Beyond the degree distribution

clustering coefficient
density of cliques

motifs

k-core

degree-degree correlations

Modularity:

Many networks are
Inhomogeneous and are made of
modules: many links within
modules and a few links between
different modules




Properties: Modularity

Observed in social, biological and information networks
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Properties: Multi-level modularity (hierarchy)

Networks have a hierarchical/multi-scale structure: modules within
modules
Nested organization




nb. Different notions of hierarchy

Hierarchy = multi-scale

structure: modules within Hierarchy = subordination
modules
General
, Colonel
Y
O () Captain
Y
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nb. Different notions of hierarchy

Hierarchy = multi-scale Hierarchy of nodes with
structure: modules within different degrees of
modules “modularity” (clustering)
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Hierarchical Organization of Modularity in Metabolic Networks, E. Ravasz et al.
http://barabasi.com/f/108.pdf



http://barabasi.com/f/108.pdf

Random networks with communities

Generalization to arbitrary number of communities, distribution of community
size and degree distribution

FIG. 1. (Color online) A realization of the new benchmark, with
500 nodes.

Benchmark graphs for testing community detection algorithms, Andrea Lancichinetti et al.
https://6¢131308-a-62cb3ala-s-sites.googlegroups.com/site/andrealancichinetti/
benchmark.pdf



https://6c131308-a-62cb3a1a-s-sites.googlegroups.com/site/andrealancichinetti/benchmark.pdf
https://6c131308-a-62cb3a1a-s-sites.googlegroups.com/site/andrealancichinetti/benchmark.pdf

What is Community Detection?

Is it possible to uncover the (multi-scale) modular organisation of networks in

an automated fashion”? And please avoid false positives.
Given a graph, we look for an algorithm able to uncover its modules without

specifying their number nor their size
The method should be scalable to accomodate very large networks, as often

observed in the real-world.

algorithm

=

\
/




Why community detection?

Graphs help us to comprehend in a visual way the global organisation of the
system. This works extremely well when the graph is small but, as soon as the
system is made of hundreds or thousands of nodes, a brute force
representation typically leads to a meaningless cloud of nodes.
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F1G. 2.—The direct relationship structure at Jefferson High




Why community detection?

Uncovering communities/modules helps to change the resolution of the
representation and to draw a readable map of the network

Find a partition of
the network into
communities

Coarse-grained
description

Martin Rosvall and Carl T. Bergstrom, PNAS 105, 1118 —1123 (2008)



Why community detection?

Uncovering communities/modules helps to change the resolution of the
representation and to draw a readable map of the network
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Big data is
an all-
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encompassing term for any
collection of data sets so large and
complex that it becomes difficult to

process using traditional data
processing applications. The
challenges include analysis,
capture, curation, search, sharing,
storage, transfer, visualization, and
privacy violations. Wikipedia
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Why community detection?

Network Scientists with Karate Trophies

§ %)

The first scientist at any
conference on networks who
uses Zachary's karate club as
an example is inducted into
the Zachary Karate Club
Club, and awarded a prize.
This tumblr records those
moments.
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What is a “good” community?

A connected component is certainly a good community, in case of several
components




Percolation as a phase transition

Take the Erdos-Renyi network: how many disconnected components shall we
expect depending on p?
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Community detection versus network partitioning
Both terms refer to the division of a network into dense groups

Graph partitioning: the number and size of the groups is fixed by the user.
For instance, in a typical bisection problem: what is the best division of a
network into 2 groups of equal size such that the number of links between the
groups is minimised.

Application parallel computing: minimise inter-processor communication.
Divides the system into the required number of groups, whatever the
organisation of the system.

Community detection: the number and size of the groups are unspecified, but
determined by the organisation of the network. Ideally, the method should be
able to uncover a mixture of groups of different size in the same system. It
should divide a network only when a good subdivision exists and leave it
undivided otherwise.



Community detection versus network partitioning
Both terms refer to the division of a network into dense groups

Graph partitioning: the number and size of the groups is fixed by the user.
For instance, in a typical bisection problem: what is the best division of a
network into 2 groups of equal size such that the number of links between the
groups is minimised.

Application parallel computing: minimise inter-processor communication.
Divides the system into the required number of groups, whatever the
organisation of the system.

Community detection: the number and size of the groups are unspecified, but
determined by the organisation of the network. Ideally, the method should be
able to uncover a mixture of groups of different size in the same system. It
should divide a network only when a good subdivision exists and leave it
undivided otherwise.

Different but similar methods

In both cases:

1) How to formalise the problem? Definition of a good community
2) How to solve it in practice? Optimisation techniques to find it



Graph bipartition

Definition of the problem:

Find the best division of a network into 2 groups of size n1 and n2 such that
the cut size is minimal, where the cut size is the total number of links
between different groups.

