C5.2 Elasticity & Plasticity Hilary Term 2019

Problem Sheet 2

1. In plane strain, show that a smooth single-valued displacement can exist only if the
the strain components e, e,, and e, satisfy the compatibility condition
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Reformulate this relation in terms of the stress components 7,,, 7, and 7.
How many compatibility conditions do you think there are in three dimensions?

2. In the absence of a body force, the steady Navier equation takes the form
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in plane polar coordinates. Show that these are satisfied identically by introducing
an Airy stress function 2 such that
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[ These may alternatively be obtained by transforming the Cartesian relationships us-
ing the chain rule.]

3. In plane strain, the two-dimensional stress tensor takes the form
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with respect to principal axes, where 71 and 7, of are the principal stresses. Show
that, if the axes are rotated through an angle @, then T is transformed to
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Deduce that the maximum shear stress is S = |7 — 7»|/2.
Show that, with respect to arbitrary axes, S is given by
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[The Tresca yield criterion states that a solid material will fail if S exceeds some
critical yield stress 7y .|



4. A gun barrel occupies the region a < r < b in plane polar coordinates. A uniform
pressure P is applied to the inner surface » = a while the outer surface r = b is
traction-free. Assume that the displacement is purely radial, so that w = u,(r)e,.
By solving the Navier equation in polar coordinates, obtain the solution
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and hence show that the maximum shear stress defined in Question 3 is given by
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Deduce that the barrel will explode if
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where 7y is the Tresca yield stress.
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5. Seek harmonic wave solutions u = ae real part assumed) of the dynamic

Navier equation.

Show that there exists a unique scalar A and vector B such that a = Ak + B x k
and k- B = 0.

Deduce that either B = 0, pw? = (A + 2u) |k|> or A =0, pw? = u|k|.
Show that the wave-speeds ¢, = /(A + 2u)/p and ¢s = / 11/ p satisty ¢, > ¢s.
6. An elastic medium occupies the half-space y < 0 and the surface y = 0 is stress-free.

If the displacement is two-dimensional, with u = (u(m, y,t),v(x,y,t), O)T, obtain the
boundary conditions
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=0 on y=0.
Show that a Rayleigh wave can propagate close to the surface, with

u = (u,e™ + u,e™?) exp{i (kz — wt)},

where r2 = k* — w?/c) and k? = k* — w?®/c2. What restriction on the propagation
speed ¢ = w/k will ensure that s, and ks are both real (and positive)?

Deduce that the propagation c satisfies the equation
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and confirm graphically that this has only one real root in the range 0 < ¢ < ¢,.



7. A uniform beam of line density o and length L lying along the z-axis under a tension T’
undergoes a small transverse displacement w(z,t)k. Derive the governing equations
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where M is the clockwise bending moment exerted on each cross-section of the beam
and the gravitational acceleration is g = —gk.

Use an exact solution of the steady Navier equation to justify the constitutive relation
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where E is Young’s modulus and [ is the moment of inertia of the cross-section about
the y-axis.

If gravity is negligible and no transverse force is applied at the ends, which are
clamped horizontally, justify the boundary conditions dw/dz = 93w/0x> = 0 at
x =0 and x = L. Show that the natural frequencies w of the beam are given by
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and deduce that the beam is unstable if T' < —72ET/L>.



