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8 Fracture

8.1 Mode III cracks

Fracture describes the behaviour of thin cracks, like the one illustrated in Figure 8.1, in an
otherwise elastic material. The crack itself is a thin void, whose faces are usually assumed
to be stress-free. The simplest configuration is that of a crack in antiplane strain, which is
called a Mode III crack, as illustrated in Figure 8.2. Although this configuration is not so
important in practice, it is much simpler mathematically than Mode I and II cracks, which
will be introduced later.

We will consider a planar crack whose faces lie close to the (x, z)-plane between the crack
tips x = ±c, y = 0. The physical set-up is that of a large cracked slab being sheared at infinity
in the (y, z)-plane with a shear stress σIII. Assuming that the faces of the crack are stress
free, we find that the mathematical model for the displacement w(x, y) in the z-direction is

∇2w = 0 (8.1a)

everywhere except on y = 0, |x| < c, with

µ
∂w

∂y
→ σIII as x2 + y2 →∞, (8.1b)

µ
∂w

∂y
= 0 on y = 0, |x| < c. (8.1c)

There is a fundamental difference between (8.1) and most of the boundary value problems
we have thus far considered for elastostatics, namely that the boundary on which the Neumann
data (8.1c) are prescribed is not smooth at the crack tip. To see the kind of difficulty that this
can cause, suppose we were to shift the origin to (−c, 0) and concentrate on the region near
the crack tip. Then we would need to find a displacement field in which ∇2w = 0 everywhere
except on y = 0, x > 0, with

µ
∂w

∂y
= 0 on y = 0, x > 0. (8.2)
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Figure 8.1: Definition sketch of a thin crack.
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Figure 8.2: (a) A Mode III crack. (b) The cross-section in the (x, y)-plane.

By separating the variables in polar coordinates (r, θ), we immediately see that w can be any
function of the form

w = Arn/2 cos(nθ/2) = ARe
(
zn/2

)
, (8.3)

where z = reiθ, A is a constant and n is an integer. The corresponding stress components are
given by

τrz =
µnA

2
rn/2−1 cos(nθ/2), τθz = −µnA

2
rn/2−1 sin(nθ/2). (8.4)

This plethora of solutions gives us the strong hint that we will not be able to solve (8.1)
uniquely unless we supply some extra information about the behaviour of w near (±c, 0). We
also note that, whenever n is not an even positive integer, the stress is non-analytic at the
crack tip r = 0, and, if n < 2, the stress is not even bounded.

From a mathematical point of view it is natural to ask whether the solution of (8.1) must
be singular at (±c, 0) and, if so, what is the mildest singularity which we have to endure. To
answer these questions, one possibility is to round off the crack, that is, to replace it with a
thin but smooth boundary. A particularly convenient shape is the ellipse

x2

c2 cosh2 ε
+

y2

c2 sinh2 ε
= 1, (8.5)

which is smooth for all positive ε but approaches the slit geometry of Figure 8.2(a) in the
limit ε → 0. Now we can easily solve Laplace’s equation by introducing elliptic coordinates
defined by

z = x+ iy = c cosh ζ, where ζ = ξ + iη, (8.6a)

so that

x = c cosh ξ cos η, y = c sinh ξ sin η. (8.6b)
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Figure 8.3: Definition sketch for the function
√
z2 − c2.

Since the map (8.6) from z to ζ is conformal except on y = 0, |x| < c, Laplace’s equation
is preserved and the model (8.1) becomes

∂2w

∂ξ2
+
∂2w

∂η2
= 0, in ξ > ε (8.7a)

with
∂w

∂ξ
= 0 on ξ = ε, (8.7b)

and, since y ∼ (c/2)eξ sin η as ξ →∞,

w ∼ cσIII
2µ

eξ sin η as ξ →∞. (8.7c)

By separating the variables, we easily find the solution

w =
cσIII
2µ

sin η
(

eξ + e2ε−ξ
)
. (8.8)

We thus have a unique displacement field for any positive value of ε and, when we let ε→ 0,
we obtain the solution of the crack problem as

w =
cσIII
µ

Im (sinh ζ) . (8.9)

Using (8.6), this can be written as

w =
σIII
µ

Im
(√

z2 − c2
)
, (8.10)

where the square root is defined to be√
z2 − c2 ≡

√
r1r2 ei(θ1+θ2)/2, (8.11)
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Figure 8.4: Displacement field for a Mode III crack.

with r1, r2, θ1 and θ2 defined as shown in Figure 8.3. The angles are taken to lie in the ranges
−π < θj < π, so that a branch cut lies along the crack between z = −c and z = c. As shown
in Figure 8.4, the displacement w is discontinuous across this branch cut.