Solving the problem:

Looking through all bi-partitions and choose the one with the smallest cut
size?

Impossible in practice, as the exhaustive search is extremely costly in terms
of computer time

E.g. The number of ways to divide a network of 2n nodes into two groups of n

and n nodes is: (272)' Stirling on+1

S \/ﬁ

No method solving exactly the problem in polynomial time for all networks...
But several existing heuristics allow to find approximate solutions in non-
prohibitive times.

n'n!



Spectral methods

1
R=§ Z Aij

77 in different groups

Let us denote by s; = +1 the assignment of node i

IZ Z
ij

By performing a spectral decomnosition of the Lablacian matrix, one finds:

N
— E Acxz'va,i'va,j
a=2

If there is no condition on si, the optimal solution would be S; = U‘Z,i
.
R=-\
4

But this solution is not a partition (except in extremely trivial situations) and it
probably does not satisfy the required size of the groups.



Spectral methods

Approximation: If one wants a split into n1 and n2=n-n1 vertices, one orders
the components of the Fiedler vector from the largest positive to the smallest
negative and picks the n1 largest (smallest) components of the Fiedler vector

1 [0.14 127073 1 [0.14 12073
2 023 137053 2 023 13053
3001 16 050 3 =011 16 050
4 (<008 14041 4 <008 14041
5013 11 033 | 5013 11033
6 021 17028 6 021 17 028
7 002 6 021 7 002 6 021

8 0.15 8015 8 0.15 8015
9 =001 | 014 9 001 | 0.14
10 (<003 —p 5 0.13 10 <003 —p 5 0.13
11033 7002 11 033 7002
12 1073 0 <001 12 073 0 001
13 053 10 <003 13 053 10 <003
14 041 4 <008 14 041 4 <008
15 <082 30011 15 -0.82 3 011
16 10.50 2 =023 16 0.50 2023
17 0.28 19/-0.55 17 0.28 19/-0.55
18 =0.90 15 =082 18 =0.90 15 <082
19 '=0.55 18 =090 19 =055 18 =0.90

Complexity: O(N”2) on sparse networks



Community detection

What is the best partition of a network into modules?
How do we rank the quality of partitions of different sizes?
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Newman-Girvan Modularity

Q = fraction of edges within communities - expected fraction of
such edges

Let us attribute each node i to a community ci

Q = i Z [Aij — Pi'] o(ci, cj)

2m “—
2,7

expected number of links between i and |

QC’ = ! Z [Az] — kzk]/Zm] 5(02‘, Cj) QC - [—1/2, ].]

T 2m

2¥,

Allows to compare partitions made of different numbers of
modules

M.E.J. Newman and M. Girvan, Finding and evaluating community structure in networks,
Phys. Rev. E, 69, 026113, 2004.



Note on the null model
kik;

Random network with constrained degrees P; =
2m

What if one has extra information about the nodes?

i t
Directed networks -> Pij = kql;nk;‘)u /m

Spatially-embedded networks -> P;P* = N;N; f(ds;)

Or if the information on the degrees is expected to be irrelevant:

Pij = (k)?/2m = (k)/N

ZPM — ZA” = 2m
7 1]




Modularity

Property 1 A partition where all the vertices are grouped into the same com-
munity has a modularity equal to zero. This proves to be simply shown from
the definition of the null model kg:j for which Zij kg:j = 2m and from the
expression of modularity in this particular case

Q=%Z[Az'j—kikj} =0. (3)

2m

2¥)

This property implies that any partition with a positive modularity is better

than this trivial one, but also that it is always possible to find a partition such
that Q) > 0.



Modularity

Property 2 If a partition contains a disconnected community, it is always
preferable (in terms of modularity) to split this community into connected com-
munities. Let us consider, for the sake of simplicty, the case of a disconnected
community C1 formed by two connected subgraphs C11,Ci2. In this case, mod-

ularity is given by

LT
Q= 5| 3 X 4y~ )
'07601 i,j€C ,Jecl
1
- Ay ya > -ty
-C¢Cl ZaJEC iajecll
kik;
+ ) (A J)+2 > (Az‘j—%,f)-
1,j€C12 1€C11,7€C12

Giwen that A;; = 0 if © € Ci1,5 € Cie, the sum Z’iECu,jECm is composed
uniquely of negative terms and it is thus preferable to split the community into

two subcommunities.

This property implies that any partition made of disconnected communities is
sub-optimal and that the optimal partition of a graph is only made of connected
communities.



Modularity Optimization

Optimization of modularity is an NP-complete problem

Need for efficient heuristics




Optimization: Spectral methods

Similar method to one for minimizing the cut, based on the spectral
properties of the modularity matrix Q

ki
Qij = Aij —
Let us first focus on the best division of the network into 2 communities.

