called the survival probability or survival function, given
by

o0
Plz) = / F@)de' = 1— F(z). (21)
x
Classical distributions for continuous random variables
include the following ones:

1. The uniform distribution takes a constant proba-
bility on interval [a, b], i.e.,

1
b—a
We obtain (z) = (b—a)/2 and 02 = (b —a)?/12.

(a <a<b). (22)

2. The exponential distribution is defined by
f(x)=Xxe™® (z>0). (23)
Its cumulative distribution is given by
Fx)=1—e* (z>0). (24)
We obtain () = 1/ and o2 = 1/A2.
3. The Gaussian or normal distribution is defined by

1 _@-w?
e 202

fa) = (~oc<a <o),  (25)

2mo

where p is the average and o2 is the variance. The
Gaussian distribution exhibits a bell shape. The
Gaussian distribution can been seen as a continu-
ous limit of the binomial distribution. The bino-
mial distribution with n trials, each with probabil-
ity p, converges to the Gaussian distribution with
mean np and variance np(1 — p) owing to the cen-
tral limit theorem. In particular for this reason,
the Gaussian distribution is frequently observed in
empirical data.
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FIG. 4. Homogeneous and non-homogeneous Poisson pro-
cesses. (a) An event sequence generated by the (homoge-
neous) Poisson process with A = 5. (b) An event sequence
generated by the non-homogeneous Poisson process with the
sinusoidal rate shown in (c), i.e., A(t) = 5(1 + sin 27t).

B. Renewal processes

Let us consider a system where events take place in a
discrete and apparently random fashion. Those events
may be emails arriving in a mail box, or atoms collid-
ing in a gas. Such systems are often modelled, as a first
order approximation, by a Poisson process, also called
the homogeneous Poisson process. The Poisson process
assumes that the events are independent of each other,
that the rate at which the events take place is constant
over time and that time is continuous. These assump-
tions are often violated in empirical data. For instance,
in the case of emails, their reception certainly depends
on the time of the day and on the day of the week. In
addition, emails are often not independent processes; an
email may trigger a discussion thread between two users,
causing a cascade of emails. Yet, the Poisson processes
are advantageous in their simplicity, which allows us to
exactly calculate their properties and make them serve
as a baseline model.

The Poisson process is defined as follows. Consider a
time window of duration At and the probability ¢ that an
event takes place within time At. By definition, the event
rate is given by A = ¢/At. A Poisson process is specified
by the rate A for infinitesimally small A¢t. For A to be
well-defined, ¢ — 0 must be satisfied as At — 0. Con-
sistent with this requirement, we do not allow multiple
events to occur in a time window when At is sufficiently
small. An event sequence generated by a Poisson process
is shown in Fig. 4(a).

Let us derive two key properties of Poisson processes:

(1) The distribution of inter-event times, i.e., time be-
tween consecutive events: Let p(n,t) be the probability
of observing n events in time window [0, ¢]. By definition,

we obtain

1—q=p(0,At) =1 — M\At, (26)

when At (and hence ¢) is small. For any n > 1, we obtain

p(n,t+ At) =p(n, t)p(0, At) + p(n — 1,t)p(1, At)
=p(n,t)(1 — AAt) + p(n — 1,t)\AL.  (27)

Equation (27) holds true because, if there are n events in
time window [0, ¢ + At], either there are n events in [0, ¢]
and no event in [¢,t + At], or there are n — 1 events in
[0,t] and one event in [t, ¢+ At]. This equation relates the
probability of a system at a certain time to that at a pre-
vious time, and hence is an example of master equation,
which we will encounter many times in the following.
In the limit At — 0, Eq. (27) is reduced to

dp(n,t)

Tar = Ap(n - 17t) - Ap(na t)' (28)
For n = 0, we obtain
dp(0,1)
= —Ap(0,t 29
i p(0, 1), (29)
which results in
p(0,1) = e M. (30)

To derive Eq. (30), we have used the initial condition
p(0,0) = 1, i.e., no event has occurred at t = 0. Because
p(0,t) is equal to the probability that no event occurs in
[0,t], the probability that the first event occurs in [, +
At] is given by p(0,t)—p(0,t+At). Equation (30) implies
that the inter-event time between two consecutive events,
denoted by 7, is distributed according to

dp(0, 7
P(T) = _dp(0,7) = e M. (31)
dr
The inter-event time of a Poisson process is distributed
according to the exponential distribution. The mean
inter-event time is given by

(r) = /0(X> TY(r)dT = % (32)

In Poisson processes, different inter-event times 7 are
independent of each other because event times before the
last event time ¢ do not affect the time 7 to the next event
since t. This property is called the renewal property of
a Poisson process. Poisson processes satisfy a stronger
property, i.e., having no memory in the sense that

p(T > t1 + ta|T > ta) = p(T > t1). (33)

Equation (33) indicates that the length of time, ¢o, for
which we have waited, actually without an event, does
not affect the time of the next event. The time to the



next event starting from ¢ = ¢, i.e., t1, is independent of
t2 and obeys 1 (t1).

(2) The distribution of the number of events observed
within a given time window: Using Eq. (28) recursively,
we obtain

(’\;;) . e~ M (34)

p(n,t) =

for any n > 0. Therefore, the probability of observing n
events in [0,¢] obeys the Poisson distribution with mean
and variance equal to Af. As discussed in Section IITA 1,
the Poisson distribution is a limiting case of the binomial
distribution when the number of trials is very large and
the expected number of successes remains fixed. This
interpretation is consistent with the discrete-time formu-
lation of the Poisson process because in [0,t], there are
t/At trials in each of which an event occurs with small
probability g. Therefore, the number of events in [0, ¢] is
distributed according to the binomial distribution whose
mean is equal to (t/At) X ¢ = At.

A method to generate an event sequence obeying a
Poisson process is to generate events one by one by in-
dependently drawing the inter-event time 7 according to
Eq. (31). An alternative method when the final time
tmax 18 specified is to first draw the number of events
n in [0, tmax] according to the Poisson distribution with
parameter Atyax. Then, distribute each of the n events
independently and uniformly on [0,¢y.x]. The second
method exploits the memoryless property of Poisson pro-
cesses.

Let us introduce two extensions of Poisson processes.
The first is non-homogeneous (also called inhomoge-
neous) Poisson processes, in which the event rate A(t)
is time-dependent. In other words, an event occurs in
[t,t + At] with probability A(¢)At¢. This model is moti-
vated by the fact that event rates seem to vary over time
in a majority of empirical data. An event sequence gen-
erated by a non-homogeneous Poisson process is shown
in Fig. 4(b). In this example, the rate is modulated sinu-
soidally as shown in Fig. 4(c). For a non-homogeneous
Poisson process, Eq. (34) is extended as

A" oA
n!

p(na t) = ) (35)

where

A(t) = /0 t A(t)dt'. (36)

The distribution of inter-event times, conditioned by the
last event at t = 0, is given by

d(r) = A(m)e ), (37)

which extends Eq. (31). It should be noted that Eq. (37)
is properly normalised, i.e., fooo P(r)dr = 1.

The second extension of Poisson processes, called re-
newal processes, considers a general distribution of inter-
event times, ¢(7). The renewal property dictates that

different inter-event times are independent of each other
and drawn from the same distribution (7). When
¥(T) = Xe” ", we recover a Poisson process. When

(1) = 6(7 — 1), events periodically happen at all integer
times. To obtain the time of the nth event or the number
of events in a given time period, we need to sum inde-
pendent random variables generated according to (7).
In that case, it is convenient to study the problem in a
frequency domain and to consider the Laplace transform,
related to the Fourier transform defined below.

C. Random walks and diffusion

The Poisson processes provide a basic model for mod-
elling temporal events, i.e., when random events take
place. Random walk processes are its counterpart for
modelling trajectories in space, i.e., when and where ran-
dom events take place. Random walk processes are a
standard tool to emulate diffusion on networks and also
to extract information from the structure of networks, as
we will show later. In this section, we derive some ba-
sic properties of random walk processes in their simplest
setting, when they take place on a one-dimensional space
(i.e., line) in discrete time.

In each discrete time step, a walker performs a jump
whose length and direction are random variables. The
probability density of transition is denoted by f(r). In
other words, the probability that the walker located at
x arrives in the interval [x 4+ r,2 4+ r + Ar] in one jump
is equal to f(r)Ar. The normalisation condition is given
by [ f(r)dr =1.

Our aim is to derive the density of the probability den-
sity that the walker is located at x after ¢ steps, denoted
by p(x;t). Under the assumption that jumps are inde-
pendent events, we obtain the following master equation:

i) = [ T - pit - DA (39)

because the probability of visiting x at time ¢ is the prob-
ability of having visited z’ at time ¢ — 1 and performing
a jump of displacement z — x’.

Equation (38) for the entire range of x is more easily
solved in the Fourier domain. The Fourier transform is
defined by

s = [ " plast)e e, (39)

The original function is recovered through the inverse
Fourier transform given by

1 [ :
i) = — p(k; t)e™ dk. 4
p(at) = 5 /_oop( ite (40)



Probability p(z;t) is thus a combination of the oscillatory
functions e***, which form a base in the space of func-
tions. The Fourier mode p(k;t) is the projection of p(x;t)
onto this base. The Fourier transform of f(z), f(k), is
called the structure function of the random walk. The
Taylor expansion around k£ = 0 yields

ki) ()
1 — k) — %k2<w2> LO0S).  (41)

Equation (41) implies that the moments of p(z;t) are
obtained from the derivatives of p(k;t) at k = 0.

The Fourier transform transfers a convolution, such
as Eq. (38), to a product. For this reason, working in
the Fourier domain is often recommended when deal-
ing with problems involving summations of random vari-
ables. Equation (38) is equivalent to

pkst) = f(k)p(k;t — 1). (42)

If the walker is initially located at x = 0, such that
p(z;0) = 6(x), which translates to p(k;0) = 1, we ob-
tain

slkit) = [F0)] (43)

Using the inverse Fourier transform (Eq. (40)), the formal
solution of the random walk in the time domain is given
by

1 o0 a t ik
st =5 [ [f®)] etan
2r J_

This solution generally depends on the details of the
structure function, f(k). However, the asymptotic be-
haviour of the random walk as t grows only depends on
some of its properties. When the first two moments of
the structure function are finite, the solution converges
to the Gaussian profile

p(;t) = ( : —b (45)

27 Di)1/2°

with a variance growing linearly with time.

D. Power-law distributions

We have seen the emergence of two types of distribu-
tions in stochastic processes, the exponential distribution
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FIG. 5. Left: histogram of the populations of all US cities
with population of 10 000 or more. Right: another histogram
of the same data, but plotted on logarithmic scales. The
approximate straight-line form of the histogram in the right
panel implies that the distribution follows a power law. Data
from the 2000 US Census.. Taken from Adamic, Lada A.
” Zipf, power-laws, and pareto-a ranking tutorial.” Xerox Palo
Alto Research Center, Palo Alto, CA, http://ginger. hpl. hp.
com/shl/papers/ranking/ranking. html (2000).

in the case of Poisson processes, and the Gaussian dis-
tribution in the case of random walk processes. Another
type of distribution, i.e., power-law distribution, plays
a central role in network science and in the theory of
complex systems in general. In this section we overview
properties of power-law distributions and raise some flags
in order to properly use them when modelling complex
systems.

We explain a power-law distribution for continuous
variables, keeping in mind that most of the observations
generalise to the case of discrete variables. Consider the
Pareto distribution given by

p(x) =Cx™® (x> Tmin), (46)
where « is the power-law exponent of the distribution,
Zmin(> 0) is the minimum value taken by the random
variable and C' = (o — 1)2%! is the normalisation con-
stant respecting

Czx~ %z =1 (47)

ZLmin

Other power-law distributions are by definition asymp-
totically (i.e., for large ) the same as Eq. (46) up to a
normalisation constant.

Power-law distributions mainly differ from the expo-
nential and Gaussian distributions by the significant
mass of probability carried by their tail, i.e., large val-
ues of z. The exponential and Gaussian distributions
have a characteristic scale such that the probability of
observing instances many times larger than this scale is
negligible. In contrast, under a power-law distribution,
a vast majority of instances exhibits small values while
few but non-negligible instances produce very large val-
ues. Power-law distributions are associated with a broad
heterogeneity in the system and are said to have a fat or
long tail, because the tail of the distribution is much more



populated than in exponential-like distributions. Power-
law distributions are typically found in the wealth of in-
dividuals, populations of cities, the frequency of words
in text, sales of books and music, citations that a scien-
tific paper receives and so forth. Since the advent of the
Pareto distribution and the associated Zipf’s law, power-
law distributions have been studied over a century. We
stress that fat tails are also present in distributions with-
out a power-law tail. Examples include stretched expo-
nential distributions and log-normal distributions.

The moments of power-law distributions are given by

OC -1
By — Bp(z)de = — 2= 48
(z7) /I a’p(x)dz o —1_ " min

min

B<a-—-1).

(48)
The moments for § > o — 1 are divergent. In partic-
ular, the mean () does not exist for 1 < a < 2, and
the variance does not exist for 2 < o < 3. These fea-
tures impact various structural and dynamical properties
of complex systems including networks, as we will see
throughout these notes. When a < 1, the distribution
is ill-defined because f;jin p(x)dx is divergent such that

p(z) cannot be normalised. When a moment, (z*), di-
verges, its empirical measurement diverges as the number
of samples increases and (2?) with 3 only slightly smaller
than o — 1 converges very slowly. Both the divergence
and slow convergence of moments are due to the appear-
ance of extreme values. For example, the sample mean
for the power-law distribution with o = 2 diverges as we
accumulate samples.

In a majority of empirical data, the distribution can be
close to Eq. (46) only in a certain range of the variable.
However, key observations such as the divergent moments
hold true as long as a distribution behaves the same as
Eq. (46) when z — oo up to a normalisation constant.
For example, the Cauchy distribution given by p(x) =
1/ [7(1 4 x?)] is qualitatively the same as Eq. (46) with
o =2 as ¢ — o0o. It should also be noted that the tail of
an empirical distribution ceases to be a power-law beyond
a certain scale because of the finiteness of the system.
The finite size effect typically leads to exponential cut-
offs. Therefore, the power-law regime, if present, usually
dominates for values that are neither too small nor too
large.

The heterogeneity of power-law distributions is often
associated with the presence of inequalities in the system.
What fraction w of the total wealth is held by a certain
fraction of the richest people when the wealth distribu-
tion is given by Eq. (46)? To answer this question, let us
first calculate the fraction of the people whose wealth is
at least xg:

Pl > w0) = /Oo Codz = ( 0 )aﬂ. (49)

Lmin

The fraction of wealth held by these richest people is

given by
f;o z - Cx~%dx Zo —ot2
fl’min x- Cl‘_(’dx xmin

— [p > )], (50)

where we have assumed that o > 2 so that the average
wealth is finite. Equation (50) neither depends on
nor T, explicitly, and it provides a direct relation be-
tween w(xzg) and p(x > xg). This relation is often called
the “80-20 rule”, anecdotally meaning that 80% of the
wealth is in the hands of the richest 20%. More pre-
cisely, setting p(z > x¢) = 0.2, w(xy) = 0.2(@=2)/(a=1)
can take any value between 0.2 and 1 depending on the
value of a. In the limit @ — oo, the system does not
exhibit a power-law tail, and we obtain w(zg) = 0.2. In
this case, the system is egalitarian. As « decreases, the
tail of the distribution becomes fat and inequality grows.
In the extreme situation with o — 2, the total wealth
belongs to an infinitesimally small fraction of the richest
people. In the econometrics literature, the measurement
of this effect in empirical data can be done with the Gini
coefficient.

Other properties of power-law distributions include the
following:

e Power-law distributions are scale-invariant because
they satisfy

p(err) = cap(x) (51)

for large =, where ¢; and ¢y are constants. Equa-
tion (51) implies that multiplying the variable, or
equivalently, changing the unit in which it is mea-
sured, does not affect properties of the system.

e Power-law distributions conveniently take the form
of a straight line in a log-log plot because Eq. (46)
is equivalent to

log p(z) = log C' — ax. (52)

When testing if empirical data are power-law dis-
tributed, it is instructive (but not conclusive) to
plot their distribution on the log-log scale.

As a side note, Tauberian and Abelian types of the-
orems help us understand power-law tails of probability
distributions and functions in general. They are particu-
larly useful for analytically understanding the long-term
behaviour of stochastic dynamics when power-law statis-
tics come into play. In short, Tauberian and Abelian
theorems are the inverse of each other. The Tauberian
theorem for the Laplace transform, i.e. related to the
Fourier transform, is stated as follows :

Consider a function f(t) whose asymptotic behaviour
is given by f(t) ~ t*~! (p > 0) for large t. The Laplace
transform of f(t) near s = 0 is given by f(s) ~ T'(p)s—*,
where I'(p) is the gamma function.



E. Maximum likelihood

The previous sections provide mechanisms by which
certain families of distributions emerge. When we are
confronted with empirical data, a crucial step is to find
the parameter values that best reproduce the data, given
a model. There exist different approaches to parameter
fitting. The most popular one is probably the maximum
likelihood method.

Consider a sequence of observations {z;} (i = 1,2,...).
We are trying to fit a certain model whose parameter set
is denoted by 6 and is assumed to have a finite support for
simplicity. Maximum likelihood dictates that the param-
eter values are chosen to maximise the probability with
which the model generates the observed data. To this
end, we calculate p(0|{x;}), which is related to p({z;}|9)
by Bayes’ law

p(0] () =p<{xi}|e>]%. (53)

By definition, the probability of observing certain data,
p({z;}), is fixed, and it does affect the optimisation of 6.
Moreover, in the absence of other information, it is con-
venient to assume that any values of 6 are equally likely
such that the prior distribution p(6) is a constant. Then,
p(0l{x;}) and p({z;}|#) are proportional to each other,
and the locations of their maximum coincide. Therefore,
it suffices to maximise p(6|{x;}) in terms of 6.

As an example, consider the model in which each x;
independently obeys the same exponential distribution.
The likelihood of the data is given by

n

L{zi}A) = [T o), (54)

i=1

where p(z|A\) = Ae™** and n is the number of observa-
tions. To find the value of A that maximises the like-
lihood, we conventionally maximise the logarithm of L.
The maximum of

log L({z:}[A) =log [ [ p(xil\) = nlog A= A " a; (55)
1=1 1=1

is obtained via

o og £({r} ) =0, (56)
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which leads to

2 1 1

The maximum likelihood estimation is easy if the log
likelihood takes an analytical form and its maximum is
explicitly computed. Otherwise, we resort to numeri-
cal methods such as the expectation-maximisation algo-
rithm.

There are also other situations in which likelihood
maximisation needs to be done carefully. For example,
suppose that we are fitting the power-law distribution,
Eq. (46), to data. Usually, a power-law distribution pro-
vides a good fit of empirical data in a regime excluding
small = values. Therefore, we regard x;, as the point
where the power-law regime starts, which we are inter-
ested in estimating in addition to the power-law exponent
a. The log likelihood of the data under the power-law
distribution is given by

log L({;}|av, Zmin) = nlog (a — 1) —GZIOg ( T ) .
i—1

Lmin Lmin
(58)
Setting dlog L/0a = 0 yields the maximum likelihood
estimator given by

n

S ey

Zmin

=1+ (59)

However, finding the optimal z,;, value is not a straight-
forward exercise because changing values of x;, also
changes the number of observations, n, falling within the
assumed power-law regime, i.e., * > Tpyin. The likeli-
hood monotonically decreases with increasing n because
the probability of observing an additional data point is
always smaller than unity. Therefore, the maximum like-
lihood in terms of &, is obtained by a trivial solution
Tmin = max; x;, yielding n = 0. Other techniques must
be used to estimate ;. The minimisation of goodness-
of-fit statistics, such as the Kolmogorov-Smirnov test,
measuring the distance between the cumulative distri-
bution of the empirical data and that of the model, is
one such possibility.

F. Entropy, information and similarity measures

The entropy of a random variable, denoted by H, is
a measure of its uncertainty and quantifies how much
we know about a variable before observing it. After the
observation, we get rid of the uncertainty and thus gain



information H about the system. For a discrete random
variable X, entropy is defined as

Zp

If X can take one of n states, we obtain 0 < H(X) <
logn. The maximum value H(X) = logn is realised
when p(z) is the uniform density, i.e., when p(z) = 1/n
for all . The minimum value H(X) = 0 is realised when
X is deterministic, i.e., p(x) = d,.4, for a specific o,
where § is Kronecker delta. In the latter case, we know
the value of X before observing it, hence the lack of un-
certainty.

