C5.2 Elasticity & Plasticity And Term 2019

Problem Sheet 2

1. In plane strain, show that a smooth single-valued displacement can exist only if the the strain components e_{xx} , e_{xy} and e_{yy} satisfy the *compatibility condition*

$$
\frac{\partial^2 e_{yy}}{\partial x^2} - 2 \frac{\partial^2 e_{xy}}{\partial x \partial y} + \frac{\partial^2 e_{xx}}{\partial y^2} = 0.
$$

Reformulate this relation in terms of the stress components τ_{xx} , τ_{xy} and τ_{yy} . How many compatibility conditions do you think there are in three dimensions?

2. In the absence of a body force, the steady Navier equation takes the form

$$
\frac{1}{r}\frac{\partial}{\partial r}(r\tau_{rr}) + \frac{1}{r}\frac{\partial \tau_{r\theta}}{\partial \theta} - \frac{\tau_{\theta\theta}}{r} = 0, \qquad \qquad \frac{1}{r}\frac{\partial}{\partial r}(r\tau_{r\theta}) + \frac{1}{r}\frac{\partial \tau_{\theta\theta}}{\partial \theta} + \frac{\tau_{r\theta}}{r} = 0,
$$

in plane polar coordinates. Show that these are satisfied identically by introducing an Airy stress function $\mathfrak A$ such that

$$
\tau_{rr} = \frac{1}{r^2} \frac{\partial^2 \mathfrak{A}}{\partial \theta^2} + \frac{1}{r} \frac{\partial \mathfrak{A}}{\partial r}.
$$
\n
$$
\tau_{r\theta} = -\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial \mathfrak{A}}{\partial \theta} \right), \qquad \tau_{\theta\theta} = \frac{\partial^2 \mathfrak{A}}{\partial r^2}.
$$

[These may alternatively be obtained by transforming the Cartesian relationships using the chain rule.]

3. In plane strain, the two-dimensional stress tensor takes the form

$$
\mathcal{T} = \begin{pmatrix} \tau_1 & 0 \\ 0 & \tau_2 \end{pmatrix}
$$

with respect to *principal axes*, where τ_1 and τ_2 of are the *principal stresses*. Show that, if the axes are rotated through an angle θ , then $\mathcal T$ is transformed to

$$
\mathcal{T}' = \begin{pmatrix} \tau_1 \cos^2 \theta + \tau_2 \sin^2 \theta & (\tau_2 - \tau_1) \sin \theta \cos \theta \\ (\tau_2 - \tau_1) \sin \theta \cos \theta & \tau_1 \sin^2 \theta + \tau_2 \cos^2 \theta \end{pmatrix}.
$$

Deduce that the maximum shear stress is $S = |\tau_1 - \tau_2|/2$. Show that, with respect to arbitrary axes, S is given by

$$
S^{2} = \frac{(\tau_{xx} - \tau_{yy})^{2}}{4} + \tau_{xy}^{2}.
$$

[The Tresca yield criterion states that a solid material will fail if S exceeds some *critical* yield stress τ_Y .

4. A gun barrel occupies the region $a < r < b$ in plane polar coordinates. A uniform pressure P is applied to the inner surface $r = a$ while the outer surface $r = b$ is traction-free. Assume that the displacement is purely radial, so that $u = u_r(r)e_r$. By solving the Navier equation in polar coordinates, obtain the solution

$$
u_r(r) = \frac{Pa^2}{2(b^2 - a^2)} \left(\frac{r}{\lambda + \mu} + \frac{b^2}{\mu r}\right),
$$

and hence show that the maximum shear stress defined in Question 3 is given by

$$
S = \frac{\tau_{\theta\theta} - \tau_{rr}}{2} = \frac{Pa^2b^2}{(b^2 - a^2)r^2}.
$$

Deduce that the barrel will explode if

$$
P > \tau_Y \left(1 - \frac{a^2}{b^2}\right),
$$

where τ_Y is the Tresca yield stress.

5. Seek harmonic wave solutions $u = \mathbf{a}e^{i(\mathbf{k}\cdot\mathbf{x}-\omega t)}$ (real part assumed) of the dynamic Navier equation.

Show that there exists a unique scalar A and vector **B** such that $a = Ak + B \times k$ and $\mathbf{k} \cdot \mathbf{B} = 0$.

Deduce that either
$$
\mathbf{B} = \mathbf{0}
$$
, $\rho \omega^2 = (\lambda + 2\mu) |\mathbf{k}|^2$ or $A = 0$, $\rho \omega^2 = \mu |\mathbf{k}|^2$.
Show that the wave-speeds $c_p = \sqrt{(\lambda + 2\mu)/\rho}$ and $c_s = \sqrt{\mu/\rho}$ satisfy $c_p > c_s$.

6. An elastic medium occupies the half-space $y < 0$ and the surface $y = 0$ is stress-free. If the displacement is two-dimensional, with $\boldsymbol{u} = (u(x, y, t), v(x, y, t), 0)^{\mathrm{T}}$, obtain the boundary conditions

$$
\left(c_p^2 - 2c_s^2\right)\frac{\partial u}{\partial x} + c_p^2 \frac{\partial v}{\partial y} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = 0 \quad \text{on} \quad y = 0.
$$

Show that a Rayleigh wave can propagate close to the surface, with

$$
\boldsymbol{u} = (\boldsymbol{u}_p e^{\kappa_p y} + \boldsymbol{u}_s e^{\kappa_s y}) \exp\{\mathrm{i} (kx - \omega t)\},\
$$

where $\kappa_p^2 = k^2 - \omega^2/c_p^2$ and $\kappa_s^2 = k^2 - \omega^2/c_s^2$. What restriction on the propagation speed $c = \omega/k$ will ensure that κ_p and κ_s are both real (and positive)?

Deduce that the propagation c satisfies the equation

$$
\left(2 - \frac{c^2}{c_s^2}\right)^2 = 4\left(1 - \frac{c^2}{c_p^2}\right)^{1/2} \left(1 - \frac{c^2}{c_s^2}\right)^{1/2},
$$

and confirm graphically that this has only one real root in the range $0 < c < c_s$.

7. A uniform beam of line density ϱ and length L lying along the x-axis under a tension T undergoes a small transverse displacement $w(x, t)$ **k**. Derive the governing equations

$$
\frac{\partial T}{\partial x} = 0, \qquad T \frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 M}{\partial x^2} - \varrho g = \varrho \frac{\partial^2 w}{\partial t^2},
$$

where M is the clockwise bending moment exerted on each cross-section of the beam and the gravitational acceleration is $g = -gk$.

Use an exact solution of the steady Navier equation to justify the constitutive relation

$$
M = -EI\frac{\partial^2 w}{\partial x^2},
$$

where E is Young's modulus and I is the moment of inertia of the cross-section about the y-axis.

If gravity is negligible and no transverse force is applied at the ends, which are clamped horizontally, justify the boundary conditions $\partial w/\partial x = \partial^3 w/\partial x^3 = 0$ at $x = 0$ and $x = L$. Show that the natural frequencies ω of the beam are given by

$$
\omega^2 = \frac{n^2 \pi^2}{\varrho L^2} \left(\frac{n^2 \pi^2 EI}{L^2} + T \right),
$$

and deduce that the beam is unstable if $T < -\pi^2 EI/L^2$.