Let us denote by Si = £l the assignment of node i 6(¢;,c5) = %(SiS]’ +1)

Q= gy T utlens) = 12 Qo

By performing a spectral decomposmon of the modularlty matrix, one finds:

N
— E )‘a 'va,'iva,j
a=1

si is chosen to be as similar to the dominant eigenvector

s; = 1 i1f UN,; = 0
5; = —11if Un: < 0

M.E.J. Newman, Finding community structure in networks using the eigenvectors of matrices,
Phys. Rev. E, vol. 74, 036104, 2006.



Optmization: Greedy optimization
Louvain: multi-scale, agglomerative and greedy

The algorithm is based on two steps that are repeated iteratively. First phase:
Find a local maximum

1) Give an order to the nodes (0,1,2,3,...., N-1)

2) Initially, each node belongs to its own community (N nodes and N
communities)

3) One looks through all the nodes (from 0 to N-1) in an ordered way. The
selected node looks among its neighbours and adopt the community of the
neighbour for which the increase of modularity is maximum (and positive).
4)This step is performed iteratively until a local maximum of modularity is
reached (each node may be considered several times).

Node 0 moves to the After N nodes have After each nodes has
community of Node 3 been considered been considered 4
times

V.D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, Fast unfolding of communities in
large networks, J. Stat. Mech., P10008, 2008.



Optmization: Greedy optimization
Louvain: multi-scale, agglomerative and greedy

Once a local maximum has been attained, second phase:
We build a new network whose nodes are the communities. The weight of the
links between communities is the total weight of the links between the nodes of

these communities.

14
é 1
New network of 4 nodes!
Note the self-loops 16

In typical realizations, the number of nodes diminishes drastically at this step.

V.D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, Fast unfolding of communities in
large networks, J. Stat. Mech., P10008, 2008.



Optmization: Greedy optimization
Louvain: multi-scale, agglomerative and greedy

The two steps are repeated iteratively, thereby leading to a hierarchical
decomposition of the network.

Multi-scale optimisation: local search first among neighbours, then among
neighbouring communities, etc.

2nd pass
26

— Q2

24

16 2

Hierarchical
representation

V.D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, Fast unfolding of communities in
large networks, J. Stat. Mech., P10008, 2008.



Optimization: Greedy optimization

Topele] QOO Q @

OL AS OL AS OL
Partition initiale Apres la premicre passe Apres la seconde passe
(12 communautés, Q=-0.08) (4 communautés, Q=0.38) (2 communautés, Q=0.45)

Diaie] Dot Deldd

V.D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, Fast unfolding of communities in
large networks, J. Stat. Mech., P10008, 2008.



Louvain

Algorithm 1 Pseudo-code of the community detection algorithm.

1: Community detectionG initial graph
2: repeat

3:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

Place each vertex of GG into a single community
Save the modularity of this decomposition
while there are moved vertices do
for all vertex n of G do
¢ «— neighboring community maximizing the modularity increase
if c results in a strictly positive increase then
move n from its community to ¢
end if
end for
end while
if the modularity reached is higher than the initial modularity, then
end «— false
Display the partition found
Transform G into the graph between communities
else

end <« true
end if

20: until end




Louvain

The efficiency of the algorithm partly resides in the fact that the variation
of modularity A;; obtained by moving a vertex ¢ from its community to the
community of one of its neighbors j can be calculated with only local infor-
mation. In practice, the variation of modularity is calculated by removing ¢
from its community Ayemove:; (this is only done once) then inserting it into the
community of j Ajpsert;ij for each neighbor j of . The variation is therefore:

Az’j — A7‘emove;'é + A7l'rzusefr‘t;z'.7'-



Optimization: Greedy optimization
Louvain: multi-scale, agglomerative and greedy

Very fast: O(N) in practice. The only limitation being the storage of the network in
main memory

Good accuracy (among greedy methods)

Karate Arxiv Internet Web nd.edu Phone Web uk-2005 Web WebBase 2001

Nodes/links ~ 34/77  9k/24k  70k/351k  325k/IM  2.04M/5.4M  39M/783M 118M/1B
CNM 38/0s  .772/3.6s .692/799s  .927/5034s -/- -/- -/-
PL A42/0s  .757/3.3s .729/575s .895/6666s -/- -/- -/-
wWT A42/0s  .761/0.7s .667/62s  .898/248s .553/367s -/- -/-
Our algorithm .42/0s  .813/0s  .781/1s 935/3s .76/44s 979/738s 984 /152mn

V.D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, Fast unfolding of communities in
large networks, J. Stat. Mech., P10008, 2008.



How to test the methods?

Test the heuristics: what is the value of Q obtained for different algorithms? Time
complexity?