The joint entropy H(X,Y) of a pair of discrete random
variables with joint distribution p(z,y) is defined as

=Y plx,y)logp(x,y).  (61)
z oy
The conditional entropy H(Y|X) is defined as
ZZP x,y)log p(y|x)

and refers to the entropy of Y conditioned on the value of
X and averaged over all possible values of X. The joint
entropy and conditional entropy are related by the chain
rule:

) log p( (60)

H(Y|X) =

H(Y|X =x), (62)

H(X,Y)=H(X)+ H(Y|X). (63)
Equation (63) states that the total uncertainty about X
and Y is simply the uncertainty about X, plus the aver-
age uncertainty about Y once X is known.

What does the knowledge of one variable tell us about
another one? The conditional entropy H(Y|X) ad-
dresses this question. More precisely, mutual information
I(X,Y) is defined as the amount of information gained
on X by knowing the value of Y as follows:
I(X,)Y)=H(X)-H(X|Y)=H(X)+H(Y)-H(X,Y).

(64)
If Y is perfectly informative in the sense that it tells us
everything about X, mutual information reduces to the
entropy of X because I(X,Y) = H(X) - HXI|Y) =
H(X). Mutual information is rewritten as

— 33 b, ) log % (65)

p(y)

Equations (64) and (65) show that mutual information
is symmetric, i.e., I(X,Y) = I(Y, X). Mutual informa-
tion measures the cost of assuming that two variables
are independent when they are in fact not. Mutual in-
formation captures non-linear correlations between ran-
dom variables, in contrast to linear quantities such as the
Pearson correlation coefficient (see Figure 6).
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FIG. 6. Anscombe’s quartet: all four sets are identical when
examined using simple summary statistics, including their
Pearson coefficient, but vary considerably when graphed

There exist many situations when we have to compare
two networks defined on the same set of nodes, for in-
stance in the case of temporal networks. Mutual infor-
mation can serve to this end by specifying a distribution
p(x) that summarises a network. Other commonly used
similarity measures include the Pearson correlation coef-
ficient and the Jaccard index. The Pearson correlation
for random variables is given by Eq. (11) and adapted
for a list of pairwise observations {(z;,v;);1 <1i <n} as
follows:

D (@i — (@) (i — ()
V(= @) (v~ w)?

where (z) = >0 | x;/n and (y) = Y., yi/n. The Jac-
card index for two sets S; and Ss is defined by

(66)

|S1N Ss

1211 53] 67
|51USQ| ( )

where || denotes the number of elements in the set. The
Jaccard index takes the largest value, 1, when S; = S5.
It takes the smallest value, 0, when S; and Sy do not
have any common element.

G. Matrix algebra

Matrices are a standard representation of networks.
Properties of matrices are crucial in order to describe



linear dynamical systems and at the core of several algo-
rithms to extract structural information from networks.
In this section, we provide a short, practical summary
of results from linear algebra, emphasising what will be
used in later chapters.

Consider an N x N matrix A. A vector and scalar
value \ satisfying

Au = du (68)

are called the eigenvector and eigenvalue, respectively.
There are at most N eigenvalues and associated eigen-
vectors. If A is a symmetric matrix, ie., A;; = Aj;
(1 <i,5 < N), all the eigenvalues \; (1 < i < N) are
real. In addition, the eigenvectors u; associated with dif-
ferent eigenvalues \; are orthogonal, i.e., (u;,u;) = 0 if
i # j, where (,) is the inner product. Matrix A may have
duplicated eigenvalues. Even in this case, we can select
the set of IV eigenvectors such that the orthogonality is
respected.
Matrix A is decomposed as

N
A=Y Nugu/ (69)
/=1

where T represents the transposition. The validity of
Eq. (69) is verified by multiplying an arbitrary eigenvec-
tor u; to both sides of Eq. (69). Due to the orthogonality
of the eigenvector, we obtain Au; = A\;u;, assuming that
the eigenvectors are properly normalised such that

(we, wer) = e (70)

By combining Egs. (69) and (70), we obtain

N
A" = Z Mg, . (71)
=1

We are often interested in the extremal eigenvalue such
as the largest eigenvalue of a symmetric matrix A, i.e.,
Amax- The Perron-Frobenius theorem guarantees that
when all elements of A are strictly positive, Apax is the
isolated (i.e., not duplicated) largest eigenvalue. In addi-
tion, all elements of the corresponding eigenvector tmax,
called the Perron-Frobenius vector, have the same sign.
Any other eigenvector u; does not show this property be-
cause, due to the orthogonality (ug, umax) = 0, some of
the elements in uy; must have the opposite signs. The
Perron-Frobenius theorem also holds true for asymmet-
ric matrices. In the asymmetric case, the statement that
the largest eigenvalue is isolated is replaced by that of the
modulus, or the absolute value of the eigenvalue. Matri-
ces appearing in network analysis are often sparse, with
a majority of elements being zero. The Perron-Frobenius
theorem is also applicable in this situation if matrix A is
primitive, i.e., if all elements of A are non-negative and
all elements of A™ are positive for some integer n > 0. If
an undirected network of interest is connected as a single
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component, which is usually the case in theoretical stud-
ies, matrices representing the network are usually prim-
itive (with the exception of so-called bipartite graphs),
such that the Perron-Frobenius theorem can be used.

The power method is a computationally efficient
method to calculate Apax and umax of a given matrix.
To do this, we start with an (almost) arbitrary initial
vector x and repeat multiplying A. By multiplying x to
both sides of Eq. (69), we obtain

N
2(1) = Az =Y Mug(u/ ,x) (72)
(=1

By repeating the multiplication of A on both sides of
Eq. (72), we obtain

N
z(n)= A"z = A"z(n—-1) = Z Nag(u) ,x).  (73)
(=1

If Amax is the isolated eigenvalue, as in the case of the
primitive matrix, A}, > A} for any other eigenvalue A,
for large n. Then, in Eq. (73), all but the one term corre-
sponding to Apnax is negligible on the right-hand side as
n — 0o. After many iterations, we can obtain the largest
eigenvalue Ay ax by looking at how much each element of
z(n) grows by one iterate and the corresponding eigen-
vector Umay from z(n). In practice, we normalise z(n)

in each iterate to avoid the elements of xz(n) to become
very large or small.

H. Markov chains

Markov chains are stochastic dynamics on IV states in
discrete time. A state may be the position in a network
having N nodes such that the process represents a ran-
dom walk on the network. Alternatively, a state may be
the number of infected people, between 0 and N — 1, in
a structureless population of N — 1 individuals. In both
cases, we number the states as 1, 2, ..., N. The state
at time ¢t (¢t = 0,1,...), which is a random variable, is
denoted by X;.

In a stochastic process on IV states in general, state
Xi4+1 may depend on all preceding states (i.e., full his-
tory) of the dynamics, i.e., Xo, X1, ..., X¢. Under the
Markov assumption, the conditional probability to ob-
serve a state at time ¢ + 1 only depends on the state at
time t. In other words, a discrete-time stochastic process



verifying

P( X1 = 1| Xy =i, ..., X1 = i1, Xo = 1)
=p(Xep1 =i |Xe = 10),  (74)

is called the Markov chain. Among the class of Markov
chains, we are often interested in the stationary ones, in
which the conditional state-transition probability does
not depend on t:

P(Xepr = j|Xe =i) = Tj;. (75)

Processes verifying both properties, Markovianity and
stationarity, are called stationary Markov chains. Be-
cause a realisation of the process visiting state ¢ must
go somewhere including itself in the next time step, we
obtain

N

> Ty=1. (76)
j=1

A stationary Markov chain is fully described by an
initial state and an N x N transition matrix T = (T};).
The probability that state ¢ is visited at time ¢, denoted
by p;(t), evolves according to

N
pit+1) =Y p()T; (1<j<N). (77
=1

It should be noted that Zf\il pi(t) = 1 for any ¢, if the
initial condition is properly normalised. Equation (77) is
compactly rewritten as

p(t+1) = p()T, (78)

where p(t) = (p1(t) --- pn(t)). Equation (78) yields

p(t) = p(0)T". (79)

A Markov chain is composed of different types of
states. By definition, the process does not escape from an
absorbing state once it has been reached. State i is ab-
sorbing if and only if 7;; = 1, which implies that T;; =0
for any j # i. A group of states forms an ergodic set
if it is possible to go from i to j for any states i and j
in the set and if the process does not leave the set once
the process has reached it. An absorbing state is thus an
ergodic set composed of a single state. Finally, a state is
called a transient state if it is not a member of an ergodic
set.

We denote the stationary density by p* = (p,...,py),
where pf = limy,oopi(t) (1 < ¢ < N) and hence
Zij\ilpf = 1. Substitution of p;(t) = pi(t + 1) = p}
(1 < i < N), which holds true in the limit ¢ — oo, in
Eq. (77) yields

pr=pT. (80)
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Therefore, the stationary density is the left eigenvector
of T with eigenvalue unity. Because

which is a consequence of Eq. (76), T is guaranteed to
have an eigenvalue of unity. If the entire set of the IV
states is ergodic, one can go from ¢ to j for any ¢ and j.
In this case, p* is unique, and iterates of Eq. (79) starting
from an almost arbitrary initial condition converge p*
except in special cases.

Then, the eigenvalue of unity is in fact the largest
eigenvalue of T in terms of the modulus (i.e., absolute
value). Therefore, p* is the Perron-Frobenius vector.
This observation is consistent with the fact that all el-
ements of the Perron-Frobenius vector are positive (Sec-
tion IITG). In addition, Eq. (71) adapted to the case of
asymmetric matrices dictates that the discrepancy of p(t)
from p* decays exponentially as o |)\2nd|t, where Aopq is
the second largest eigenvalue of 7" in terms of the modu-
lus. In words, the second largest eigenvalue governs the
relaxation time of the iterate. More generally, the speed
of convergence is determined by the difference or ratio be-
tween Aopg and Apax, with the latter being equal to unity
in the current case. Therefore, we often call 1 — Agpq the
spectral gap. A Markov chain with a large spectral gap
converges rapidly.

Markov chain theory also allows us to answer other
types of questions. For example, how long on average
do the dynamics need to reach a certain state? What
is the probability of ending in a certain absorbing state,
depending on the initial condition?

I. Branching processes

A branching process is a Markov process in which each
individual produces some (possibly zero) individuals and
then dies, each of the new individuals undergoes repro-
duction, and so forth (Fig. 7). In network theory, branch-
ing processes are a useful tool for understanding network
generation and epidemic processes on networks. In net-
work generation, we start from a given node and explore
its neighbours, neighbours of neighbours, and so on to ex-
pand the network under investigation. In epidemic pro-
cesses, an initially infected node typically propagates in-
fection to a certain number of neighbouring nodes, each of
which then infects some others, and so on. In both cases,
the number of nodes that a node newly recruits usually
depends on the node and hence can be considered as a
random number, as assumed in branching processes.

The Galton-Watson process is a prototypical branching
process model defined as follows. Fix the distribution of
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FIG. 7. Schematic of the Galton-Watson branching process.

the number of offspring, {p(n)}, where p(n) is the prob-
ability that an individual reproduces n individuals. The
number of individuals in the tth generation is denoted
by Z: (Fig. 7). First, there is initially one individual,
i.e., Zg = 1. Second, this individual generates offspring
whose number Z; is drawn from {p(n)}. Third, each of
the Z; individuals in the first generation produces off-
spring whose number independently obeys distribution
{p(n)}. The individuals born in this stage, which total
Zs, define the second generation. We repeat this proce-
dure to define further generations until the process gets
extinguished. The extinction may not occur, in which
case the number of individuals grows indefinitely.

The extinction requires p(0) > 0. In other words, an
individual does not produce any offspring with a positive
probability. If p(n) for large n values is large, the popu-
lation would grow rather than shrink. In fact, the mean
number of offspring, i.e., (n) = Y 07 np(n) is the main
determinant of a branching process. If (n) < 1, a real-
isation of the process will always die out for sufficiently
large t, except in the deterministic case n = (n) = 1 such
that each individual always yields exactly one offspring.
In particular, E[Z;] = (n)® — 0 as t — oco. If (n) > 1,
E[Z,] exponentially grows and individual realisations of
the process may exponentially grow as well.

We denote by ¢ the probability that the process start-
ing from one individual eventually dies out and, as we
now show, ¢ = 1 when (n) < 1. If an individual produces
n individuals, then the process will die out with probabil-
ity ¢™ because of the independence of the sub-processes
starting from n individuals. Therefore, we obtain the
recursive relationship

g=> p(n)qg". (82)
n=0

Equation (82) always has ¢ = 1 as a solution. It has a
solution with ¢ < 1 if and only if (n) > 1. To show this,
we use the fact that the solution is the intersection of

y=filg) =¢
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and

o0

y=falg) =D p(n)g"

n=0

. Because (n) > 1, it suffices to consider the case p(0) +
p(1) < 1. If p(0) = 0, ¢ = 0 is a solution because

f2(0) = p(0) =0 = £1(0).

If p(0) > 0, we obtain 0 < f5(0) < 1. Because f1(1) =
fg(l) = 1, and

dfz(q)/dg = Z np(n)g" ' >0

n=1

and

oo

d*fa(g)/dg® =Y n(n—1)p(n)g"~> >0

n=2

when 0 < ¢ <1,y = fi(q) and y = fo(q) cross in 0 < g <
1 if and only if dfs(¢q)/dg > 1 at ¢ = 1. This condition
is equivalent to (n) > 1. In this case, the process grows
exponentially with probability 1 — q.

Application : Branching processes are often used to
model cascades in social media. For instance, cascades
of retweets on Twitter can be represented by trees and
modelled by a Galton-Watson, or variations around it.
From a practical point of view, the initial structure of a
cascade can be fed into a machine learning framework to
predict their future success, or the cascade can be used to
calibrate the parameters of a branching process for such
a prediction. See for instance:

Cheng, Justin, et al. ”Can cascades be predicted?.” Pro-
ceedings of the 23rd international conference on World
wide web. ACM, 2014.

Kobayashi, Ryota, and Renaud Lambiotte. ”TiDeH:
Time-Dependent Hawkes Process for Predicting Retweet
Dynamics.” ICWSM. 2016.



IV. BASIC STRUCTURAL PROPERTIES OF
NETWORKS

In this chapter, we give an introduction on relatively
basic methods for network science.

A. Definition

A network is a system made of nodes connected by
links. Links can be undirected or directed, and un-
weighted or weighted. In the mathematical literature,
a network is called a graph. It is defined as

g=MVE), (83)

where V is a set of nodes (also called vertices) and E is
a set of links (also called edges). The number of nodes
and that of links are denoted by N and M throughout
this book. Each link is defined by a pair of nodes, i.e.,
e = (v,v") € E. In the case of undirected networks, the
order of v and v’ does not matter. In the case of di-
rected networks, (v,v’) indicates a link from v to v, and
if (v,v") € F and (v',v) € E, the two nodes are recipro-
cally connected. In the case of weighted networks, links
are also assigned with a weight function, characterising
the importance or weight of the link. An undirected and
unweighted network with N = 5 nodes and M = 6 links
is shown in Fig. 8.

In order to efficiently store networks and to carry out
computations, it is necessary to use appropriate data
structure. Each representation emphasises a certain as-
pect of the network and is amenable to certain types of
computational or mathematical operations. We intro-
duce two major representations.

A network can be represented by the corresponding
N x N adjacency matrix. Being adjacent means that
two nodes are directly connected by a link. In the case of
unweighted networks, the entries of the adjacency matrix
are given by

Ay = {1 if node.vi is adjacent to node vj, (84)
0 otherwise.

If the network is weighted, A;; can take positive values
different from one, representing the weight of the link. In
general, undirected and directed networks will yield sym-
metric and asymmetric adjacency matrices, respectively.
The adjacency matrix of the network illustrated in Fig. 8
is given by

00111
00001
10011 (85)
10100
11100

An adjacency matrix representation is useful for for-
mulating and theoretically analysing structure of, and
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FIG. 8. An undirected and unweighted network.

dynamical processes on networks. In particular, it is
amenable to tools from linear algebra such as the anal-
ysis of eigenvectors and eigenvalues. A drawback of this
representation is its memory cost because a network pos-
sessing N nodes requires O(NN?) elements for storage. A
majority of networks found in the real world and gen-
erated from models are sparse such that most elements
of the adjacency matrix are equal to zero. Therefore, it
is often preferable to use the data structure called sparse
matrix. Its advantage is a significant gain in memory and
faster computations because operations involving zeros
are not executed.

In fact, a matrix formulation is often unsuitable even
if sparse matrix representations are employed. This is
the case when, for example, the computation of shortest
paths is involved or all links have to be scanned repeat-
edly. A representation of static networks alternative to
the adjacency matrix is called the link list. In this link-
centric approach, a graph is described as a list of pairs
of nodes, each corresponding to a link in the network, as
follows:

{(ulav1)7(u27v2)7---7(quvM)}' (86)

When the network is directed, we interpret Eq. (86) as
representing directed links from wu; to v; (1 < i < M).
The link list of the network shown in Fig. 8 is given by

{(v1,v3), (v1,v4), (v1,05), (v2,5), (v3,v4), (v3,05)}-
(87)
Link lists have the additional advantage of being effi-
ciently used for link randomisation and numerical simu-
lations of dynamics on sparse networks.

B. Degree distribution

The degree is defined as the number of links incident
to a node. We denote the degree of the ith node by k;.



For undirected networks, the degree is given by
N

N
ki=Y A (=Y Aj |- (88)
=1 =1

A network is called regular if all nodes have the same
degree, i.e., k; = k; for all ¢ and j.

For directed networks, we distinguish the in-degree,
i.e., the number of links incoming to the node, and
the out-degree, i.e., the number of links outgoing from
the node. They are given by ki = Zjvzl Aj; and

= Z;V:1 A;j, respectively. These numbers are ba-
sic measures of the centrality, or importance, of a node
in a network. See section (IV E) for more details.

Each link has two endpoints and hence contributes to
the degree of two nodes by one each. Therefore, we obtain

Zk —ZZA”_2M (89)

=1 j=1

out
k;

for undirected networks. Equation (89) is called the
handshaking lemma. It implies that the sum of the de-
grees of all the nodes in any undirected network is an
even number. For directed networks, the handshaking
lemma is given by Zi\il kin = ZZ 1 kOUt M.

The degree distribution of a network is the frequency
distribution of the degree and denoted by p(k). A major-
ity of networks in different domains possesses long-tailed
degree distributions. In many situations, their tail is de-
scribed by a power-law, i.e.,

p(k) o< k77, (90)

where 7 is typically between two and three. Because the
maximum degree is equal to N — 1, Eq. (90) approxi-
mately holds true up to a certain cutoff degree, above
which p(k) rapidly decays to zero. The average degree,
denoted by (k), is given by

k)= kp(k). (91)
k

The friendship paradox is a phenomenon, in which,
anecdotally, the average number of friends of a friend is
greater than the average number of friends of an indi-
vidual. This is purely a mathematical consequence that
always arises unless every node has the same degree. The
paradox originates from the fact that nodes with a large
degree contribute disproportionately to the average de-
gree of a friend, as they have a higher probability of being
friends than low degree nodes do. Consider the situation
shown in Fig. 10, where we pretend not to know the ac-
tual connection between nodes. This is in fact the defi-
nition of the configuration network model (Section V B).
The network has N = 6 nodes and the average degree of
a randomly selected individual is equal to

é(1+2+3+1+4+1)z<k>=2~ (92)
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FIG. 9. Cumulative degree distributions for six different net-
works. The horizontal axis for each panel is vertex degree k
(or in-degree for the citation and Web networks, which are
directed) and the vertical axis is the cumulative probability
distribution of degrees, i.e., the fraction of vertices that have
degree greater than or equal to k. The networks shown are:
(a) a collaboration network of mathematicians; (b) citations
between 1981 and 1997 to all papers cataloged by the Institute
for Scientific Information; (c) a 300 million vertex subset of
the World Wide Web, circa 1999; (d) the Internet at the level
of autonomous systems, April 1999; (e) the power grid of the
western United States; (f) the interaction network of proteins
in the metabolism of the yeast. Of these networks, three of
them, (c), (d) and (f), appear to have power-law degree dis-
tributions, as indicated by their approximately straight-line
forms on the doubly logarithmic scales. Taken from Newman,
Mark EJ. ” The structure and function of complex networks.”
STAM review 45.2 (2003): 167-256.