Equation (8.10) reveals the famous square root singularity in which the elastic displace-
ment varies as the square root of the distance from the crack tip. By rounding off the crack
before taking the limit ε → 0, we have managed to select one of the many possible singular
solutions suggested by (8.3). This dependence immediately implies that the stress tensor,
whose non-zero components are

τxz = µ
∂w

∂x
and τyz = µ

∂w

∂y
, (8.12)

diverges as the inverse square root of the distance from the tip. Hence any critical yield
stress, no matter how large, will always be attained sufficiently close to the crack tip, and
there must be a neighbourhood of the tip where our linear elastic model breaks down.

In the material ahead of the crack tip (c, 0), the only non-zero stress component at the
crack plane y = 0 is τyz, which satisfies

lim
x↓c

τyz(x, 0)
√
x− c = σIII

√
c/2. (8.13)

Hence, no matter which physical mechanism prevents the stress from becoming infinite in
practice, it will have to be triggered by a local stress intensification that is proportional to
the inverse square root of distance from the tip. Every Mode III crack tip is characterised by
the limit defined in (8.13) and, conventionally, this limit is written as

lim
x↓c

τyz(x, 0)
√
x− c =

KIII√
2π
. (8.14)

The stress intensity factor KIII is the parameter that characterises the propensity of
the crack to propagate. For the crack modelled by (8.1), for example, we find that KIII =√
πcσIII. We postulate that the crack will propagate if KIII exceeds a critical value, which

must be determined either from more detailed modelling of the crack tip or from experiment.
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Figure 8.5: (a) Schematic of a Mode I crack. (b) Schematic of a Mode II crack.

Under this postulate, (8.13) immediately reveals that a Mode III crack is more likely to
grow if it is longer or subject to greater stress. We emphasise that KIII is the only piece of
information concerning the global stress field that is relevant for deciding whether or not the
crack propagates.

8.2 Other crack geometries

More realistic than Mode III cracks are the configurations illustrated in Figure 8.5 and referred
to as Mode I and Mode II cracks. The former refers to a planar crack subject to a transverse
tensile stress σI, while in the latter a far-field shear stress σII parallel to the plane of the crack
is applied. These can both be modelled using plane strain, and their analysis is inevitably
more complicated than antiplane strain since we have to solve the biharmonic equation rather
than Laplace’s equation. Nevertheless, it can be shown that the displacement in either case
varies like the square root of the distance from a sharp crack tip and, hence, that the stress
diverges like the inverse square root, as it does in Mode III cracks. Thus we can define two
further stress intensity factors KI and KII using formulae analogous to (8.14). A general
planar crack in two space dimensions will experience a linear superposition of Modes I, II
and III, and hence the stress near its tip will be characterised by three intensity factors;
unfortunately there are no general rules about the Modes to which it will be most vulnerable.

Finally, we note that all the discussion hitherto refers to models of cracks that are static
or just about to grow. If we wish to model a growing crack, we have to solve the dynamic
Navier equation in a crack geometry, which is in general a difficult task. We therefore restrict
our attention to the simplest possible model for a semi-infinite Mode III crack propagating at
constant speed −V along the x-axis, so its tip is at x = −V t. We can seek a travelling-wave
solution moving with speed −V , at least on so the local displacement satisfies(

1− V 2

c2s

)
∂2w

∂ξ2
+
∂2w

∂y2
= 0, (8.15a)

everywhere except on y = 0, ξ > 0, with

µ
∂w

∂y
= 0 on y = 0, ξ > 0, (8.15b)



8–6 OCIAM Mathematical Institute University of Oxford

where ξ = x + V t and cs is the shear wave speed. Notice that this problem generalises the
static semi-infinite Mode III crack problem considered in (8.2).

To close the model (8.15), we should impose some conditions at infinity, but this would
require us to solve for the stress away from the crack. Even without precise knowledge of this
far field, we expect the physically relevant solution to have a square-root singularity analogous
to (8.3) with n = 1. The corresponding solution of (8.15) is

w = ARe

(√
ξ

B
+ iy

)
, where B2 = 1− V 2

c2s
, (8.16)

and it is only through the constant A that the global stress field is felt. Now the stress
intensity factor is

KIII = µ
√

2π lim
ξ↑0

(√
−ξ ∂w

∂y
(ξ, 0)

)
= µA

√
πB

2
= µA

√
π

2

(
1− V 2

c2s

)1/4

. (8.17)

Hence, provided A is bounded, we see that the stress intensity factor tends to zero as the tip
speed tends to the shear wave speed. This is comforting because, unless cracks are boosted by
internal pressures or other local driving mechanisms, they are always observed to propagate
subsonically.