2
327 |2 Comsers ey Be—
_é.‘s - |+ Fast Greedy ; o-0/bo 2 /
5 o go/ V| ™S N
ER ) o°o-: / oa—g ,A—AA
‘!9 h o jo ?/ AAl/ N
§“’ i / e T 5
| 2% o4’ oy o Na / :
2V e ow% X X - N 4
L Y N A

I 1 1 I I 1 1 1

Se+01 1e+02 S5e402 1e+03 5e+03 1e+04 Se+04 1e+05
number of vertices, log-scale

graph size subdivision coarsening local search math prog SS+ML
karate [42] 34 [29] 419  [41] 4198 [12] .4188 (1] 4197 .4197
dolphins [22] 62 [29] .4893 (31] .5171 [33] .5285 [40] .5285 .5276
polBooks 105 [29] .3992 [37] .5269 % .5204 % 5272 .5269
afootball [14] 115 [39] .602 41] .605 4] .6045 1] .6046 .6002
jazz 198 [29] 442 9] .4409 [12] 4452 1] 445  .4446
celeg_metab 453 [29] .435 450  [12] 4342 1] 450  .4452
email [17] 1133 [29] .572 (9] .5569 [12] .5738 1] 579  .5774
Erdos02 [16 6927 [29] .5969 [32] .6817 [33] .7094 7162
PGP _main 5 11k [29] .855 9] .7462 [12] .8459 8841
cmat03.main 25] | 28k [29] .723  [41] .761 12] .6790 8146
ND_edu [2] 325k 7] 927 [4] .935 9509




How to test the methods?

Comparison with real-world data: do modules reveal nodes having similar meta-
data?

FIG. 3: Krebs' network of books on American politics. Ver-
tices represent books and edges join books frequently pur-
chased by the same readers. Dotted lines divide the four
communities found by our algorithm and shapes represent
the political alignment of the books: circles (blue) are liberal,
squares (red) are conservative, triangles (purple) are centrist
or unaligned.

But: meta-data are often unknown. No insurance that modular organization
coincides with semantic/cultural organisation



How to test the methods?

Benchmarks: artificial networks with known community structure.

M
E = 0z, =6
@ '2E 3 3 |[22=-7
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Proportion of out links z_ /k

But: random networks (their structure is quite different from real-world networks).
In the way the benchmark is built, there is a (hidden) choice for what good
partitions should be

Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi, Phys. Rev. E 78, 046110 (2008)



How to test the methods?

Ajk the people!

fellows

about N Es m B

On Facebook, you only have friends. In real life however, these
friends are part of different groups: fam slose friends. co-workers
childhood friends, etc. The way you communicate with them likely

depends on the group they belong to. And vet, on Facebook

reveal everything 1o everybody
There are ways to chose those with whom you want to share some
information (be it a picture, a status update, a link, etc.), but we think

that those are too complex. They require you to add your friends one

by one to friend lists, which might take a tremenduous amount of
time if you have hundreds of contacts
We are working on a way to automatically generate those groups of

friends, using only the information on “who




Limitations of modularity (1)

The modularity landscape tends to be very rugged, with many

partitions, possibly very different, having similar value of
modularity.

Modularity, Q

The performance of modularity maximization in practical contexts, Benjamin H. Good et al.
http://arxiv.org/pdf/0910.0165.pdf



http://arxiv.org/pdf/0910.0165.pdf

Limitations of modularity (2)

Second, () exhibits a resolution limit, because using @ it is impossible to
detect dense clusters of nodes that are smaller than a certain scale [For-
tunato and Barthélemy (2007)]. The resolution limit originates from the
dependency of the null model on 2M. The dependency decreases when the

number of links, M, is increased. Then, modularity maximisation tends to
favour larger communities. In the limit M — oo, the null model is neglected
and modularity optimisation simply uncovers the connected components.
Modularity-based methods implicitly favour communities having a certain
size, depending on the size of the entire network. not onlv on its inter-
nal structure

Resolution limit in community detection Santo Fortunato and Marc Barthélemy
http://www.pnas.org/content/104/1/36.full



http://www.pnas.org/content/104/1/36.full

Limitations of modularity (2)

Resolution limit in community detection Santo Fortunato and Marc Barthélemy
http://www.pnas.org/content/104/1/36.full



http://www.pnas.org/content/104/1/36.full

Limitations of modularity (3)

Finally, al-
though modularity allows us to compare partitions of the same network,
it is by no means intended to compare modularity values of different net-
works. Therefore, () should not be used as a measure of the modularity of
a network. For instance, the modularity of the best partition of a random
network tends to () = 1 when the network is sufficiently large, whereas this
network is by no means modular [Guimera et al. (2004)].

Resolution limit in community detection Santo Fortunato and Marc Barthélemy
http://www.pnas.org/content/104/1/36.full
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