To calculate the average number of friends of a friend, we
have instead to perform a weighted average, accounting
for the fact that a node with degree k will appear k times
in the calculation of the average. The weighted average
degree is equal to

(Ix14+2x24+3x3+1x1+4x44+1x1)
(I1+24+3+14+4+1)

~ 2.67,

(93)
where we have allowed self-loops and multiple edges for
simplicity. In general, for sufficiently large and random
networks, the mean degree of a neighbour is given by

o) ()
zk,k' S R (R )
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FIG. 10. Friendship paradox. A network with N = 6 nodes
is shown. The numbers represent the nodes’ degrees. The
expected degree of a neighbour of a randomly selected node
is equal to &~ 2.67, which is larger than the mean degree of
the network, (k) = 2.

C. Measures derived from walks and paths

A walk is defined as a succession of adjacent nodes such
that one can travel from the start node to the end node
by traversing links. A path is a walk where each node
is visited only once (with the possible exception that the
walk may end at the node where it begins). Walks are
used for constructing dynamical processes on networks
(e.g., random walks) and measurements such as the Katz
centrality, where all possible walks from one node to an-
other are exhaustively counted. Paths are particularly
useful when considering the shortest travelling route from
one node to another. In the network science literature,
which is rooted in statistical physics, authors tend not
to distinguish walks and paths. Here, however,, we will
distinguish walks and paths.

The number of walks of a certain length can be ob-
tained from powers of the adjacency matrix. The adja-
cency matrix provides the number of walks of length 1
between two nodes. In general, the number of walks of
length ¢ is given by the elements of A.

To identify paths from a node to another requires more
effort. The distance between nodes v; and v;, denoted
by d(v;,v;), is defined as the smallest number of hops
in a path necessary to go from v; to v;. For undi-
rected networks, the distance defined in this way sat-
isfies the axioms that a distance measure should sat-

isfy: non-negativity (i.e., d(v;,v;) > 0), coincidence
(i.e., d(vi;v;) = 0 if and only if v; = v;), symmetry
(i.e., d(vs,v;) = d(v;,v;)) and triangle inequality (i.e.,

d(vi,v;) < d(vi,ve) + d(ve,vj)). For directed networks,
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the symmetry is broken because a shortest path from v;
to v; is not generally the same as that from v; to v;.

For both undirected and directed networks, d(v;,v;)
can be calculated by Dijkstra’s algorithm. For a fixed v;,
first initialise the distance from v; by setting d(v;, v;) =0
and d(v;,v;) = oo(j # i). Second, set d(v;,v;) = 1,
where v; is a neighbour of v;. Third, we declare that
v; has been visited. Fourth, consider each neighbour of
v; except v;. If a neighbour, vy, has a tentative dis-
tance value from v; larger than two, then we reset it to
d(v;,ve) = 2. When all neighbours of v; are exhausted,
we declare that v; has been visited. Fifth, we select an
unvisited node with the smallest tentative distance value
and inspect its all neighbours. We repeat the same pro-
cedure to determine the distance from v; to every other
node.

For undirected networks, the average distance for a
network is defined by

N i—1

2
L= m Z Zd(vi,vj).

i=1 j=1

(95)

In many real networks, L is remarkably small as com-
pared to the number of nodes, N. For example, a Face-
book network composed of N ~ 7.2 x 10® active users
with 6.9 x 100 friendship links yielded L ~ 4.7. The
diameter is defined by

D = max d(u,v).
u,veV

(96)

In undirected networks, two nodes are said to be con-
nected if there exists a path between them. Connect-
edness is an equivalence relation because it is reflexive
(i.e., v is connected to itself), symmetric (i.e., if u is con-
nected to v, v is connected to u) and transitive (i.e., if u
is connected to v and v is connected to w, u is connected
to w). Intuitively, a connected component is an island
within which one can travel from any node to any other
along a path. There is no path between nodes in different
components. Connected components impose limitations
on any dynamical process taking place on the network.
In epidemic processes, for example, the existence of dis-
tinct components implies that certain regions of the net-
work are never infected, independently of the model of
epidemic dynamics and its parameters.

In directed networks, symmetry is not satisfied because
the existence of a path from u to v does not guarantee
the existence of a path from v to u. Therefore, the con-
cept of connectedness is more complex, and the notions of
strong and weak connectedness are distinguished. Nodes
u and v are said to be strongly connected if there exist
a path from u to v and a path from v to u. Two nodes
u and v are said to be weakly connected if there exists a
path between v and v in a network where the direction
of the links is discarded. Both strong and weak connect-
edness is an equivalence relation and induces strongly
and weakly connected components, respectively. For ex-
ample, a strongly connected component is a maximum
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FIG. 11. When networks are directed, the notion of connected
is much more rich than in the case of undirected networks.
Illustration of the connectivity patterns of a sub-part of the
Web.

set of nodes in which each pair of nodes is strongly con-
nected. Strong connectedness implies weak connected-
ness but not vice versa.

D. Clustering coefficient

Empirical networks are quite often abundant in trian-
gles, i.e., mutually connected three nodes. The amount
of triangles in a network is quantified by the clustering
coefficient. It is defined through the local clustering co-
efficient defined by

number of triangles including the ith node

Ci = kilki —1)/2

» (97)

which measures the abundance of triangles in the neigh-
bourhood of the ith node v;. The denominator gives the
normalisation such that 0 < C; < 1. If any pair of the
neighbours of v; is adjacent to each other to form a tri-
angle, C; = 1. If no pair of neighbours of v; is adjacent
to each other such that the neighbourhood of v; is star-
like, C; = 0. The clustering coefficient, denoted by C, is
defined as the average of C; over the network, i.e.,

1 N
c N;Ci.

(98)

Note that 0 < C < 1.

(a) A one-dimensional lattice with connections be-
tween all vertex pairs separated by k or fewer lattice
spacing, with k = 3 in this case. (b) The small-world
model [415, 411] is created by choosing at random a frac-
tion p of the edges in the graph and moving one end of
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FIG. 12. (a) A one-dimensional lattice with connections be-
tween all vertex pairs separated by k or fewer lattice spacing,
with k = 3 in this case. (b) The small-world model of Watts
and Strogats is created by choosing at random a fraction p of
the edges in the graph and moving one end of each to a new
location, also chosen uniformly at random. (c) A slight vari-
ation on the model in which shortcuts are added randomly
between vertices, but no edges are removed from the underly-
ing one-dimensional lattice. Taken from Newman, Mark EJ.
”The structure and function of complex networks.” STAM re-
view 45.2 (2003): 167-256.

each to a new location, also chosen uniformly at random.
(c) A slight variation on the model [323, 288] in which
shortcuts are added randomly between vertices, but no
edges are removed from the underlying one-dimensional
lattice

Application: A high density of triangles is often associ-
ated to the mechanism of triadic closure, that is the ten-
dency for wedges (paths of length 2) to form closed trian-
gles. Wedges are then associated to unstable structures,
later turning into more stables ones. This mechanism is
at the heart of several methods for link prediction. Say
that you have a snapshop of a social network, at a certain
time. In order to predict the links that will be created at
future steps, a simple, but very efficient strategy consists
in considering pairs of nodes that are not (yet) connected,
but belong to several wedges. One such metric for rank-
ing potential edges is the so-called Adamic-Adar. See for
instance: Liben-Nowell, David, and Jon Kleinberg. ”The
link prediction problem for social networks.” journal of
the Association for Information Science and Technology
58.7 (2007): 1019-1031.

E. Centrality

Centrality measures aim to quantify the importance
of nodes in a network. The simplest one is the degree
(i.e., degree centrality), with which hubs are considered
to be important. The degree centrality is effective in
various situations but not always. This observation has
motivated the introduction of different types of centrality



measures. In this section, we explain some of them.

1. Closeness centrality

The closeness centrality and betweenness centrality are
popular centrality measures based on the distance be-
tween pairs of nodes. The closeness centrality for node
v; is defined by

N-1
closeness; = ) (99)

N
Zj:l;j;éi d(vi, vj)

which is the inverse of the mean distance from node v; to
any other node. The closeness centrality is well-defined
only for connected networks.

2. Betweenness centrality

The betweenness centrality is defined as the fraction of
the shortest paths passing through the node in question.
This quantity is averaged over all possible pairs of nodes.
The betweenness of the ith node is defined by

P
i=Li t=titi 79

(100)
where 0, is the number of the shortest paths connecting
the jth and ¢th nodes, and (T;‘-( is the number of such
shortest paths that pass through the ¢th node. The con-
vention is that we regard the summand on the right-
hand side of Eq. (100) to be zero when o, is equal to
zero (i.e., when the jth and ¢th nodes are in different
connected components). The summation excludes the
shortest paths that start or end at the ith node because
it is obvious that such a path does not go through the
ith node. The normalisation factor 2/ [(N — 1)(N — 2)]
comes from the combinations of j and ¢, whereas it is
often neglected.

betweenness; =

2
(N —=1)(N -2)

3. Katz centrality

Given an adjacency matrix, A, the number of walks
from the ith node to the jth node with ¢ steps is given
by the (i, ) element of A*. Supposing that short walks
are more important than long walks in mediating, e.g.,
communication and infectious diseases, we scale the im-
portance of each walk of length ¢ (¢ > 0) by a factor of
af, where 0 < o < 1. Then, the weighted sum of the
number of walks from the ith to the jth nodes of various
lengths is given by the (7, j) element of

I+aA+a?A*+... = (I —ad)™t. (101)
Note that the walks of length zero also contribute to the
counting with weight one.
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The Katz centrality of the ith node is defined by
N

Katz; = Z (1 - aA)_l]ij .

Jj=1

(102)

In other words, the weighted sum of the number of walks
starting from the ith node is summed over all destination
nodes. If a = 0, then Katz; = 1 for all . Therefore, we
are interested in making « large to diversify the values of
Katz;. In fact, as intuitively understood from Eq. (101),
(1 — aA)~! diverges for a large a. This occurs when
an eigenvalue of I — A hits zero for the first time as
« is increased. Therefore, the Katz centrality is well-
defined when « is smaller than the inverse of the largest
eigenvalue of A.

4. PageRank

A well-known centrality measure for directed networks
is the PageRank, which was first introduced for ranking
webpages and later adopted in a variety of applications.
The PageRank is defined as the stationary density of a
discrete-time random walk, particularly on directed net-
works. We will introduce it more in section VIII B, after
introducing the concept of random walks on networks.
In contrast with the previous metrics, either defined in
terms of shortest paths or number of paths passing by a
node, PageRank is a typical recursive metric, based on
the circular idea that: a node is important if it receives
connections from many important nodes. As we will see,
this relation leads to an eigenvector problem. Similar ar-
guments lead to other centrality measures, such as Eigen-
vector centrality.

Application: Centrality measures are often used to pre-
dict the influence of nodes in a network. For instance,
in social networks, a combination of centrality measures
can be used to predict the future impact of a user. In
epidemiology, nodes with a high centrality are often tar-
geted, e.g. by means of vaccination, in order to slow down
the progress of a disease. Similarly, in marketing, central
users can be targeted to seed viral campaigns. See for
instance: Benchmarking Measures of Network Influence,
Aaron Bramson and Benjamin Vandermarliere; or Going
Viral, Karine Nahon and Jeff Hemsley.



F. Spectral properties

A broad range of dynamical and structural properties
of networks is characterised by spectral properties of a
matrix describing the network. Depending on the prob-
lem at hand, we often use the adjacency matrix (denoted
by A), the (combinatorial) Laplacian matrix (denoted by
L) or the normalised Laplacian matrix (denoted by L).
Spectral properties of networks have been studied in de-
tail, and various bounds are available. In this section, we
present a summary of basic spectral properties of undi-
rected networks.

The Laplacian and normalised Laplacian are defined
by

Lij Zkiéi]‘ — Aij, (103)

VEik;

The three matrices are connected by the following rela-
tionships:

Lij =bij —

(104)

L=D— A,
E :D—I/QLD—I/Q =7 D_1/2AD_1/27

(105)
(106)

where D is the N x N diagonal matrix whose (i,1) ele-
ment is equal to k; and I is the N x N identity matrix.
Both Laplacian matrices are symmetric and their eigen-
vectors ug (1 < ¢ < N) form an orthonormal basis such
that (ug,up) = dgr. Any N-dimensional vector x can be
decomposed as

N
T = ZagU@, (107)
(=1
where
ar = (T, u). (108)

For the adjacency matrix, it is customary to order
the eigenvectors from the largest Ay to the smallest Ay,
whereas the eigenvalues are usually ordered from the
smallest to the largest for the Laplacian matrices. The
two Laplacian matrices always have a zero eigenvalue. In
fact, the corresponding eigenvector for L and L is given
by u; = (1 DT and uy = (VE1 - VEN)T, Te-
spectively. In undirected networks, the zero eigenvalue,
A1 =0, is an isolated eigenvalue and all the other eigen-
values are positive such that 0 = Ay < Ay < -+ < Ay
if the network is connected. In this case, the smallest
nonzero eigenvalue of the Laplacian matrix, Ay, deter-
mines the relaxation time of diffusion and synchroni-
sation dynamics induced by L, as in our discussion on
Markov chains, and is often called the spectral gap. The
corresponding eigenvector, us, is called the Fiedler vec-
tor. In general, the number of connected components is
given by the number of zero eigenvalues of L or L. There-
fore, the network is connected if and only if Ay > 0.
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The eigenvectors of the three matrices are the same for
regular networks. For regular networks, the eigenvalues
of the three matrices are related by

(L) = (k) = Ni(4),

Fy g il
M) =1- =05,

where the argument specifies the matrix. For non-regular
networks, these matrices have different spectral proper-
ties. Different bounds and results exist for the eigen-
values of these matrices. Notably, the spectrum of the
normalised Laplacian, L, satisfies

(109)

(110)

0=X <A< <Ay <2 (111)

The largest eigenvalue verifies the equality Ay = 2 if and
only if the network is bipartite.

Application: As we will see more in detail below, spectral
properties of networks can be used to reveal important
structural properties, and are at the core of several algo-
rithms. For degree centrality, the dominant eigenvector
of the normalized Laplacian is essentially equivalent to
Pagerank. Likewise, the dominant eigenvector of the ad-
jacency matrix is called eigenvector centrality. The sec-
ond dominant eigenvector is also associated to important
structural patterns, that is the presence of botllenecks
and communities in the network.



V. MODELS OF NETWORKS

When analysing structural patterns of empirical net-
works, it is important to compare their properties with
those of appropriate reference points, often produced by
models of networks. We distinguish two families of mod-
els. The first is random graph models in which links
are random variables with certain constraints. The most
fundamental model of random graph is the Erdds-Rényi
model (Section V' A), and other examples include the con-
figuration model (Section VB). These models provide
neither an explanation for the values taken by the pa-
rameters nor the reason for certain constraints to emerge
in an empirical network. Instead, they have nice math-
ematical and statistical properties. For this reason, ran-
dom graphs provide a useful baseline, or null model, for
deciding whether patterns observed in empirical data are
significant. In practice, if a value of a measurement ob-
served in empirical data is significantly different from the
expected value for the random graph model, the model
does not represent the process behind the empirical data.

The second class of models is mechanistic models,
whose goal is to understand the mechanisms leading to
certain structures observed in empirical networks. In
general, such models are defined by simple rules on how
nodes and links are created or destroyed in the course
of time. Examples include the growing network model
(Section VD). Comparison between networks generated
by the model and empirical networks allows us to iden-
tify potential forces having driven the evolution of the
empirical networks.

A. Erdos-Rényi random graph

One of the simplest random graph models is the Erddés-
Rényi random graph, introduced by Hungarian mathe-
maticians Erdés and Rényi in 1959 . The model, also
called the Poisson or binomial random graph, is denoted
by G(N, q) and has two parameters, the number of nodes,
N, and the probability ¢ that a link exists between a
pair of nodes. The self-loops are excluded. For each pair
of nodes, consider a Bernoulli process that determines
whether or not they are connected by a link. In fact,
G(N,q) does not represent a single network, but a ran-
dom ensemble of them in the probabilistic sense. Any
network without multiple edges or self-loops is generated
by the random graph G(N, ¢q) as long as 0 < ¢ < 1. How-
ever, the probability that the model generates a target
network, or a similar network, may be tiny. When study-
ing the Erdés-Rényi random graph model or other net-
work models defined as a random ensemble of networks
(in fact, most models are so), a major aim is to predict
the average behaviour of certain network metrics and, if
possible, their variance.

In G(N,q), every link exists independently with the
same probability. Therefore, the probability of gener-
ating a network with M links in total is given by the
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FIG. 13. Comparison between the degree distribution of
3 real-world networks and the corresponding Erdds-Rényi
model with the same average connectivity.

binomial distribution as follows:

NOON
pon = (g s

(112)
where N(N —1)/2 is the maximum total number of links
in a network. The expected number of links is given by
gN (N —1)/2. Similarly, because a node is independently
adjacent to any other node with probability ¢, the degree
distribution is given by

sy = (N raar

which is the binomial distribution.

The Erdés-Rényi model is usually seen as a model for
sparse networks, where the total number of links scales
linearly with the number of nodes, N. Equivalently, the
average degree of the nodes (k) = ¢(N — 1) should not
depend on N. Therefore, we usually employ a small value
of g, more precisely, ¢ < 1/N. In the limit of large net-
works, where ¢ = (k) /(N —1) is sufficiently small to make
(k) converge to a positive constant, the binomial degree
distribution given by Eq. (113) is well approximated by
the Poisson distribution

k
p(k) = %e’m-

(114)

Several properties of the Erdés-Rényi random graph
can be derived thanks to the independence of links. Al-
though difficult to derive, the average distance of the
Erdos-Rényi random graph is given by

_ logN

L~
log(k)

(115)

for ¢ larger than O(log N/N) as N — oo, which ensures
that the network is connected.
The clustering coefficient is given by

(116)



When (k) does not depend on N, we obtain C' — 0
as N — oo. This calculation can be generalised to the
counts of loops or cliques of larger size, leading to a sim-
ilar observation: the density of such structures decays to
zero as N — oo. This property has important implica-
tions in the study of dynamics on random networks, as
the network has a locally tree-like structure. If one ex-
plores a generated network around a node, the structure
is well approximated by a tree, and finding a cross link
between two branches of the tree is extremely rare.

The Erd6s-Rényi random graph also exhibits a phase
transition. Let us consider the size (i.e., number of nodes)
of the largest connected component in the network as a
function of the mean degree (k). When (k) = 0, the
network is trivially composed of N disconnected nodes.
In the other extreme of (k) = N — 1, each node pair
is adjacent such that the network is trivially connected.
Between the two extremes, the network does not change
smoothly in terms of the largest component size. In-
stead, a giant component, i.e., a component whose size
is the largest and proportional to N, suddenly appears
as (k) increases, marking a phase transition. In general,
phase transitions represent qualitative changes in the be-
haviour of complex systems due to non-linearity. They
imply that small changes of a parameter may have dras-
tic consequences on the organisation and dynamics of a
system.

The sudden emergence of a giant component is shown
as follows. Consider the probability that a randomly
chosen node does not belong to the giant component,
denoted by u. If a giant component is absent in the net-
work, we obtain v = 1. Otherwise, © < 1. By definition,
if node v; does not belong to the giant component, it
must not be adjacent to any node v; that belongs to the
giant component. Therefore, for an arbitrary node vj,
node v; is either not adjacent to v;, which occurs with
probability 1 — ¢, or adjacent to v; with the extra con-
dition that v; does not belong to the giant component,
which occurs with probability qu. The probability that
v; does not belong to the giant component via v; is thus
equal to 1 — ¢ + qu. Because there are N — 1 candidate
nodes as v;, we obtain

=(1—q+qu . (117)

By applying

li G R
RN AT
to Eq. (117), we obtain

u=e" (R-w), (119)

in the limit N — oc.

The probability S that a node belongs to the giant
component is equal to 1 —u. Substitution of this relation
to Eq. (119) yields

S=1—eR% (120)
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FIG. 14. Illustration of the different regimes of the Erdds-
Rényi model.

The solutions of Eq. (120) are given by the intersection
ofy=Sandy=1—-e®Sin0<S<1 §=0is
always a solution. Another solution exists if and only
if 1 — e (S grows faster than S at S = 0. Because
d(1 — e~ ®9)/dS|s—¢g = (k), the critical point above
which the giant component emerges is given by (k) = 1.
In the sub-critical regime (k) < 1, no giant component
exists, and the network is composed of a multitude of
small components. In the super-critical regime (k) > 1,
a giant component made of ox N nodes emerges. The
transition is continuous at the critical point. At the crit-
ical point, the size of the connected components obeys a
power-law distribution.

An alternative and probably more intuitive way to
show the emergence of the giant component is to adopt an
dynamical viewpoint to build components by a branch-
ing process. We consider an analogue of infectious disease
propagating along links and look at a node v; that has
been infected from its neighbour v;. How many neigh-
bours, other than v;, can v; infect in the next round?
Because each link is an independent random process,
the average number of newly infected nodes is equal to
q(N — 2) = (k), in the limit N — oo. When (k) < 1,
the branching process terminates after a finite number
of steps, and the components have a finite size. When
(k) > 1, the average number of new nodes grows expo-
nentially and the branching process never ends with a
positive probability. In practice, however, it must end
because the network is finite.

Instances of the Erdés-Rényi random graph can be gen-
erated in different ways. Omne can perform a Bernoulli
test of probability ¢ on all pairs of nodes, which requires
O(N?) operations. Alternatively, one can draw the de-
grees of N nodes from the Poisson distribution and build
a network using the configuration model introduced in
the next section, which respects the degree constraint.
The second method is substantially faster for large net-



works.

The Erdés-Rényi random graph plays a fundamental
role in network science. Its simple rules allow us to under-
stand real-world phenomena, such as a small average dis-
tance L. However, it also produces unrealistic patterns,
such as locally tree-like structure and the Poisson degree
distribution. In fact, a majority of empirical networks
has many triangles (i.e., not tree-like) and a long-tailed
degree distribution.

B. Configuration model

The configuration model is a generalisation of the
Erdés-Rényi random graph to the case of an arbitrary
but given degree of each node. It is used to inspect the
effect of heterogeneous degree distributions because it
does not have more specific features such as high clus-
tering. The model is defined as a random graph in which
all possible configurations appear with the same prob-
ability under the constraint that node v; has degree k;
(1 <4 < N). The degree sequence {k;} is often generated
by a given degree distribution p(k) under the constraint
that the sum of the degrees is an even number to satisfy
the handshaking lemma. To generate an instance of the
configuration model for a given degree sequence, we first
create stubs (half-edges) at each node v; such that its
number is equal to k;. Then, we randomly select pairs of
stubs one by one to connect them as a link as long as the
tentatively connected pair does not form a multiple edge
or self-loop. In fact, we must avoid the case in which the
link creation stops in the middle. For example, if there
remain three nodes which have 1, 2, and 3 unused stubs,
we have to create three more links because there are six
stubs remaining. However, we cannot do that without a
self-loop or multiple edge.

Consider a large network generated from a configura-
tion model with a given degree sequence. A stub ema-
nating from v; is connected to v; with probability k;/2M
because the number of stubs in the network is equal to
2M. Because v; owns k; stubs, the expected number of
links between v; and v; is given by

AF — kik;

ij ma (121)

where Aj; represents the statistical average of the adja-
cency matrix.

When (k?) is finite, the average distance of the config-
uration model is given by

log A%

_ (k)

L=+ —m—m (122)
08 (&

for large N. For the power-law degree distribution p(k)
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FIG. 15. Different realisations of the configuration model
given a sequence of node degrees. Note that the network may
present self-loops and multiple edges between pairs of nodes.

k™7, we obtain

loglog N, (2<vy<3),
L x ¢ log N/loglog N, (y=3), (123)
log N, (v > 3),

. Only when v > 3, (k?) is finite in the limit N — oo
such that Eq. (123) is consistent with Eq. (122). When
v < 3, L is very small such that the network is called
ultra-small-world.

The clustering coefficient is given by

LSS ) KR (W — 1)K — 1)
=22 " @

P ozt ) (k)N
- % (124)

Clustering coeflicient C' is small unless the degree dis-
tribution is highly heterogeneous, in which case (k2) >
(k)2

For the annealed adjacency matrix given by Eq. (121),
the largest eigenvalue is evaluated as

2
)\1%@.

) (125)

Equation (125) diverges for networks with power-law de-
gree distributions, so-called scale-free networks, with de-
gree distribution p(k) o< k=7, v < 3. In this case, the
largest eigenvalue diverges as N — oo.




FIG. 16. Possible three-node motifs in static directed net-
works.

When analysing the properties of a real-world network,
it is often advised to compare the observations to those
made on an appropriate null model. The configuration
model often plays this role, allowing to address the ques-
tion: Does the sequence of node degrees alone allows to
explain the observations, or does the system exhibit other
important structural factors?

C. Network motifs

In a majority of empirical networks, triangles are abun-
dant, which is the motivation of measuring the clustering
coefficient. We can use the same argument to search for
frequent small subgraphs as signatures of a given net-
work. This is motif analysis, a computational method to
enumerate small subgraphs (especially, three-node sub-
graphs) embedded in networks and assess whether a sub-
graph is significantly frequent. Significantly frequent sub-
graphs are called network motifs. The notion of statis-
tical significance heavily relies on the notion of random
graph defined above.

If we confine ourselves to weakly connected three-node
subgraphs in directed networks, there are 13 candidate
network motifs, as shown in Fig. 16. We should not de-
termine relative frequency of these subgraphs simply by
comparing the number of their appearance. For exam-
ple, in sparse random networks, a subgraph containing
fewer links, such as subgraph 1 in Fig. 16, would be more
frequently found than a subgraph containing many links,
such as subgraph 13. However, the difference in the fre-
quency of subgraph 1 and that of subgraph 13 should be
ascribed to sparsity of the network in this case, not to a
particular tendency that this network prefers subgraph 1.

Therefore, we measure the frequency of each subgraph
relative to that of a random network null model. While
different null models do the job, the most frequently used
null model is the directed variant of the configuration
model, which is a random graph with the in- and out-
degree of each node in a given network conserved. The
implicit assumption then is that we are interested in over-
represented subgraphs that cannot be explained by het-
erogeneity in the degree distribution (more precisely, the
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in- and out-degrees of each node in a given network).
For any of the 13 three-node subgraphs, m, we denote
by C(m) the frequency of subgraph m in the given net-
work and by C (m) the frequency in a network generated
from the configuration model. Because the configuration
model is a random network model, the value of C(m) is
generally different every time we generate a network from
the same configuration model. We define the Z score by

,_ Clm) = (C(m)

Sl (126)
std [C(m)]
where (C(m)) is the mean of C(m) over the instances
of networks generated by the configuration model, and

std {C’ (m)] is the standard deviation of C'(m). We cal-
culate (C(m)) and std [C’(m)] on the basis of sufficiently

many instances to lessen fluctuations in the estimates.

The Z score represents the normalised frequency of
subgraph m relative to the configuration model. Calcu-
lating the Z score is essentially equivalent to calculating
the p value in a statistical test. If the Z score is suf-
ficiently large or small, subgraph m is overrepresented
or underrepresented, respectively. Significantly overrep-
resented subgraphs are network motifs. Although the
Z score is famous in the context of network motifs, sig-
nificance of any quantity measured for a given network
should be tested with the Z score whenever possible.
Otherwise, we can be easily fooled by intuitively (but
not necessarily statistically) large/small values of a mea-
surement.

Network motifs can also be examined with larger sub-
graphs and undirected networks although there are ex-
ploding numbers of subgraphs to be searched and enu-
meration of each subgraph is computationally difficult for
large subgraphs. For historical reasons, network motifs
seem to be a main analysis tool for directed networks.
Software mfinder is freely available for finding network
motifs.

Motif analysis is particularly popular in the study of bi-
ological systems, where over-represented motifs are un-
derstood as building blocks of the network, that can be
combined to form more complex structures.

D. Growing network with preferential attachment

A broad range of networks grow in time in terms of
both the number of nodes, N, and the number of links,
M. Examples include citations in science, web graph and



networks of airports. Network growth is a type of tempo-
ral fluctuations of networks. Understanding mechanisms
of network growth definitely helps one to understand
temporal dynamics of networks. For example, there is
a phenomenon called triadic closure, in which if there
are links (v1, v2) and (vg, v3), then a new link (v, v3) is
likely to form, yielding a high clustering coefficient. Tri-
adic closure is a mechanism that can be incorporated in
growing network models.

In this section, we study a popular growing network
model with the preferential attachment mechanism, that
has played a pivotal role in the entire network science.
The model was proposed by Barabasi and Albert, which
we call the BA model, while the model had been known
for longer time. The model is an instance of a family of
multiplicative stochastic models, starting around a cen-
tury ago with the Pélya urn model and the Yule process.
Historically, the mechanism of preferential attachment
was also identified qualitatively by the sociologist Robert
Merton, who called it the Matthew effect, after a passage
in Biblical Gospel of Matthew. The Yule process was
studied by the economist Herbert Simon, interested in
the distribution of wealth, who showed that it produces
power-law distributions. This work inspired the Price’s
network model.

The BA model produces a network according to the
following steps:

1. Prepare mg nodes each of whose degree is at least
one. A typical choice is the complete graph (i.e.,
a link exists between every pair of nodes) on mg
nodes. Set a clock to ¢t = 0.

2. Add a node with m(< mg) half-edges to the exist-
ing network. Suppose that the existing network has
N’ nodes with degrees k; (1 <i < N’). The proba-
bility that each half-edge connects to v; is specified
by

ks
N/
Zj:l k;

Equation (127) indicates that a node receives a new
link with the probability proportional to its degree,
hence the name of preferential attachment. Equa-
tion (127) is applied under the constraint that we
avoid multiple edges, although this constraint is
non-essential. When m > 2, we have to decide
on whether or not to update the relevant k; values
used in Eq. (127) when one of the m links has been
added. However, this decision is again immaterial.

(k) = L<i<N).  (127)

3. Add nodes one by one until we have N nodes ac-
cording to step (2). Some of the first stages are
schematically shown in Fig. 17.

As we show below, the BA model produces networks
with a power-law degree distribution p(k) o k=3. In
early stages, nodes have similar values of k, which are
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FIG. 17. First several stages of the BA model. The bold lines
represent new links. We set mo = 3 and m = 2.

equal to or slightly larger than m. However, once {k;}
becomes somewhat heterogeneous, the heterogeneity will
self-reinforce owing to the preferential attachment mech-
anism.

The degree distribution of the BA model can be de-
rived in different ways. Here we proceed via master equa-
tions. Denote by p(k, t;,t) the probability that a node v;
that has joined at time ¢; has degree k at time ¢t. The
master equation for p(k,t;,t) is given by

k-1 k
(128)
because k increases by one with probability mII(k) =
k/2t and does not change with probability 1 — k/2t in a
unit time. When N is large, we obtain the asymptotic
solution

p(k,t,’,t—F 1)

p(k) = Tim 2P0

t—o00 t

(129)

The normalisation factor 1/t comes from the fact that
there are t + m =~ t nodes at time ¢.

The node that joins at time ¢; = ¢ + 1 has been absent
at time ¢, such that p(k,t + 1,¢t) = 0. By using this and
summing Eq. (128) over ¢;, we obtain

t+1
> p(k,tit + 1) :—Zp —1,t;,1)
ti=1 ti=1

<1—> Zp k,t;,t). (130)

By substituting p(k) =~ Z;le(k:,ti,t)/t =
Hoplktit + 1)/t + 1) and p(k — 1) =
Zti:l p(k —1,¢;,t)/t in Eq. (130), we obtain

(t+1)p(k) =

_ thltp(k 1)+ (1 - 2’1) tp(k). (131)

Equation (131) yields

k-1
= pk— >
pl) = mpb=1) (k=m+1), (132
which yields
1
p(k) o k3. (133)



Several other properties of the model have been derived
analytically. By allowing self-loops and multiple edges to
facilitate mathematical analysis, one obtains

log N/loglog N, (m > 2).

The network has a small average distance already with
m =1, and L is even smaller for m > 2. The clustering
coefficient is given by

O~ m—l(logN)Q.

. ~ (135)

This equation implies that the BA model lacks the clus-
tering property because limy_., C' = 0. Various exten-
sions of the BA model realise a non-vanishing C value as
N — oo.

The BA model, as it has been exposed above, contains
unrealistic ingredients, as a new node must have access
to information about the whole network in order to de-
cide which node to connect to. This limitation can be
solved by using local mechanisms, such as redirection
and copying, that essentially lead to preferential attach-
ment together with other desirable features. In partic-
ular, copying processes allow to generate scale-free net-
works with a high density of cliques of different sizes. See
Lambiotte, R., et al. ”Structural Transitions in Densi-
fying Networks.” Physical review letters 117.21 (2016):
218301.
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V. COMMUNITY DETECTION

Many networks exhibit community structure. Com-
munity structure implies that the network is composed
of groups of nodes such that the nodes are densely con-
nected within the same group and relatively sparsely con-
nected across different groups. According to a commu-
nity detection algorithm, the social network of bottlenose
dolphins shown in Fig. 18 has four communities indicated
by different colours. There are many algorithms aiming
to detect community structure in a given network in the
absence of predefined labelling of nodes. In this section,
after giving an introduction on the related problem of
graph partitioning, we introduce community detection
methods based on the notion of modularity. Alternative
methods will be presented at a later stage, in the chapter
dedicated to dynamics on networks.

A. Graph partitioning

The problem of graph partitioning has a long tradition
in computer science and has important applications for
parallel or distributed computation. It consists in divid-
ing the vertices of a network into a predefined number
of groups such that the number of edges between groups
is minimized. Problems of this type can be solved in
polynomial time, but with a prohibitive complexity of
nc2, where n is the number of nodes and ¢ the num-
ber of groups. For practical applications, approximate
methods have been developed, among which the popular
spectral partitioning method, due originally to Fiedler.
In this section, we consider the simplest instance of the
problem, with ¢ = 2, thus consisting in finding the best
bipartition of the nodes such that the number of edges
between the groups is minimized.

By definition, given a partition, the number of edges R
running between the two groups of vertices, also called
the cut size, is given by

1
R = 5 E Aij7
i,7 in
different
groups

(136)

which can be rewritten in more convenient form by defin-
ing the index verctor

+1
S; =
-1
T

The latter satisfies the normalization condition s*s = n.
After using

if vertex ¢ belongs to group 1, (137)
if vertex i belongs to group 2.

if ¢ and j are in different groups,
if ¢ and j are in the same group,
(138)

1
1 = i8:) =
2( 8i8;) {0



we rewrite Eq. (136) as

R= iZ(l - SiSj)Aij. (139)
ij
and, after some algebra,
R= % Z SiSj(k‘i(Sij - AU) (140)
ij
We can write this in matrix form as
R = 1s"Ls, (141)

where the real symmetric matrix L with elements L;; =
kid;j — Ajyj is the Laplacian matrix of the graph.

The graph partitioning problem is thus equivalent to
choosing the vector s so as to minimize the cut size,
Eq. (141). We rewrite the index vector as a linear combi-
nation of the normalized eigenvectors v; of the Laplacian,
s = > a;v;, where a; = vI's and the normalization

i
sTs = n implies that

Z al=n (142)
i=1
Then
R = Z aiv;‘FL Z CLjVj = Z aiaj)\jéij = Z G?AZ‘,
i ’ ! i (143)

where JA; is the eigenvalue of L corresponding to the
eigenvector v;. By convention we assume that the eigen-
values are labeled in increasing order \; < Ay < ... < A,
The task of minimizing R thus consists in choosing the
nonnegative quantities a? so as to place as much as pos-
sible of the weight in the sum (143) in the terms corre-
sponding to the lowest eigenvalues, and as little as pos-
sible in the terms corresponding to the highest, while
respecting the normalization constraint (142).

We have shown before that the vector (1,1,1,...) is
the dominant eigenvector of the Laplacian with eigen-
value zero, and that all eigenvalues of the Laplacian are
nonnegative. Given these observations it is now straight-
forward to see how to minimize the cut size R. If we
choose s = (1,1,1,...), then all of the weight in the fi-
nal sum in Eq. (143) is in the term corresponding to the
lowest eigenvalue Ay = 0 and all other terms are zero,
since (1,1,1,...) is an eigenvector and the eigenvectors
are orthogonal. Thus this choice gives us R = 0, which
is the smallest value it can take since it is by definition a
nonnegative quantity.

Unfortunately, when we consider the physical inter-
pretation of this solution, we see that it is trivial and
uninteresting. Given the definition (137) of s, the choice
s=(1,1,1,...) is equivalent to placing all the vertices in
group 1 and none of them in group 2. Technically, this is
a valid division of the network, but it is not a useful one.
Of course the cut size is zero if we put all the vertices
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in one of the groups and none in the other, but such a
trivial solution tells us nothing about how to solve our
original problem.

We would like to forbid this trivial solution, so as to
force the method to find a nontrivial one. To do so, we
shift our attention to the other terms in the sum. If there
were no further constraints on our choice of s, apart from
the normalization condition s”s = n, our course would be
clear: R would be minimized by choosing s proportional
to the second eigenvector v, of the Laplacian, also called
the Fiedler vector. This choice places all of the weight
in Eq. (143) in the term involving the second-smallest
eigenvalue Ay, also known as the algebraic connectivity.
The other terms would automatically be zero, since the
eigenvectors are orthogonal.

Unfortunately, there is an additional constraint on s
imposed by the condition, Eq. (137), that its elements
take the values +1, which means in most cases that s can-
not be chosen parallel to vo. This makes the optimization
problem much more difficult. Often, however, quite good
approximate solutions can be obtained by choosing s to
be as close to parallel with vy as possible. This means
maximizing the quantity

Z vi@)si < Z|v§2) | ,
(2)

where v;” is the ith element of v,. Here the second re-
lation follows via the triangle inequality, and becomes an
equality only when all terms in the first sum are positive

(or negative). In other words, the maximum of |v¥'s| is
(2)

)

lvis| = (144)

s; > 0 for all 4, or equivalently when s;
(

%

achieved when v

has the same sign as v %) Thus the maximum is obtained

with the choice

+1
S; =
—1

Even this choice however is often forbidden by the con-
dition that the number of +1 and —1 elements of s be
equal to the desired sizes n; and ny of the two groups, in
which case the best solution is achieved by assigning ver-
tices to one of the groups in order of the elements in the
Fiedler vector, from most positive to most negative, until
the groups have the required sizes. For groups of differ-
ent sizes there are two distinct ways of doing this, one in
which the smaller group corresponds to the most positive
elements of the vector and one in which the larger group
does. We can choose between them by calculating the
cut size R for both cases and keeping the one that gives
the better result.

This then is the spectral partitioning method in its
simplest form. It is not guaranteed to minimize R, but,
particularly in cases where A, is well separated from the
eigenvalues above it, it often does very well.

if o >0,

145
if v§2) < 0. (145)



B. Modularity

In the graph partitioning problem, we have implicitly
have had to fix the number of groups but also their size.
For instance, the spectral partitioning method described
before does not provide ways to determine these quanti-
ties; this is an input of the algorithm. The community
detection problem relaxes these constraints and aims at
finding the best partition of a network into communities,
whichever their number of their size. The underlying idea
is that the structures present in the network should guide
the algorithm to the right partition.

Modularity, denoted by @, is a quantity introduced
to measure the goodness of the partitioning of a network
into communities. Like the cut size, this quantity is often
used as an objective function to be optimised in order to
uncover the best partition of a network. The main ad-
vantage of modularity over other quality functions for
node partitioning is that it allows us to compare parti-
tions made of different numbers of communities. Let us
consider a set of nodes, denoted by CM. The underly-
ing idea of modularity is to compare the number of links
connecting nodes within CM with the expected number
of links in an appropriate null model. Under the config-
uration model, the probability that nodes v; and v; are
adjacent is given by P;; = k;k;/2M (Eq. (121)). Other
choices for the null model P;; have also been considered.
We quantify the contribution of CM to @ as

N
kik;
Z (Aij - W) . (146)
1,5=1;
v;,v;ECM

Let us now consider a partition of the network into Nen
communities. The cth community (¢ =1,2,..., Nom) is
denoted by CM.. Modularity is simply defined as a prop-
erly normalised sum of Eq. (146) over all communities,
ie.,

1 & & kik;

= —_— A —_ k)

wrx | X (voa)
viy0) €M,

N N 2
M 2M ’

c=1

where M, is the number of links connecting two nodes
within community CM.. According to Eq. (147), calcu-
lation of @ only requires the number of intra-community
links and the sum of the degree of nodes within each
community. We can also rewrite () as

N
1 kik;
Q= oM Z <Aij - W) 5(gi» 95)s

i,j=1

(148)

where g; is the community that the ith node belongs to,
and 6(gi,g;) = 1if g; = g; and 6(g;, gj) = 0 otherwise.
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FIG. 18. A social network of bottlenose dolphins. Four com-
munities detected by the Louvain algorithm implemented on
gephi (http://www.gephi.org) are shown by different colours.

Maximising @ is expected to uncover the best parti-
tion into the best number of communities. However, the
problem is not that simple, as we will discuss later. Mod-
ularity ranges in [—0.5,1]. The trivial partition into one
large community always yields

N
1 kik;
- A — 2
@=3 < ( “ QM)

1,7=1
N N
_ oM — Dimi kidi Ky
oM oM
1 2M x 2M
B (ZM — Wi > 0, (149)

where we used the handshaking lemma.

C. Spectral optimization of modularity

Optimizatizing community is far from trivial, as it was
proved to be NP-hard, and various approximate opti-
mization methods have been designed. In this section,
we present an approach based on the spectral properties
of the network, similar in spirit to the spectral partition-
ing method. For the sake of simplicity, we consider the
division of a network into just two communities (division
into more communities can be then obtained recursively).
Our aim is thus to find the best bipartition of the net-
work, that is the bipartition that optimises modularity.
As before, we denote a potential such division by an in-
dex vector s with elements as in Eq. (137), satisfying

8(gi,9;) = 2(sis; +1). (150)
Thus we can write modularity in the form
1 kik;
Q=17 %:[Aij - ﬁ](szsy +1)
1 kik;
= o7 221 — 5y lsiss, (151)
ij



where we have used the handshaking lemma. This result
can be conveniently rewritten in matrix form as

1
Q = —s"Bs,

o (152)

where B is the real symmetric matrix having elements

kik;
Bij = Aij — ﬁ (153)
This matrix is called the modularity matriz, which satis-
fies the following properties. All rows (and columns) of
the modularity matrix sum to zero, which implies that
the vector (1,1,1,...) is an eigenvector with eigenvalue
zero, just as is the case with the Laplacian. Unlike the
Laplacian however, the eigenvalues of the modularity ma-
trix are not necessarily all of one sign and in practice the
matrix usually has both positive and negative eigenval-
ues.

Equation (152) is the equivalent of Eq. (141) for the cut
size and similar matrix methods can thus be applied to
modularity optimization. By direct analogy, we write s
as a linear combination of the normalized eigenvectors u;
of the modularity matrix, s = Y"1 | a;u; with a; = u!s,
so that

Q= a2, (154)

where [3; is the eigenvalue of B corresponding to the
eigenvector u;. We now assume that the eigenvalues are
labeled in decreasing order 5y > B2 > ... > (,. Modu-
larity optimization thus becomes equivalent to choosing
the quantities a? so as to place as much as possible of the
weight in the terms corresponding to the largest (most
positive) eigenvalues.

As with ordinary spectral partitioning, this would be a
simple task if our choice of s were unconstrained (apart
from normalization): we would just choose s proportional
to the leading eigenvector u; of the modularity matrix.
But the elements of s are restricted to the values s; = £1,
which means that s cannot normally be chosen parallel
to u;. Again as before, however, good approximate so-
lutions can be obtained by choosing s to be as close to
parallel with u; as possible, which is achieved by setting

. if ul” >0,
Tl iV <o

%

(155)

This then is our first and simplest algorithm for com-
munity detection: we find the eigenvector corresponding
to the most positive eigenvalue of the modularity ma-
trix and divide the network into two groups according to
the signs of the elements of this vector. Importantly, the
separation between positive and negative entries deter-
mines the optimal sizes of the communities. Moreover,
finer divisions are obtained by applying the algorithm re-
cursively. The method thus produces a set of partitions,
with an increasing number of partitions. Modularity can
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FIG. 19. Each pass of the algorithm is split into two phases.
The first phase consists in a local optimization (LO), where
each vertex can join one of its direct neighbors community.
The second phase consists in a merging of the vertices (VM),
i.e to the construction of a meta-graph whose vertices are the
communities found at the end of the first phase. These passes
are repeated until a modularity maximum is reached.

Apreés la premiére passe
(4 communautés, Q=0.38)

Apres la seconde passe
(2 communautés, Q=0.45)

then be used to find, among those, the best partition,
and thus determine the right number of modules. The
magnitudes of the elements of the eigenvector u; also
contain useful information about the network, indicating,
the “strength” with which vertices belong to the commu-
nities in which they are placed.

D. Louvain method

The spectral method presented in the previous section
is divisive, as it proceeds by divising the network into
smaller parts until reaching an optimal partition. One
of its limitations is computational, as its implementation
requires the estimation of eigenvectors of the modularity
matrix, which is prohibitively expensive for systems bey-
ong 10* nodes, in general. For such systems, alternative
methods have been designed, often based on greedy, ag-
glomerative principles. In this section, we describe one
such method, the Louvain method, implemented in most
libraries and packages.

The Louvain method consists of two phases, which are
iteratively repeated, until a local maximum of modular-
ity is obtained. The algorithm begins with an undirected
weighted graph having N vertices to which an index be-
tween 0 and N — 1 has been randomly assigned. Algo-
rithm 1 is a pseudo-code version of the method. It is then
designed as follows:

e First phase: local optimization. The initial
partition consists in placing each vertex into a sep-
arate community, this partition is therefore com-



posed of N singleton communities. We then con-
sider the first vertex, i.e. with index 0, and calcu-
late the modularity variation obtained by removing
0 from its community and placing it in the commu-
nity of one of its neighbors j. This variation is
therefore calculated for each of the neighbors of 0
and the vertex 0 is then moved to the community
where this increase is maximum, but only if this
maximum increase is positive. If all the increases
are negative, then the vertex 0 is put back into
its original community. This process is applied se-
quentially, that is the process is then reapplied to
all the vertices repeatedly until no vertex is moved
during a complete iteration. The first phase is then
finished. We stress the fact that there are gener-
ally several iterations (i.e. after node N — 1, one
returns to node 0, and so on) and this phase ends
when a local maximum of modularity is reached,
meaning that no individual movement can increase
the modularity. After this first phase, the network
of N vertices has been divided in a partition P
having N, communities. If N > N., meaning if the
first phase has grouped some vertices, then the al-
gorithm continues to the second phase, if not the
algorithm is finished and the result is the partition
P.

e Second phase: merging of vertices. The sec-
ond phase consists in constructing a new graph
whose vertices are the N, communities discovered
during the first phase. The weight of the link be-
tween two of these new vertices is given by the sum
of the weights of the links which existed between
the vertices of these two communities. The links
which existed between the vertices of a same com-
munity create loops over the community in the new
graph. Once this second phase is finished, it is pos-
sible to reapply the first phase of the algorithm on
the weighted graph and to iterate.

A combination of the two phases is usually called a
“pass”. The first phase consists in finding a local opti-
mum, where each vertex can only be linked to one com-
munity in its direct neighborhood. The second phase
consists in aggregating the vertices, such that the appli-
cation of the first phase on the aggregate graph will lead
to collective movements of vertices at a higher level. This
repetition of passes recalls the concept of self-similarity
of complex network and naturally constructs a hierarchy
of communities. The output of the algorithm is therefore
a set of partitions, one per pass, such that the average
size of the communities and the modularity increase from
one pass to another. By construction, the partition found
after the last pass is the one maximising modularity, and
it is the main outcome of the algorithm, but the hierar-
chy provided by the algorithm can also be exploited to
characterise the hierarchical structure of the network.
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Algorithm 1 Pseudo-code of the community detection
algorithm.

Community detectionG initial graph
repeat
Place each vertex of G into a single community
Save the modularity of this decomposition
while there are moved vertices do
for all vertex n of G do
¢ < neighboring community maximizing the modularity
increase
8: if c results in a strictly positive increase then
9: move n from its community to ¢
10: end if
11: end for
12: end while
13: if the modularity reached is higher than the initial mod-
ularity, then
14: end <+ false
15: Display the partition found
16: Transform G into the graph between communities
17: else
18: end <+ true
19: end if
20: until end

E. Limitations of modularity optimisation

Methods based on modularity maximisation suffer
from several drawbacks. First, by construction, they are
not capable of uncovering overlapping communities often
observed in empirical networks. Second, @) exhibits a res-
olution limit, because using @ it is impossible to detect
dense clusters of nodes that are smaller than a certain
scale. The resolution limit originates from the depen-
dency of the null model on 2M. The dependency de-
creases when the number of links, M, is increased. Then,
modularity maximisation tends to favour larger commu-
nities. In the limit M — oo, the null model is neglected
and modularity optimisation simply uncovers the con-
nected components. Modularity-based methods implic-
itly favour communities having a certain size, depending
on the size of the entire network, not only on its inter-
nal structure. Third, the modularity landscape is usually
extremely rugged and degenerate such that there exists
an exponential number of alternative, high-scoring par-
titions. Finally, although modularity allows us to com-



FIG. 20. Schematic of overlapping communities. Two com-
munities are shown by dotted circles. One node belongs to
both communities.

FIG. 21. Ring of 4 cliques.

pare partitions of the same network, it is by no means
intended to compare modularity values of different net-
works. Therefore, @ should not be used as a measure
of the modularity of a network. For instance, the mod-
ularity of the best partition of a random network tends
to @ = 1 when the network is sufficiently large, whereas
this network is by no means modular.
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Vil. DYNAMICS, TIME-SCALES AND COMMUNITIES

One of the main motivations for identifying modu-
lar structures in networks is that they provide a simpli-
fied, coarse-grained description for the system structure.
Think for instance of a social network, in which we might
be able to decompose the system into groups of people
such as circles of friends. We may then represent the
system in terms of the interactions between these differ-
ent groups of people, thereby reducing the complexity
of our description. The hope is to not only arrive at a
more compact structural description, but that the found
modules can be interpreted as the ‘building blocks’ of
the system with a functional meaning. In general this
functionality is expressed in the ways by which dynam-
ics is constrained by the underlying structure. Think of
flows of passengers in the underground, flows of ideas in
citations networks, or flow of information in the social
network example. To properly understand such systems,
we indeed to consider the dynamics that acts on top of
an underlying structure structure. In this section, we
will provide an overview of the interplay between struc-
ture and dynamics in complex networks by considering
(linear) consensus dynamics. First, we describe dynamics
with a separation of time-scales and discuss how such a
time-scale separation can be a direct consequence of the
network structure. Second, we discuss how the presence
of particular symmetries in a network can give rise to in-
variant subspaces in the dynamics that can be precisely
described by graph partitions.

A. Notation

Here is a short summary of the notations used in
this section. For simplicity, in the following we consider
mainly undirected, connected graphs with n nodes (ver-
tices) and m links (edges). Our ideas extend to directed
graphs, however, which we will outline as we go along.
The topology of a graph is encoded in the weighted ad-
jacency matrix A € R™ ™ where the weight of the link
between node 7 and node j is given by A;;. Note that
A = AT for an undirected graph. The weighted out-
degrees (or strengths) of the nodes are given by the vector
outdeg = d = A1, where 1 is the n x 1 vector of ones.
For a vector x, we define diag(x) to be the matrix X
with elements X;; = x; and zero otherwise. We thus de-
fine the diagonal matrix of degrees as D = diag(d). The
combinatorial graph Laplacian is defined as L =D — A.
It is symmetric positve semi-definite, with a simple zero
eigenvalue when the graph is connected.

B. Consensus dynamics

Consensus has been one of the most popular and well-
studied dynamics on networks. This is due to both its
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FIG. 22. Illustration of a consensus dynamics on the Karate Club network. A Karate Club network orginally analysed
by Zachary. B Consensus dynamics on the Karate club network starting from a random initial condition. As discussed in the
text, as time progresses the states of the individual nodes become more and more aligned, and eventually reach a consensus

value, equal to the arithmetic average of the initial condition.

analytic tractability as well as its simplicity in approx-
imating several fundamental behaviors. For instance,
in socio-economic domains consensus provides a model
for opinion formation in a society of individuals. For
engineering systems, it has been considered as a basic
building block for an efficient distributed computation of
global functions in networks of sensors, robots, or other
agents. To define a standard consensus dynamics, con-
sider a given connected network of n nodes and adjacency
matrix A. Let us endow each node with a scalar state
variable z; € R. The (average) consensus dynamics on
such a network is then defined as:

x = —Lx, (consensus dynamics) (156)
where L is the graph Laplacian. Note that in coordinate
form this simply amounts to @; = 3, A;;(z; — x;), ie.,
each node adjusts its state such that the difference to its
neighbours is reduced. The name of these dynamics de-
rives from the fact that for any given initial system state
xo = x(0), the differential equation above will drive the
state to a global ‘consensus state’ in which the state vari-
ables of all nodes are equal. Mathematically, this means
that x; = x, for all i as t — oo, where z, = ].TXO/TL is
given by the arithmetic average of the initial node states.
Intuitively, this dynamics may be interpreted as an opin-
ion formation process on a network of agents, who will
in the absence of further inputs eventually agree on the
same value: namely, the average opinion of their initial
states. As we will show in the next chapter, this process
is the dual of a random walk process taking place on a
network.

C. Time-scale separation in dynamical systems

Before discussing time-scale separation in the context
of a dynamical process acting on a network, let us ex-
plain the concept of time-scale separation with a generic
example first. Consider the following simple dynamical
system:

dx

), (157)
Y ga) (158)

where € < 1 is a small positive constant. Note that, the
above implies that x(t) changes much more rapidly than
y(t). Indeed, dy/dt will be proportional to eg(z, y), which
is small by construction. Alternatively, simply define a
new, slow time variable 7 := €t and note that the above
can be written as

X~ ) (159)
W o). (160)

Whence, there is a separation of time-scales in the dy-
namics, where y evolves according to the ‘slow’ timescale
7, and x according to the much faster ¢.

This time-scale separation can be exploited for the
analysis of a system in various ways. On the one hand, if
we are mainly interested in the short term (fast) behav-
ior of the system above, we may effectively treat y as a
fixed parameter and ignore its time evolution, leading to
an effective one-dimensional system description. Indeed
for the so called ‘singular perturbation’ ¢ — 0, y and =
will effectively be decoupled. On the other hand, if we
are mainly interested in the long term behaviour of the



system, then it is y we are most interested in. Let us as-
sume, e.g., that z(t) eventually converges to some fixed
point x,. Since the behaviour of z is much faster than
the time-evolution of y, we may simply assume that x
has already converged. Using this simplification will, of
course, lead to some errors when comparing to the actual
time-evolution of y, especially for an initial transient pe-
riod. However, it allows us again to focus on a simpler
one-dimensional system, facilitating a simpler analysis.

To summarize, the separation of time-scales acts in
such a way that it ‘almost decouples’ the system in two
different regimes. For the fast system behavior, we may
simply concentrate on x, whereas for the slow, long-term
behavior we may simply focus on y and forget about the
details of x.

D. Time-scale separation in networks with consensus
dynamics

Let us now discuss how the above ideas can be trans-
lated into the context of networks on which a diffusion or
consensus dynamics is acting. For simplicity we will de-
scribe the results here in the context of consensus, though
translating these ideas to diffusion processes is straight-
forward.

For an initial condition xq, standard linear systems
theory tells us that the solution to (156) is given by
x(t) = exp(—Lt)xg, where exp(:), denotes the matrix
exponential. Writing the solution in this way disguises
however the time-scales present in the evolution of x as
these gets mixed via the network interactions. In or-
der to reveal the characteristic time-scales present in the
system we can make use of a spectral decomposition of
L. Let us denote the eigenvectors of the Laplacian by
v;, i.e., Lv; = \;v;, and assume that we have ordered
the eigenvalues (and associated eigenvectors) in increas-
ing order 0 = A1 < Ay < ... < A,. We can now
decompose the Laplacian as L = )", )\iviv:, and ac-
cordingly write the solution x(t) in this spectral basis as
x(t) = 3, exp(—Ait)v; v, xo.

In this format the time-scales of the process become
apparent. They are dictated by the eigenvalues of the
Laplacian matrix: each eigenvector (or eigenmode) de-
cays according to a characteristic time-scale 7; = 1/\;.
Hence, if there are large differences between the eigen-
values, we will have a time-scale separation. More pre-
cisely assume that there is a group of k£ small eigenvalues
{0,..., Ak}, which are well separated from the remaining
eigenvalues in the sense that A\ < Ag11. Then after some
time 79 < 1/Ak+1, the eigenmodes associated with eigen-
values {Ag41,- .., An} become negligible and the system
can be effectively described by the k smallest eigenmodes.
More technically, the k first eigenvectors form a dominant
invariant subspace of the dynamics.
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E. Example: A modular partitioned network structure
induces time-scale separation

The main point of the discussion above is that if there
is a separation of time-scales, there exists a lower dimen-
sional description of the dynamics on the network after a
specific time-scale 19. A natural question is thus how this
time-scale separation and the lower-dimensional descrip-
tion of our dynamics is related to the network structure.

As an example let us consider a network composed
out of £ modules, only weakly coupled to the other. To
simplify our exposition let us consider the case of a graph
with £ modules whose adjacency matrix can be written
as:

Ay
A,

A= Astructure+Arand0m = +Arand0m~

Ay

Here A .ndom may be interpreted as a realization from
an Erdés-Rényi random graph, with unstructured, sparse
connectivity (a ‘noise term’); A; are the adjacency (sub-
Jmatrices of the individual clusters which have higher
connectivity inside.

How is the spectrum and the eigenvalues of the cor-
responding Laplacian L = Lgtructure + Lirandom affected
by the structure present? Let us first consider the case
where Liandom = 0, i.e., the graph consists of & discon-
nected components. Then we will have A = 0 with alge-
braic (and geometric) multiplicity &, and the associated
eigenspace can be spanned by eigenvectors of the form
cz(»J ) = 1 if node i is in component j, and zero otherwise.
To gain insight into the case where L;andom # 0, we can
appeal to matrix perturbation theory and random matrix
theory, respectively. For a network of the form above, the
Davis-Kahan theorem provides bounds on the (angular)
distance between the subspace A spanned by {c()}, and
the subspace A’ spanned by the corresponding eigenvec-
tors of L associated with the smallest eigenvalues. On
an intuitive level, the Davis-Kahan theorem states that
if the noise level is not too high, then A ~ A’. The impli-
cation is that the dominant invariant subspaces will be
commensurate with the structural decomposition of the
network in terms of the block-vectors. Hence the long-
term dynamics will directly reflect the structural decom-
position of the network. In other words, the time scale
separation in such a networked system takes an intuitive
meaning: quasi-consensus is reached more quickly within
each block, while global consensus is only reached on a
longer time scale.

To illustrate the above discussion let us consider here a
numerical example. The network displayed in Figure 23A
consists of 3 groups with 100 nodes each and is struc-
tured as outlined in our discussion above. As can be
seen clearly in Figure 23B, the dynamics becomes effec-
tively low dimensional after around ¢ = 0.05 and can be
well approximated by the dominant eigenmodes.
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FIG. 23. Illustration of a consensus dynamics on a structured network. A Adjacency matrix (unweighted) of a
structured network with 5 groups, as discussed in the text. B A consensus dynamics on this network displays a time-scale
separation: until around ¢ = 0.05, approximate consensus is reached within each group (groups indicated by color); then a
consensus is reached between the groups. Note that for the shown network A4 = 18, in good agreement with our discussion

above.

Finally, let us remark that most of the above discussion
is not limited to the case where the structure of the net-
work is effectively block-diagonal, but can be extended
to the general case where the network consists of a low-
rank structure plus a random ‘noise’ component. Note
that this also includes networks that are structured ac-
cording to a stochastic blockmodel, though if the network
is very sparse the spectral properties of a realization of a
stochastic blockmodel may not be concentrated around
their expectation.

F. Dynamically invariant subspaces and external equitable
partitions in networks

Let us now consider a somewhat different network
structure that has important repercussions for a dynam-
ical process acting on the network: the so-called external
equitable partition (EEP).

EEPs extend the well known graph-theoretic notion of
equitable partition (EP). An EP splits the graph into a
set {C;} of non-overlapping groups of nodes called cells.
The number of connections to cell C; from any node
v € C; is only dependent on i, j. Stated differently, the
nodes inside each cell of an EP have the same out-degree
pattern with respect to every cell. For EEPs, this re-
quirement is relaxed so that it needs to hold only for
the number of connections between different cells C;,C;
(i # 7). An example a graph with an EEP is shown in
Figure 24.

Algebraically, these definitions can be represented as
follows. A partition of a graph with n nodes into ¢ cells
is encoded by the n x k indicator matrix C, defined as
C;; = Ll if node i is part of cell C; and C;; = 0 otherwise.
Hence the columns of C are indicator vectors ¢ of the

cells:

C:=[cW, ... W] (161)

Given the Laplacian matrix L of a graph, we can write

the definition of an EEP as follows:

LC=CL". (162)

Here L™ is the ¢ x ¢ Laplacian of the quotient graph
induced by H:

L™= (C'C)"'c"LC =CTLC, (163)
where the k x n matrix CT is the (left) Moore-Penrose
pseudoinverse of C. Observe that multiplying a vector
x € RN by CT from the left sums up the components
within each cell, and that CT C is a diagonal matrix with
the number of nodes per cell on the diagonal. Hence C™
may be interpreted as a cell averaging operator.

The quotient graph associated with an EEP is a coarse-
grained version of the original graph, such that each cell
of the partition becomes a new node and the weights
between these new nodes are the out-degrees between the
cells in the original graph (see Fig. 24a). Although the
Laplacian of the original graph is symmetric, the quotient
Laplacian will be asymmetric in general.

Using some straightforward algebraic manipulations it
is moreover easy to show that:

CtL=L"C", (164)
which summarises the relationship between the cell av-
eraging operator Ct and the Laplacians of the original
and quotient graphs.

The definition of the EEP (162) can be understood as
an invariance of the partition encoded by C with respect
to the Laplacian L. Similarly, Eq. (164) shows that the
cell averaging operator C* exhibits a (distinct) invari-
ance with respect to L. In particular, Eq. (162) implies
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FIG. 24. External equitable partition A graph with n = 12 nodes (left) with an external equitable partition into five cells
(indicated with colors) and its associated quotient graph according to the EEP (right).
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FIG. 25. Dynamical implication of an external equitable partition We consider again the graph shown in Figure 24.
A The evolution of the consensus dynamics on the full graph (156) from an initial condition x = Cy is shown with solid lines.
The associated quotient dynamics (165) governing y is shown with circles. Once all states within each cell are equal (i.e., they
are cluster-synchronized), the dynamics will remain cluster-synchronized and its dynamics will be described by the quotient
dynamics for all times. B For consensus dynamics, the quotient graph dynamics (circles) also describes the cell-averaged
dynamics (crosses) of the unsynchronized full graph dynamics (solid lines), as given by (166).

that the associated cell indicator matrix C spans an in-
variant subspace of C, whence it follows that there ex-
ists a set of eigenvectors which is localised on the cells
of the partition. Furthermore, the eigenvalues associated
with the eigenvectors spanning the invariant subspace are
shared with L™, the Laplacian of the quotient graph. If C
has degenerate eigenvalues, an eigenbasis can be chosen
such that it is localised on the cells of the partition.
The properties of the EEP (162)—(164) have notewor-
thy consequences for the dynamics dictated by L, as il-
lustrated by the case of linear consensus dynamics:
First, as shown in Fig. 24A, the EEP is consistent with
an exact form of cluster consensus. In particular, if the
initial state vector is given by x = Cy for some arbitrary
y (i-e., all the nodes within cell C; have the same value y; ),
the nodes inside the cells remain identical for all times
and their dynamics is governed by the quotient graph:

%X =Cy where y=-L"y. (165)

This follows directly from LCy = CL™y.
Second, the dynamics of the cell-averaged states (x)c,
is governed by the quotient graph:

d<X>Ci _ T
T =-L <X>c.

which follows from CtLx = L™C*%x. Thus, the cell-
averaged dynamics is governed by a lower dimensional

where (x)¢, :=CTx, (166)

linear model, with dimensionality equal to the number of
cells in the EEP (see Fig. 24B).

Third, the results obtained for the autonomous dynam-
ics with no inputs (156) can be equivalently rephrased for
the system with a bounded input u(t):

x = —Lx + u(?). (167)
In particular, similarly to (165), we also have cell invari-
ance under inputs: if we apply an input consistent with
the cells of an EEP (i.e., u(t) = Cv(t),v(t) € R¢), the
nodes inside each cell remain identical for all times.

We remark that, while we here have focussed on the
implications of an EEP for consensus dynamics, invariant
partitions like the EEP can also play a similar role for
other linear and nonlinear dynamics.

Before closing this section, let us pause briefly to clar-
ify the difference between the presence of an EEP in a
network, and the presence of a time-scale separation in
the system. Observe that in the context discussed here,
both of these concepts can be related to the notion of an
invariant subspace in the dynamics. Note that if we have
an EEP there is a set of eigenvectors that are exactly con-
stant on each cell in the graph. These eigenvectors may
be associated to any eigenvalue of the graph, whether it is
fast or slow. We may summarize this on an intuitive level
by saying that for an EEP the ’shape’ of the eigenvectors



with respect to the cells is important, but the eigenvalues
are irrelevant. Note that this in contrast to the notion of
time-scale separation discussed above. There the defin-
ing criterion were the eigenvalues, or more precisely a gap
between the eigenvalues, separating them into slow and
fast eigenvalues. In our example in Figure 23 above, the
associated eigenvectors were indeed approximately con-
stant on each cell (each block of nodes) as well, but not
exactly. This indicates that the notion of an EEP and
that of a time-scale separation are not mutually exclu-
sive. We may indeed have a EEP in which the set of
eigenvectors corresponding to the cells are precisely the
slowest eigenmodes, but this does not have to be the case.
Conversely the eigenvectors corresponding to the slowest
time-scales do not have to be exactly constant on every
cell.
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VIilIl. DYNAMICS I: RANDOM WALKS

Consensus dynamics has important applications, in
connection to the fields of decentralized algorithms and
synchronization. Another important dynamical process
on networks is diffusion, aiming at modelling how an en-
tity randomly explores the underlying structure. In this
section, we provide a detailed analysis of random walk
processes on networks. As we will show, in certain set-
tings, random walks can be seen as a dual process of the
consensus dynamics described in the previous section.

A. Discrete-time random walks on networks

Let us consider a walker diffusing on an undirected
network. At each step, the walker located on a node
selects one link connected to the node at random and
jumps to an adjacent node. This process is equivalent to
a Markov chain (Section IITH) and is described by the
N x N transition matrix T (Eq. (75)). The probability
that the walker visits the ith node after ¢ steps, p;(t), is
given in by Eq. (79), where p(t) = (p1(¢) --- pn(2)).

The solution, Eq. (79), involves products of matrices
and can be simplified with the use of a graph Fourier
transform. The underlying idea is to decompose the sig-
nal in an adequate base of vectors, such that the matrix
products take the form of algebraic products for ampli-
tudes associated to the different dynamical modes. To
work out this idea, let us first note that the transition
matrix of the random walk is given by T;; = A;;/k;, rep-
resenting the probability that the walker transits from
the ¢th node to the jth node. The transition matrix, T,
is in general asymmetric, except if the underlying graph
is regular. Nonetheless, its spectral properties can be
directly derived from those of the symmetric matrix

_ Aij

Ai’ = )
T Jkikj

whose properties are essentially equivalent to those of
the normalised Laplacian (Eq. (104)). By applying the

decomposition given by Eq. (69) to A, we obtain

(168)

(169)

where ), is the fth eigenvalue of A and wu, is the nor-
malised eigenvector such that (wug, we) = dgpr.

Because T;; = \/EA”/ k;, i.e., T = D™Y2AD'Y/?,
where D is the N x N diagonal matrix whose (7,1) ele-
ment is equal to k; (1 < i < N), the fth left and right
eigenvectors of T are given by

uy = ((W)M/E ('W)N\/E), (170)
uf = (Vo - won/VEN) . (T



respectively. Equation (170) is verified by
(WTD1/2) T— (U;D1/2> (D71/2AD1/2>

- (u}[l) DY2 = [ DY2,  (172)

which implies u% = uZDl/ 2 with eigenvalue )\,. Equa-
tion (171) is verified by

T (D72u) = (D7/2ADY?) (D71 /2u,)

—p~1/2 (AW) = \D Yy, (173)
which implies u? = D~1/2y, with eigenvalue \,.
Using Eq. (71), we obtain
. t -
Tt — (D—l/zADl/z) — D12 jtpt/2
N
D7V2N " Nugul D/?
=1
N
= Aujug. (174)
/=1
Therefore,

In Eq. (175), ax(0) = (p(0),u}t) is the projection of the
initial condition to the ¢th eigenmode. Equation (175)
indicates that the state of the random walk after ¢ steps
is given by a linear combination of the eigenmodes as
follows:

(176)

where
ag(t) = /\éag (0).

By definition, the graph Fourier transform maps a vector
defined on the nodes, i.e., p(t), to a vector of amplitudes
of the eigenvectors (ai(t) --- an(t)). It is a general-
isation of the standard Fourier transform to topologies
different from lattices (e.g., one-dimensional chain, two-
dimensional square grid), where the eigenvectors of the
transition matrix play the role of ¢**®. Graph Fourier
transforms can also be defined based on other matrices
describing the graph, e.g., the adjacency matrix. The
choice of matrix and its associated base of eigenvectors
are motivated by their adequacy for the problem at hand.

As mentioned in Section IITH, the eigenvalues Ay of
the transition matrix are in the interval [—1,1]. The
mode with Ay = 1 corresponds to the stationary den-
sity, and we thus write u% = p*. The right eigenvector

(177)
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that corresponds to this mode is uft o (1, T
All modes for which —1 < Ay < 1 decay to 0. The eigen-
value Ay = 1 is the largest-magnitude eigenvalue, and the
Perron—Frobenius theorem guarantees that all elements
of u}# and u};{ are positive. Similar results hold for di-
rected networks, although we cannot take advantage of
the symmetric structure of the matrix A in general. In
directed networks, the eigenvalues satisfy |A\¢| < 1. When
|Ae] < 1 holds for all but one eigenvalue, which is the case
except for directed variants of multipartite graphs with
an even number of components, the mode with Ay = 1
corresponds to the stationary density. In this case, we
obtain uf = p* and uf o (1, ... ,1)T. Again, the
Perron—Frobenius theorem guarantees that all elements
of u% are positive.

By letting n — oo in Eq. (175), we obtain p* =
uk, (p(0),ul, ), where the subscript “max” indicates
the mode corresponding to the dominant eigenvalue
(which is equal to 1). Because ul, o (1, T
it follows that (p(0),ul. ) = 1 regardless of the initial
condition p(0). This is consistent with the fact that ul
gives the stationary density. By letting n be large but fi-
nite, we obtain

p(n) ~ uﬁlax<p(0) umax> )‘2 U2< (0)7 u§> ’ (178)
where \g is the second-largest (in magnitude) eigenvalue
of T. In deriving Eq. (178), we only kept two terms,
because |A\g|" < |A2|™ for all eigenvalues Ay with £ > 2,
assuming that |As| < |Az] (where £ € {3,...,N}). Equa-
tion (178) indicates that the second-largest eigenvalue of
T governs the relaxation time. More generally, the relax-
ation speed is determined by the ratio between |A\z| and
Amax = 1. The difference 1 — X5 is often called the “spec-
tral gap”. A large spectral gap (i.e., a small-magnitude
for \2) entails fast relaxation.

The “Cheeger inequality” gives useful bounds on Ag.
The “Cheeger constant”, which is also called “conduc-
tance”, is defined by

b= mi { (number of edges that connect S and S) }
st min{vol(S), vol(S)} 7
(179)
where S is a set of nodes in a network, S is the comple-
mentary set of the nodes (i.e., SNS = () and SUS is the
complete set of the N nodes), and vol(S) = Zij\il;vies 5.
In the minimization in Eq. (179), we seek a bipartition of
a network such that the two parts are the most sparsely
connected. (In other words, we want a minimum cut.)
The denominator in the right-hand side of Eq. (179) pre-
vents the selection of a very uneven bipartition, which
would easily yield a small value for the numerator. The
Cheeger inequality is
h2
> <1—1Ae| <2h, (180)
so a small Cheeger constant h implies a small spectral
gap 1 — |X\2] and hence slower relaxation. This result



is intuitive, because one can partition a network with
a small value of h into two well-separated communities
such that it is difficult for random walkers to cross from
one community to the other. Note that there are various
versions of Cheeger constants and inequalities. These
results are in line with our discussion on spectral methods
for community detection in the previous chapter.

A fact related to the relaxation time is that the power
method is a practical method to calculate the stationary
density of an RW in a directed network. Suppose that
we start with an arbitrary initial vector p(0), excluding
one that is orthogonal to p*, and repeatedly left-multiply
it by T. After many iterations, we obtain an accurate
estimate of p*. Because any p(0) that is orthogonal to p*
includes a negative entry, one can start iterations with
any probability vector p(0). In practice, one may have to
normalize p(n) after each iteration (or after some number
of iterations) to avoid the elements of p(n) becoming too
large or small.

B. Application: PageRank

A well-known centrality measure for directed networks
is the PageRank, which was first introduced for rank-
ing webpages and later adopted in a variety of applica-
tions. The PageRank is defined as the stationary density
of a discrete-time random walk, particularly on directed
networks. As a reminder, we considered discrete-time
random walks on undirected networks in Section VIIT A.
In this section, we start by looking at discrete-time ran-
dom walk on directed networks, which is a representative
Markov chain (Section ITTH).

Consider a directed network and a random walker in
discrete time. In each step, the walker located at the
ith node jumps to one of the out-neighbours selected at
random. The transition matrix, i.e., the probability that
the walker moves from the ith node to the jth node is
given by

out *
ki

Tij = (181)
Although we focus here on the case of unweighted net-
works, the following analysis can be easily generalised to
the weighted case.

The time evolution of the density of the random walk
is driven by Eq. (77). The stationary density given by
Eq. (80) essentially defines the PageRank. The PageR-
ank states that node v; is important if v; receives many
links, the links entering v; emanate from important
nodes, and a node v; sending a directed link to v; has
a small out-degree. The last condition says that the to-
tal importance of v; is shared among its out-neighbours.
This circular relationship, i.e., a node is important if it
is connected to important nodes, leads to an eigenvalue
problem.

The naive use of the stationary density p* =

(py -~ PN, pf = limyeopi(t) (1 <4 < N) is in gen-

38

eral not appropriate because p* is not unique when there
are multiple absorbing states and the stationary density
is equal to zero for transient nodes (Section IITH). The
stationary state uniquely exists if and only if the network
is strongly connected, which is rare in empirical directed
networks. To circumvent these problems, mathematical
tricks have been proposed to make the dynamics ergodic
even when the underlying network is not strongly con-
nected. The most popular method consists in allowing
walkers to randomly teleport to other nodes. Random
walks with teleportation are driven by the rate equation

i(t+1) —@Zp]

where the preference vector (up «--

i+ (1 — a)uy, (182)

up), subject to the
constraint Z _, u; = 1, determines the probability with
which a walker teleports to the ¢th node when it does.
The probability of teleportation is equal to 1 — a. In the
case of web browsing, teleportation is interpreted as a
jump to a new webpage without following a hyper-link.
In general, if u; #0 (1 <i < N), any 0 < < 1 makes
the altered random walk given by Eq. (182) ergodic such
that it converges to a unique stationary state. Use of a
small o value makes the convergence to the stationary
state faster and numerically stable, but waters down the
effect of the network structure encoded in matrix 7. A
rule of thumb is to set « close to unity, in order to min-
imise the effect of teleportation, but not too close. A
common choice is @ = 0.85 and u; = 1/N (1 <i < N).
The stationary state of Eq. (182) is formally given by

N
Pio = (1—a) Z (I —aT)™'] ., (183)

where the dependence of the stationary density on «
has been made explicit. This solution can be Taylor ex-
panded in terms of « to yield

e’} N
* 4 14
Dija = Wi + E o E :uj (Tﬂ
=1 j=1

This expression clearly shows the non-local nature of the
PageRank because it is made of walks of all length £. A
large a value gives a high credit to long walks. As in the
case of the Katz centrality, the stationary density may
radically change when « is modified. This dependence
is clear when rewriting Eq. (184) with w; = 1/N in the
following form:

ST (s

1 00 ot N k.m kout

- opt—1

pi;a B N + ; W z ( kll’l > T]J'T’j’i . (185)
The leading contribution for small o makes the PageRank
uniform, thereby making all nodes equivalent. Differen-
tiation emerges when « is increased. The contribution of

each walk of length ¢ is proportional to k;l? - k;"“. Note



that each term of the summation vanishes when the net-
work is regular, ie., ki* = k" = M/N (1 < i < N),
which yields p;,, = 1/N (1 <i < N) regardless of the a
value.

We have implicitly assumed that each node has at least
one outgoing link, i.e., k% > 0 (1 < i < N). If this
condition is violated, the transition probability given by
Eq. (181) is ill-defined. Therefore, we usually force a
teleportation step with probability unity (not with prob-
ability 1 — o) when a walker arrives at a dangling node,
i.e., a node without outgoing links. Mathematically, we
set Tj; = u; (1 <4 < N) for dangling nodes v;.

Because the PageRank is the eigenvector correspond-
ing to the largest eigenvalue of a positive matrix 77,
whose (7, j) element is given by T}, = oT}; +(1—a)u;, we
can efficiently compute it using the power method (Sec-
tion IIIG). The power method converges rapidly if the
spectral gap of T” is large.

C. Mean first-passage and recurrence times

The previous sections have focused on the evolution
of the probability density of an ensemble of walkers, but
the theory of random walks allows to answer many more
properties, in particular on the behaviour of one single
walker. When does a random walker starting from a
certain source node arrive at a target node for the first
time? The answer to this question is known as the “first-
passage time” (or “first-hitting time”) if the source and
target nodes are different and is known as the “recur-
rence time” (or the “first-return time”) when the source
and target nodes are identical. Let m;; (with i # j) de-
note the mean first-passage time (MFPT) from node v;
to node v;. The mean recurrence time is m;;. For di-
rected networks, we assume strongly connected networks
throughout this section to guarantee that m;; < oo (for
i,j7€{1,...,N}).

General networks: Let’s first consider some general re-

sults. The following identity holds :

N
mi; =1+ Z Tigmj -
L=1t#]

(186)

In its first step, a random walker moves from node v;
to node vy, which produces the 1 on the right-hand side
of Eq. (186). If ¢ = j, then the walk terminates at v,
resulting in a first-passage time of 1. Otherwise, we seek
the first-passage from node v, (with ¢ # j) to node v;.
This produces the second term on the right-hand side.
Note that Eq. (186) is also valid when i = j.

In matrix notation, we write Eq. (186) as

M =J+T(M - Mg), (187)
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where M = (m;j), all of the elements of the matrix J
are equal to 1, and Mg, is the diagonal matrix whose
diagonal elements are equal to m;;. By left-multiplying

Eq. (187) by p* and using p*J = (1, ... ,1) and p*T =
p*, we obtain the mean recurrence time
1
mi; = — - (188)
D;

Equation (188) is called “Kac’s formula”.

There are several different ways to evaluate the MFPT
my; (with ¢ # j), and it is insightful to discuss different
approaches.

One method is simply to iterate Eq. (186).

A second method to calculate the MFPT, for a given
j, is to rewrite Eq. (186) as

md) =14+ TV m0) | (189)
where M) = (Mg, «oo M1 sMjr1 - sNG)
and 1 = (1, ... ,1)T are (N — 1)-dimensional column

vectors and T is the (N —1) x (N —1) submatrix of T'
that excludes the jth row and jth column. The formal
solution of Eq. (189) is

i) = (L(”) D1, (190)

where E(J) is the submatrix of D that excludes the jth
row and jth column and Z(J) = 5(]) —Z(J), where X(J) is
the submatrix of A that excludes the jth row and jth col-
umn. The matrix E(J) is sometimes called a “grounded
Laplacian matrix” (although it is not a Laplacian ma-
trix), and it is invertible because we assumed strongly
connected networks. One can derive and solve Eq. (190)
separately for each j.

A third method to examine the MFPT is to estimate
m;; using a mean-field approximation. Regardless of the
source node v;, the target node v; is reached with an ap-
proximate probability of p} in each time step. Therefore,

oo
mij ~ Z np;(l - p;f)"_l = ]% =m;;. (191)
n=1 J
Equation (191) is a rather coarse approximation, and m;;
can deviate considerably from m;; = 1/p;. More sophis-
ticated mean-field approaches can likely do better, espe-
cially for networks with structures that are well-suited to
the employed approximation.

There have been many studies of MFPTs for vari-
ous network models using both analytical and numeri-
cal approaches. We will discuss some examples of undi-
rected and unweighted networks. We focus mainly on the
MFPT between different nodes, although it is of course
also interesting to calculate recurrence times.

Regular networks: For a complete graph, m,; (with
i # j) is independent of ¢ and j because of the symmetry



of the network. Therefore, Eq. (186) reduces to

M= N1 T N1 )

(192)
which yields m;; = N — 1 for ¢ # j. Kac’s formula [see
Eq. (188)] implies that m;; = N.

For regular lattices Z? of any dimension d, Eq. (188)
implies that m;; o< IN because p; «x k; = 2d for any
i. Define ma; to be the MFPT averaged over all source
nodes v; (i # j). For Z4, it satisfies the scalings me; o
N2 for d = 1, mej < NIn N for d = 2, and me; o< N for
d=3.

Erdds—Rényi (ER) random graphs: Consider an ER
random graph G(N,p), where p denotes the (indepen-
dent) probability that each node pair has an edge. As-
suming that the mean degree (k) is kept constant (i.e.,
p = (k)/(N —1) « 1/N), we obtain m;; N and
mi; o< N3/2 (with i # j) as N — oo for the “giant com-
ponent” (i.e., a largest connected component that scales
linearly with the number N of network nodes as N — c0).
Now suppose that we assume instead that p > In N/N,
so that all nodes belong to a single component (in the
N — oo limit) and thus m,; (for 7,5 € {1,...,N}) is
well-defined. It then follows that m;; averaged over all
source and target nodes is equal to N — 1, independently
of p. In other words, for a sufficiently dense ER random
graph, the MFPT is the same as that for the complete
graph. The MFPT is much longer for directed ER graphs
than for undirected ones, because random walkers do not
backtrack on directed networks.

D. Application: Respondent-driven sampling

One often is interested in estimating a population
mean of certain quantities, such as the fraction of infected
individuals, the fraction of people who have a particular
opinion, or demographics such as age. If a population is
large, which is typical in the context of social surveys, it
is impossible to record all individuals. In such situations,
a common challenge is how to sample individuals in as
unbiased manner as possible.

“Respondent-driven sampling” (RDS) is a popular
sampling method that uses edge-tracing in a social net-
work. In RDS, one starts from a seed individual (i.e., a
seed node). The seed individual recruits his/her neigh-
bors to a survey by passing a coupon to each of them.
The successfully recruited individuals then participate in
the survey and in turn pass coupons to their neighbors
who have not yet participated. To try to promote par-
ticipation, individuals who participate are rewarded fi-
nancially. One takes a weighted mean of the samples to
derive an estimate of the quantity of interest (e.g., mean
age of a population).
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It is necessary to take a weighted mean because the
probability of being recruited depends on the position of
a person in a network. The so-called “RDS II estimator”
is an efficient and realistic estimator. Consider the case
in which each respondent passes a single coupon to one
of its uniformly randomly selected neighbors. One can
then describe the recruitment process as a DTRW if one
allows sampling with replacement for simplicity (i.e., if
the same individual can be sampled more than once).
Again for simplicity, let’s also assume that the network
is undirected and unweighted. The essential idea of the
RDS II estimator is that one should discount the effect of
a sampled node v; by a factor of its degree k;, because v;
is visited with probability p} o< k;. Note that respondents
have to report k; to be able to calculate this estimator,
although empirically it is difficult to accurately collect
the k; values of respondents.

We are interested in estimating the mean (y) of a quan-
tity y; assigned to node v;. We denote the set of sampled
nodes by S and the number of samples (i.e, the size of
S) by Ng. The estimator (§) of (y) is

1 Yi
Ns 2~ Np;’

(9) = (193)

v; €S

where p; is the estimate of the stationary density p;. We
set the discount factor on the right-hand side of Eq. (193)
to be Np7, because it is normalized so that (Np;) = 1.
By assuming that we do not have access to the mean
degree (k) of the entire network, we estimate it by calcu-
lating

pr = —— 194
R (194)
where (k) is an estimate of (k). We use
~ Zvies % NS
(k) = = — . (195)
Zvies Np; Z'uiGS (k’z>
Combining Eqs. (193), (194), and (195) yields
ki) i

Yies (ki)

The estimated quantity y can be either continuous-
valued or discrete-valued. Alternatively, one can estimate
the proportion of nodes P4 that have a discrete type A
(e.g., an infected state) by setting y; to the indicator
function (i.e., y; = 1 when v; is of type A and y; = 0
otherwise). In this case, we obtain

[:,A _ ZuieAmS(ki)_l
ZmGS(ki)_l
Note that, even if one controls for the effect of p} in

this manner, the estimator (y) is statistically biased in
practice. For example, the estimator is inaccurate when

(197)



networks have community structure or have multiple con-
nected components. Additionally, different techniques
are required for directed networks, because Eq. (194)
(or, more succinctly, p} o k;) does not hold for directed
networks. Furthermore, actual sampling trajectories are
non-backtracking, and one can incorporate this feature
into RDS estimators.

E. Continous-Time Random Walks

Before proceeding to our discussion of other types of
dynamical processes on networks, it is useful to pause and
the differences and connections between update rules in
discrete-time versus continuous-time dynamics. The re-
sults of this section have, so far, considered a discrete-
time rule where an ensemble of walkers all move syn-
chronously at discrete times. In contrast, the consensus
dynamics of the previous section was implicitly imple-
mented in a continuous-time setting, as can be seen from
the differential equations describing the process. In this
section, we will discuss more in detail ways to make a
discrete-time random walk (DTRW) continuous. Note
that the continuous-time consensus time can also be de-
fined in discrete-time setting, in which case it is usually
called De Groot model.

Continuous-time Random Walks (CTRWSs) on net-
works have two main components: the statistics of a
walker’s trajectory in terms of the number of steps and
the statistics of the times at which events take place.
By combining these two components, one can specify the
probability that a random walker visits a specified node
at a specified time. For RWs on networks, the dynamics
of a walker are affected not only by the statistical prop-
erties of temporal events, but also by the type of net-
work unit in which a temporal process is defined. In the
following, we distinguish between node-centric CTRWs
and edge-centric CTRWs. For dynamical processes in
general, there are often substantial differences between
node-based dynamics and edge-based dynamics, so it is
crucial to distinguish between these situations.

In a CTRW, a walker waits until the next move for a
time 7, where 7 is a random variable. For the sake of sim-
plicity, we consider a scenario in which moves occur as
independent Poisson processes. In other words, 7 is dis-
tributed according to the exponential distribution with
parameter \. We can safely normalize A to 1, because
A only sets the time scale. In a node-centric CTRW, a
walker moves from node v; when it becomes active, and
it selects one of the out-neighbors, which we denote by
v;, as the destination with a probability proportional to
A;; [see Fig. 26(a)]. This assumption is the same as that
for a DTRW.

The master equation for the node-centric CTRW on a
network is

——Z = p(t)(~1+T)=—pt)D7'L, (198)
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(a) Node-centric CTRW (b) Edge-centric CTRW

1/3 1/4 1
13/~\1/3 1/471/4 1 1
1/4

FIG. 26. Schematic of two types of continuous-time random
walks (CTRWSs) on networks: (a) a node-centric CTRW and
(b) an edge-centric CTRW. In each case, a walker is visiting
either a degree-3 node or a degree-4 node in a network, which
we assume is unweighted for simplicity. We show the transi-
tion rates for each edge. In panel (a), the walker travels at
a unit rate and moves to one of its out-neighbors with equal
probability for each choice. Therefore, the transition rate for
each edge is the reciprocal of the out-degree of the node that
the walker is visiting. In panel (b), however, the transition
rate on each edge is equal to 1. Therefore, on average, a
walker visiting the node with out-degree 4 leaves the node
earlier than a walker visiting the node with out-degree 3.

where

L=D-A (199)
is the (“combinatorial”) “Laplacian matrix” of the net-
work. The process is driven by the “random-walk nor-
malized Laplacian”

L'=D'L=I-T.

That is, (L');; = di; — (A;j/s9™). If we examine the
node-centric CTRW in terms of the number n of moves,
the trajectories are statistically the same as those of the
DTRW in Eq. (77). Consistent with this observation,
node-centric CTRWs are also called the “continuization”
of the DTRW. In particular, the stationary density of the
node-centric CTRW is the same as that of the DTRW.
By setting the left-hand side of Eq. (198) to 0, we ob-
tain p*(—I +T) = 0, so that p* = p*T. If the network is
undirected, pf = s;/ Eé\[:l s¢. Node-centric CTRWSs have
been used in, for example, some empirical-data-driven
metapopulation disease-spreading models. In those mod-
els, a network consists of subpopulations of individuals,
and individuals move from one subpopulation to another
through a mobility rule. The simplest mobility rule,
which has been used widely, is that individuals move ac-
cording to a Poissonian node-centric CTRW.

Another type of CTRW is an edge-centric CTRW, in
which each edge (rather than a node) is activated inde-
pendently according to a renewal process [see Fig. 26(b)].
By definition, once an edge is activated, it becomes avail-
able, and a random walker can use it to move to the as-
sociated adjacent node. This RW model has also been
called the “fluid model”.

When a Poisson process with a rate proportional to
the edge weight is assigned independently to each edge,
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the master equation is

d%it) =pt)(-D+A)=—p(t)L. (201)
The Poissonian edge-centric CTRW is associated with
the unnormalized (i.e., combinatorial) Laplacian L.
Equation (201) implies that the transition rate at node v;
is equal to s9". A walker leaves a node with a large out-
strength (such a node may be a network “hub”) more
quickly than a node with a small out-strength. This
situation contrasts with the aforementioned node-centric
CTRW, for which the transition rate of a walker is the
same for all nodes.
The stationary density for Eq. (201) is
p*L=0. (202)
Equation (202) is equivalent to p}s?"* — SN | ptAj; =0
(for i € {1,...,N}), which indicates that the in-flow
of the probability (i.e., Z;\Ll p;Aji) and the out-flow of
the probability (i.e., p}s¢"') are balanced at each node.
Equation (202) also indicates that p* is a left eigenvector
of L with eigenvalue 0. In connected undirected net-
works, the 0 eigenvalue, which we denote by A\; = 0, is
an isolated eigenvalue. Its associated eigenvector is

(203)

Eq.201 shows that the edge-centric CTRW and the con-
sensus dynamics are dual to each other. In the case of
undirected networks, their dynamics is equivalent.

CTRWs on networks can also been used in situations
when the inter-event times are not generated by a Poisson
process, as we discussed here, but by renewal processes
with general inter-event time distributions. In that case,
the master equations become integro-differential and can
be studied efficiently in the Laplace domain. See for
instance: Generalized master equations for continuous-
time random walks, VM Kenkre, et al., Journal of Sta-
tistical Physics 9 (1), 45-50, 1973 for classical lattices and
Generalized master equations for non-Poisson dynamics
on networks, T Hoffmann, et al., Physical Review E, 2012
on general networks.
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IX. RANDOM WALKS TO REVEAL NETWORK
STRUCTURE

As we have seen from the previous sections, particular
network structure can have notable impact on a dynamics
acting on a network. What about the converse? For a
given dynamics, can we harness these effects (e.g. the
time-scale separation of a dynamics), to infer something
about dynamically important modular structure in the
network? As we will see below, several network methods
can be designed from a dynamical perspective and, in
particular, based on random walk processes.

A. Markov stability

A deeper understanding of modularity, as well as rec-
tification of some of its limitations, is gained from a ran-
dom walk perspective. Modularity is related to Markov
stability, a quality function representing the tendency for
a random walker to remain within a community for a long
time. More precisely, the Markov stability of a partition
is defined as the probability that the walker is in the
same community initially and after time ¢ in the station-
ary state. Markov stability can be defined for different
dynamical processes, each one giving rise to a different
quality function and, in principle, to a different optimal
partition of a network.

We focus on a node-centric continuous-time random
walk, where the transition rate for the walker is set to
unity and where the network is undirected for simplic-
ity. Denote by p; the probability that the random walker
visits node v;, omitting the time variable ¢. The master
equation for the random walk process is given by

% = 7pL )

5 = (204)

where p = (p1,...,pn) and L is the random walk nor-
malised Laplacian matrix whose elements are given by
/ Ay
Lij =i — ?: (205)

as before. It should be noted that the probability with
which a walker at the ith node moves to the jth node is
given by T;; = A;;/ki. The steady state is given by the
left eigenvector of L' corresponding to the zero eigen-
value. Assuming that the network is connected, direct

substitution verifies that the stationary density is given
by

_ k; _ k;
Zfzvﬂ ke zM

*

b;

(1<i< M), (206)

where the last equality holds true owing to the handshak-
ing lemma (Eq. (89)).

To define Markov stability, denoted by R(t), consider
a pair of nodes v; and v; belonging to the same com-
munity. Equation (204) implies that, at stationarity, the



joint probability that the Walkerlvisits v; at time 0 and
v at time t is given by pi(e~*F );;. As in the case of
modularity, this quantity has to be compared with an
appropriate null model. For Markov stability, the null
model is given by the joint probability of finding a first
walker on v; at time 0 and a second independent walker
on v; at time ¢, i.e., p;p;. The null model is also re-
garded as the probability p;(e~*F );; as t — oo, because
the position of a walker at large times is independent of
its initial position. By comparing the actual and inde-
pendent cases, we define

N

R = 3 [(e ) —oin] gy (20m)

4,J=1

Markov stability differs from modularity in several
ways. FiI/‘St7 it involves the exponential of the Lapla-
cian, e7'F =T —tI' +#2L'?/2 + - - and thus combines
paths of all lengths between two nodes. Second, Markov
stability naturally incorporates a resolution parameter t.
A larger value of t gives a more weight to longer paths
in the exponential, corresponding to an exploration of
the network at a larger time scale. The time thus acts
as a resolution parameter enabling us to zoom in and
out to uncover the multi-scale structure of the network.
The optimal partition based on Markov stability is made
of less, larger communities when ¢ is increased. Third,
Markov stability is a method derived from flows of prob-
ability. It is not a combinatorial method like modularity,
in which finite elements (links) are counted. For this rea-
son, Markov stability can detect the impact that certain
types of network structure may have on dynamical pro-
cesses. Finally, Markov stability has desirable mathemat-
ical properties including connections to spectral graph
theory. It is exactly optimised by the bipartition given
by the signs of the Fiedler vector, i.e., the second dom-
inant eigenvector of the Laplacian, when t is sufficiently
large.

In practice, estimating the exponential of the Lapla-
cian for a large network can be computationally expen-
sive. Therefore, it is often preferable to study a lin-
earised version of stability, d/eﬁned by its Taylor expan-
sion for small t. Using (e™*F );; ~ &;; — tL;j, Eq. (205),
p; = ki/2M and p; = k;/2M, we reduce Eq. (207) to

1 & kik
R(t) = 537 > {tAij + (1= t)6ijk; + =2

QM} 6(9:,95)-

(208)
Because Zgjzl(l —1)6:5k:0(gi, 95) = Zfil k; is indepen-
dent of the partitioning of the network, maximisation of
R(t) is equivalent to maximisation of

i,j=1

N
QM) = ﬁ > <Aij - 72]\3) 6(9i,95),  (209)

ij=1

where we introduced the structural resolution parameter
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v = 1/t, more commonly used than ¢. We remove the
condition that ¢ is small.

With v = 1, Eq. (209) coincides with Eq. (148), such
that modularity can be seen as a simple, approximate in-
stance of Markov stability. A large value of v emphasises
the penalty in classifying nodes in the same group such
that it yields a large number of communities. A small
value of v yields a small number of communities. Res-
olution parameter v allows us to tune the characteristic
size of the communities in the optimal partition, i.e., not
using the characteristic size imposed by modularity max-
imisation. However, it also raises the important problem
of finding a v value consistent with natural scales of the
network.

B. Infomap

In this section, we sketch an alternative community
detection method based on random walks, called the
Infomap. The method, originally proposed for non-
overlapping community structure, works for directed and
weighted networks.

Imagine a random walk on a given network. If the net-
work has community structure, the random walker would
wander within a community for a long time before cross-
ing a bridge to a different community. A straightforward
way to describe the trajectory of the random walk is to
write down the visited nodes in an ordered list, e.g., v1,
V4, V1, U7, U3, .... The amount of information required to
express the trajectory is estimated as follows. We code
each node into a finite binary sequence, i.e., a code word,
and concatenate the code words. For example, if vy, vs,
vy, and vy are coded into 000, 010, 011 and 110, the afore-
mentioned trajectory is coded into 000011000110010- - -.
For unique decoding, the code has to be prefix-free. In
other words, a code word must not be a prefix (i.e., initial
segment) of another code word. For example, if v; and
v are coded into 000 and 0001, respectively, the code is
not prefix-free because 000 is an initial segment of 0001.

The Huffman code is a prefix-free code that encodes
symbols separately and generally yields short binary se-
quences to represent trajectories of the random walk. It
assigns a short code word to a frequently visited node
and vice versa. The mean code word length per step
of the random walk is given by Ef\il piL(7), where pf is
the stationary density of the random walk at node v; and
L(i) is the length of the code word for node v;.

When the symbols (v; in our case) appear indepen-
dently, the Huffman code often yields a code length that
is close to the theoretical lower bound obtained by the
Shannon entropy, which is

N
H ==Y p;logp; (210)
i=1



FIG. 27. Optimal partitioning according to Infomap
and the resulting code words. This example is based
on a demo applet available at Martin Rosvall’s website
http://www.mapequation.org/apps/MapDemo.html.

per step. However, the sequence of nodes is correlated in
time because it is produced by the random walk. Then,
an alternative coding scheme may lessen the mean code
length. In particular, we can design a two-layered variant
of the Huffman code to exploit the community structure
of the network. Because there are less nodes in a com-
munity CM; as compared to the entire network, we can
express a trajectory within CM; with a shorter, differ-
ent Huffman code, which is local to CM;. Based on this
observation, we rebuild the Huffman code as follows.

1. When the walker enters community CM;, a code
word to represent this entry event is issued.

2. The walker wanders within CM;. The trajectory
of the walker during this period is encoded by con-
catenating the code words corresponding to the se-
quence of the visited nodes. The sequence of these
code words is simply placed after the code word
produced in the previous step (i.e., entry to CM;).
It should be noted that the intra-community code
words make sense only within CM,;. A different
community CM;s (i’ # i) may use the same code
word as the one used within CM; to represent a
different node in CM,-.

3. The walker exits CM;. This event is represented
by a special code word, which is concatenated after
the sequence of code words produced so far.

4. The exit from CM; implies that the walker imme-
diately enters a different community, CM;. There-
fore, a code word to notify that the walker has en-
tered CM; is issued. Then, the code words local
to CM; are used until the walker exits CM;. We
repeat this procedure.

Consider the example shown in Fig. 27. The optimal
partitioning of this network obtained by Infomap is into
four communities whose boundaries are shown by the
dotted lines. The binary code word assigned to each node
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represents the local code within the corresponding com-
munity. Note that the code word uniquely determines a
node within a community, but not across communities;
the same code word is used in different communities.
When the random walker enters or exits a community,
the corresponding ‘in’ or ‘out’ code word is used, respec-
tively. Therefore, the trajectory shown by the arrows in
the figure is encoded into 0111011110001001110111. The
first 01 indicates that the walk starts in the left-bottom
community, and the 110 that follows indicates that the
walk starts at the 110 node in this community. 0010 in
the middle indicates that the walk exits this community
(by the code word 00) and immediately enters the com-
munity to the right (by the code word 10).

In contrast to the original Huffman code, we have to in-
vest 2Ncn code words to mark the entry to and exit from
a community. However, we can save the code length when
the walker wanders in a community, which occupies a ma-
jority of steps. Overall, the mean code length is expected
to be smaller with the two-layer code in the presence of
community structure. In order to detect communities in
practice, there is no need for devising the optimal code
of a given partition. Infomap instead proceeds by opti-
mising a quality function, called the map equation, which
generalises Eq. (210). The resulting quality function pro-
vides a theoretical limit of how concisely we can specify
a walk in the network using a given partition. The opti-
misation is then performed by a greedy algorithm similar
to the one used for maximising modularity.

C. Similarity measures and Walktrap

When working with networks, many tasks can be sim-
plified by defining a proper measure of distance, or simi-
larity, between pairs of nodes. For instance, assume that
labels are known for a fraction of the nodes of a graph,
the problem of inferring unknown labels, i.e. the so-called
node classification task, can be solved by using simple
nearest neighbour techniques. Similarly, for link predic-
tion, that is the task of predicting unknown links or links
to appear in the future, a majority of approaches con-
sist in finding the most similar nodes that are not yet
connected. Similarly, for community detection, methods
consist in performing a clustering of the similarity matrix,
for instance by using k-means or hierarchical clustering.
By definition, a similarity matrix S is an n X n matrix
whose elements are positive real numbers, encoding the
similarity between pairs of nodes. There exist many types
of similarity matrices. The adjacency matrix itself is the
simplest measure of similarity: two nodes are more sim-
ilar if they are connected than if they are not, but it is



a very coarse-grained measure, giving the same similar-
ity to each pair of disconnected nodes, even if some may
be only two edges apart and some much further away.
In order to account for paths of different lengths, pop-
ular choices instead consider functions of the adjacency
matrix, or of the Laplacian matrix.

In the case of community detection, an influential algo-
rithm is Walktrap, where similarity is defined by means
of DTRWs. Consider an undirected and unweighted net-
work. The RW-based distance between two nodes, v; and
v; is then defined as

N
(T - Ty
=

(=1

(211)

where n is the number of steps in a DTRW. The dis-
tance 7;; is small when a pair of random walkers — one
starting from v; and the other starting from v; — visit
each node with similar probabilities after n steps. The
denominator k, discounts the fact that a walker visits
vy with a probability proportional to k, at equilibrium.
Note that n needs to be large enough for random walkers
to be able to travel to any node. However, n should not
be too large, because lim, .o T}; = lim, T;} = p;
implies that r;; is very close to 0 for all ¢,j € {1,..., N}
when n is large. We expect that a pair of nodes, v; and
v;, that are separated by a small distance r;; are likely
to belong to the same community. Walktrap uses a stan-
dard agglomerative and hierarchical clustering algorithm
on the distance matrix r = (r;;). One starts from the
partition composed of N single-node communities and
joins a pair of communities (so-called “tentative commu-
nities”) with the smallest distance, one pair at time, to
produce a series of partitions until the entire network is
in a single community. In the merging process, one mea-
sures the distance between two communities CM,. and
CM,. by the r;; value, normalized in some way, between
v3,v; € CM UCM,. . This agglomerative clustering algo-
rithm is similar to a greedy algorithm to maximize modu-
larity across partitionings with different numbers of com-
munities. In Walktrap, one merges a pair of communities
under the restriction that they can be merged only when
they are adjacent to each other by at least one edge.

Another interesting approach of community detection
based on similarities exploits the concept of mean first-
passage time m;; of a random walker and its symmetriza-
tion m;;+my; (the so-called “mean commute time”). The
square root of the mean commute time has the desirable
property of being a Euclidian distance between nodes.
In this context, it is called the “Euclidian commute-time
distance”. It decreases when the number of paths be-
tween two nodes increases or when the length of any path
between the two nodes decreases, and it can be derived
from the pseudo-inverse of the combinatorial Laplacian
matrix L.
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D. Core—periphery structure

It is often insightful to decompose a network into one
or more densely-connected cores along with sparsely-
connected peripheral nodes. By definition, nodes in a
core are heavily interconnected and also tend to be well-
connected to peripheral nodes. By contrast, peripheral
nodes are sparsely connected (or, ideally, not adjacent at
all) to other peripheral nodes and tend to be adjacent
predominantly to core nodes. This idea, whose intuition
draws somewhat on the notion of pealing an onion (es-
pecially in the case of a single core), is also a mesoscale
network structure, but it has a rather different character
from community structure.

There is an RW-based algorithm to extract core—
periphery structure from networks. The idea is that if a
random walker is located at a peripheral node, it is very
unlikely to visit another peripheral node in the next time
step in a DTRW. One defines a “persistence probability”
ag for a set of nodes S by

Zi,jes p; Tij
Yies Py ’

where we recall that p} is the stationary density at node
v, and Tj; is the transition probability from v; to v; in
a single move. Equation (212) is the steady-state prob-
ability that a DTRW starting from a node in S remains
in S in the next time step. For an undirected network,
we substitute p; = s;/ 25:1 s¢ to reduce Eq. (212) to

Dijes Aij
ZiGS Si

Ideally, one obtains ag = 0 for any set S of nodes
that includes only peripheral nodes. This condition is
trivially satisfied when S consists of a single node, and
it becomes very difficult to satisfy as S becomes large.
One possibility is to use the following greedy algorithm.
Start from a node with the smallest total node strength
sit 4 50Ut Tf there are multiple such nodes, we select one
of them uniformly at random. For undirected networks,
this reduces to selecting a node with the minimum node
strength. The set S is composed of a single node. One
then adds one node to the set S so that adding this node
yields the smallest value of acg. Again, if there are multi-
ple candidate nodes, we break the tie by selecting one of
them uniformly at random. One continues this procedure
and sequentially adds nodes to try to keep a.g small. One
then assigns each node v; a coreness value of «;, which
one sets as the value of ag when v; is added. Nodes
with larger values of «; are deeper into a network core.
One also defines a network’s “a-periphery” as the set of
nodes that satisfy a; < a. Although the algorithm has
randomness in it because of the tie-breakers, randomness
has been shown to have negligible effects on the results
for empirical networks.

(212)

ag =

ag = (213)
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FIG. 28. (a) Infection and recovery rates in three epidemic
process models. (b) Infection rate when a susceptible node is
surrounded by one susceptible node and three infected nodes.

X. EPIDEMIC PROCESSES

Epidemic processes are probably the most studied dy-
namical processes on networks, both for static and tem-
poral networks. Many of these investigations are moti-
vated by their applications to infectious diseases of hu-
mans and animals, viral and other information spreading
on social networks, and computer viruses. In this section,
we first present classical models of epidemic spreading,
and their behaviour in the mean-field, before consider-
ing two types of models on networks: meta-population
models and spreading on contact networks.

A. Models of epidemic processes

The susceptible-infected-susceptible (SIS) model, the
susceptible-infected-recovered (SIR) model and the
susceptible-infected (SI) models are probably the most
frequently studied epidemic processes. These models
are named after the types of state that each node as-
sumes, i.e., the susceptible (in short, healthy), infected
and recovered states, and admitted transitions between
the states. They are called compartmental models, where
compartment is a synonym of state. We focus on stochas-
tic versions of these models, which are usually studied
when considered on networks. The transition rates of
the three models, which fully define the models, are sum-
marised in Fig. 28(a).

The SIS model assumes two processes. When a suscep-
tible node interacts with an infected node, the susceptible
node contracts infection to transit to the infected state at
rate 8. In other words, the probability that a susceptible
node gets infected in small time At is equal to SA¢. If
a susceptible node is adjacent to kj infected neighbours,
the transition rate is equal to ki (see Fig. 28(b) for an
example of k1 = 3). An infected node recovers at rate
w irrespectively of the states of the neighbours. Once
an infected node recovers, it transits to the susceptible
state. Therefore, a node may contract infection multiple
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times during a single run of the SIS model.

Consider the mean-field population, i.e., the complete
graph, where each node pair is connected with each other
with a normalised weight of 1/N. Denote the fraction of
susceptible and infected nodes at time ¢ by S(¢) and I(t),
respectively. The dynamics in the thermodynamic limit
(i.e., N — o0) are given by

ﬁ%éﬂ,:._gza)su)+-u16) (214)
and
§%é9,::55(@1(t)-»u1@). (215)

The first terms in Eqgs. (214) and (215) represent the fact
that each of the NS(t) susceptible nodes is infected at
a total rate of BI(¢). Addition of Egs. (214) and (215)
yields

d
T {S(t)+I(t)} =0. (216)
Therefore, S(t) + I(t) = S(0) + I(0) = 1 such that the
total number of nodes is conserved.

In the equilibrium, setting the right-hand side of
Eq. (215) to zero yields

(88" — 1) =0, (217)
where S* and I* are the fraction of susceptible and in-
fected nodes in the equilibrium, respectively. If infection
persists in the population in the equilibrium, by applying
I* #0 and S* =1— I* to Eq. (217), we obtain
1

r=1-%£
B

Equation (218) is intuitive in that the magnitude of infec-
tion is large if the infection rate g is large or the recovery
rate p is small. In addition, I* > 0 holds true if and only
if

(218)

B

—>1.

. (219)

We say that the epidemic threshold in terms of 8/u is
equal to unity in the well-mixed population. As we will
see, the epidemic threshold depends on the structure of
the underlying network in general.

In the SIR model, infection events occur in the same
manner as in the SIS model. The only difference to the
SIS model is that when an infected node recovers at rate
1, it transits to the recovered state, not back to the sus-
ceptible state. A recovered node does not infect others or
is not reinfected. The recovered state can also be inter-
preted as the removed or dead state because a dead node
would not infect or be infected by others. In contrast to
the SIS model, infectious nodes are eventually extinct in
the SIR model even if the infection rate is high. For an



arbitrary initial condition, the final state consists of sus-
ceptible and recovered nodes, but not infected nodes. We
typically start the SIR model from a single infected node
or a small fraction of infected nodes in the background
of the susceptible population. The primary interest is in
the final size, i.e., the number of recovered individuals
when the dynamics have terminated.

The SIR model is suitable for describing the response
of a population to a triggering event, such as the viral
spreading of a tweet in Twitter. Because such one-shot
epidemic dynamics are relevant to many real phenom-
ena, the SIR model and its variants are probably more
frequently used than the SIS model unless a slow time
scale set by births and deaths of individuals comes into
play; birth and death events make the SIR model similar
to extensions of the SIS model.

The SIR dynamics for the well-mixed population are
described by

1~ s, (220)
dgf) — M(1)S(E) — pI(8), (221)
AR — o). (222)

Summation of Egs. (220), (221) and (222) confirms that
the total number of nodes is conserved, i.e., S(t)+I(t) +
R(t) =1 for all t. When dI(t)/dt > 0 at t = 0, the num-
ber of infectious nodes first increases to a macroscopic
(i.e., O(N)) number. In this case, we regard that an out-
break has occurred. Otherwise, initially infected nodes
do not trigger secondary infections on a visible scale. The
condition dI(t)/dt|,_, > 0 gives the epidemic threshold,
and the result coincides with that for the SIS model given
by Eq. (219).

The third model, the SI model, is a simplified version of
the SIR model. Infection events occur in the same man-
ner as in the SIS and SIR models. In the SI model, once
a node is infected, it will stay infected forever. Therefore,
if infection is introduced to a connected static network,
every node will be eventually infected. No notion of epi-
demic threshold exists for the SI model. Instead, one is
interested in how fast infection spreads. The dynamics
in the well-mixed population are governed by

A gy,

& (223)

where we omit the equation for the dynamics of S(¢). In
an early stage of dynamics where only a tiny fraction of
nodes is infected, Eq. (223) with S(t) ~ 1 yields

I(t) o . (224)
Although the SI model is unrealistic, it behaves similarly
to the SIR model in the initial stage of the dynamics,
where the number of recovered nodes in the SIR model
can be safely neglected.
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FIG. 29. A metapopulation model network with N = 4 sub-
populations and N = 10 individuals.

B. SIS dynamics on metapopulation models

In this section, we introduce metapopulation mod-
els for epidemic spreading. In short, the model as-
sumes a network of subpopulations, not that of individ-
uals. A subpopulation hosts individuals, and individuals
move from one subpopulation to an adjacent subpopu-
lation. In Fig. 29, a circle represents an individual, and
a box containing individuals represents a subpopulation.
A metapopulation model network consists of N nodes,
called subpopulations, links between pairs of subpopu-
lations, and N particles, which we call individuals. An
individual can be anything that is mobile and typically
represents a human or animal individual. A subpopu-
lation is a container of individuals, corresponding to a
household, office, city, airport, country and so on, where
interactions can take place. The adjacency matrix of the
metapopulation model is denoted by A and fixed over
time. For simplicity, we assume that it is an undirected
network; A;; = A;; (1 <14,7 < N). A link between two
subpopulations allows flows of individuals between them
and may be weighted. A metapopulation model can be
regarded as a coarse-grained network of individuals and
is practical because detailed connectivity between indi-
viduals is often unknown, whereas connectivity between
subpopulations may be more accessible.

Metapopulation models are typically defined by two in-
gredients: a rule for the mobility of the individuals, and a
rule for their interactions on the nodes. We first focus on
the former aspect. Denote by N; (1 <4 < N) the number
of individuals in the sth subpopulation, which varies over
time ¢. For any ¢, vazl N,; = N is satisfied. A metapop-
ulation model network on N = 4 subpopulations and
N =10 individuals is shown in Fig. 29. The simplest as-
sumption for the mobility of individuals is to assume that
each individual performs an independent continuous-time
random walk from subpopulation to subpopulation. In
other words, an individual moves to a neighbouring sub-
population with probability DAt in short time At. The
time to the next movement obeys the independent ex-
ponential distribution with mean 1/D. An individual
moves from the ith subpopulation to a neighbouring jth



subpopulation with probability DAtflij / k;, where

Jj=1

(225)

is the (weighted) degree of the ith subpopulation.

The number of individuals in each subpopulation, NV,
is approximated to be a continuous variable when N is
large. The master equation for N; is given by

i -
dN; A
—*—_DN;+DY N;ZL
dt * 2_:1 Tk
iz
N
=-DY N;Lj, (226)

j=1

where 1 <7 < N and L' denotes the random walk nor-
malised Laplacian matrix, as usual. By setting the left-
hand side of Eq. (226) to zero, we obtain the equilibrium
density of individuals as

T

N

)

Note that N /]\7 is the average population density per
subpopulation.

The second ingredient of metapopulation models is
the rule of interaction between the agents. Importantly,
the population is assumed to be structureless within each
subpopulation, and thus well-described by a mean-field,
all-to-all process. In the following, we focus on a SIS
model on the metapopulation model. By definition, the
master equation for the number of individuals in each
subpopulation is given by Eq. (226) when a epidemic
process does not take place. We denote by Ng; and Ny ;
the numbers of susceptible and infected nodes in the ith
subpopulation, respectively. We assume that the diffu-
sion rates for susceptible and infected individuals, Dg
and Dy, respectively, are possibly different and that each
pair of individuals in the same subpopulation interacts

at a constant rate. The master equations are thus given
by

2

(227)

=

N o~

dj(;;s’i = —fNs,;Ni; + uN1; — DsNs; + Ds 2_‘: I;i;iNs,jy
T (208)
WG NN — Ve — DN+ D1
dt e . " =k 7
(229)

where N is the number of subpopulations such that 1 <
i < N, A is the adjacency matrix of the network of the
subpopulations, and ki = Z;V=1 /L-j is the degree of the
ith subpopulation.
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To determine the epidemic threshold, we consider the
situation in which Ny; (1 < ¢ < N) is infinitesimally
small. In this situation, Eq. (228) is essentially the
same as the master equation without epidemic dynamics
(Eq. (226)) because SNg;Ni; and uNj; on the right-
hand side of Eq. (228) are very small as compared to the
other terms. As long as susceptible individuals move (i.e.,
Dg > 0), the equilibrium for the susceptible individuals
is given by

. kN

S;i — <%>N7

(230)
where N is the number of individuals in the entire pop-
ulation. Equation (230) is the same as Eq. (227). Sub-
stitution of Eq. (230) in Eq. (229) yields

dNi; BN - A
T mkﬂ\ﬁ,z‘ — uN1; — D1N1; + Dy Z; ?;Nl,y
=
(231)
Equation (231) admits the disease-free solution Ny, = 0
(1 <4 < N). The destabilisation of the disease-free
solution implies an endemic state, where infection can
persist. We rewrite Eq. (231) in the vector form:

—Q = BND

5 (232)

where Ny = (N1 1,..., 1V N)T and B is the N x N matrix
whose elements are given by

N - Aji

Bij = bij ((Zﬂvkl —p— DI) +(1 - 6ij)DI?;- (233)
The epidemic threshold is given when the largest eigen-
value of B becomes positive. In general, and in con-
trast to the case of mean-field populations, the epidemic
threshold is not expressed only in terms of 8/u. To show
so, let us look at some special cases. When Dj = oo,
Eq. (231) implies

k; N
NI,i: = ~Iv

BR (234)

where N1 = Zfil Ni; ~ 0 is the number of infected
individuals in the entire population near the epidemic
threshold. By substituting Eq. (234) in Eq. (231) and
taking the summation over i, we obtain

ANy [ BN(k?)
W ( (2N _“> M,

(235)

where (k2) = Y.V, k2/N. Therefore, the condition for
endemicity is given by

>,
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(236)
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In other words, a metapopulation model with a broad
degree distribution yields a small epidemic threshold be-
cause (k?) > (k).

When Dy = 0, Eq. (231) represents N decoupled dy-
namics. The epidemic threshold is determined by the
subpopulation having the largest degree, denoted by
kmax- The condition for endemicity is given by

s > ~<k>N . (237)
'LL kmaxN

In fact, even if this condition is met, only the subpopu-
lations having the largest degrees accommodate infected
individuals.

C. Sl dynamics on contact networks

A second way to introduce networks into the modelling
of disease spreading is to consider a virus propagating on
a contact network of individuals. In contrast with the
previous section, the nodes are now individuals, links rep-
resent contacts between them, and the spreading entity
is the virus itself.

In this section, we consider such models for the simple
SI dynamics. Each node ¢ is defined, at each time ¢, by
a variable x;(t), equal to 1 if the node is infected, and 0
otherwise. Keeping in mind that the model is stochas-
tic, we are interested in the evolution of the expectation
(x;(t)) over a large number of realisations, which can be
interpreted as the probability that node i is infected at
time ¢. Its evolution is determined by the set of coupled
differential equations:

d

(i) _
T AijAij (L—wiey) . (238)

where A;; is the adjacency matrix and the quantity
((1 — z;)x;) is the probability (averaged over the ensem-
ble of realisations) that node 7 is susceptible and node j
is infected. Note that the set of equations is large but,
worse, it is not closed: in order to solve the equations
for (z;(t)), one needs the evolution for ((1 — z;)z;), but
it will appear that an equation for the evolution of the
latter quantity ((1 — z;)x;) itself involves higher-order
terms, leading to a hierarchy of more and more compli-
cated equations. This is a standard problem appearing in
a variety of problems, e.g. see the BBGKY hierarchy in
statistical physics, that can be solved by truncating the
hierarchy at some level. The simplest truncation is ob-
tained by assuming that the states of neighbouring nodes
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are independent, that is

(U= wi)aj) = (1= ai){es) = (1= () ().

Note that more sophisticated moment closure approxi-
mations can be used.

Plugging (239) into (238), one obtains the system of
equations

(239)

d(zi) _ , e
a AL = (x)) zj:Au (z5) -

(240)

In order to get insight about the resulting dynamics, let
us consider a scenario where a small fraction of nodes is
initially infected, and assume that only linear terms are
to be kept at the time of interest, so that

= AZJ:A” (z;) . (241)

Performing a standard spectral decomposition of the ad-
jacency matrix

N

Ay = E Beug:itg.j,

{=1

(242)

and keeping only the dominant eigenvector, u1, one finds
the dominant behaviour

x; = Mty (243)

The growth rate of the disease is thus determined by the
infectious rate and by the dominant eigenvalue of the
underlying contact network.

To get some intuition of the factors influencing 31, we
perform a mean-field approximation, by replacing the ad-
jacency matrix by its annealed version, that is by replac-
ing the adjacency matrix by the expected number of links
between nodes in the corresponding configuration model
(preserving the degrees of each nodes)

Ay = kikj/2M,

see the section VI B on Modularity for instance. By doing
so, we only keep information about the node degrees and
neglect any other information about the network struc-
ture. One readily finds that its dominant eigenvector is
proportional to the degrees of the nodes and that the
corresponding eigenvalue is
o (k%)
B =
(k)
This result shows that the variance of the degree dis-
tribution plays an important role for spread of a dis-
ease on a network. An intuitive argument being that
high degree nodes are important for two reasons, hence
the square: because they can easily be infected (due to
their large degree) and because they can also infect many
other nodes. This observation, and similar ones for SIS
and SIR, have had a strong impact in the early 2000s,
especially in the community of researchers interested in
scale-free networks where such a variance would diverge.



XI. WHAT'S NEXT?

This is a first course on network science and, even if
we have covered several aspects of it, many aspects have
been left on the side. Nonetheless, I hope that this intro-
duction will have given you the keys, and the curiosity,
to discover more advanced topics in the future.

Notably, let us note that all dynamical systems cov-
ered so far were linear dynamical systems and I can only
encourage you to discover non-linear dynamical ones, for
instance for synchronization. See for instance Arenas,
A., Diaz-Guilera, A., Kurths, J., Moreno, Y. and Zhou,
C. (2008). Synchronization in complex networks, Physics
Reports 469, pp. 93-153.

Other important topics, that have attracted much at-
tention, are spatially-embedded networks (Barthélemy,
M. (2011), Spatial networks, Physics Reports 499, pp. 1-
101.), that is networks where the underlying physical
space affects the network organisation, and temporal net-
works (Holme, P. and Saramiki, J. (2012), Temporal net-
works, Physics Reports 519, pp. 97-125; and A guide to
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temporal networks, N. Masuda and R. Lambiotte, World
Scientific 2016), where the connections between the nodes
are dynamical entities.

The connections between network science and statistics
has also seen a stream of works recently, especially for
the detection of significant structures in networks. See
for instance the recent Parsimonious module inference in
large networks, TP Peixoto, Physical review letters 110
(14), 148701.

This course remained mostly methodological and we
have not focused in detail on the practical applications
of network science. For more works in neuroscience,
and in social/economic systems, see respectively: Net-
works, Crowds, and Markets: Reasoning About a Highly
Connected World, David Easley and Jon Kleinberg; and
Complex brain networks: graph theoretical analysis of
structural and functional systems, E Bullmore, O Sporns,
Nature Reviews Neuroscience 10 (3), 186-198 (2009).

Similarly, this course finds connections with many as-
pects in data mining, see for instance Akoglu, L., Tong,
H. and Koutra, D. (2015). Graph based anomaly detec-
tion and description: A survey, Data Mining and Knowl-
edge Discovery 29, pp. 626-688.



