Problem Sheet 3

1. An elastic beam with bending stiffness $E I$ is in equilibrium subject to a compressive force P_{0} and shear force N_{0} applied at its ends, where it is clamped parallel to the x-axis. Show that, if the beam makes an angle $\theta(s)$ with the x-axis, where s is arc-length, the shear force N and bending moment M at any point satisfy

$$
N=N_{0} \cos \theta+P_{0} \sin \theta, \quad \frac{\mathrm{~d} M}{\mathrm{~d} s}-N=0
$$

Assuming the constitutive relation $M=-E I \mathrm{~d} \theta / \mathrm{d} s$, obtain the Euler strut equation

$$
E I \frac{\mathrm{~d}^{2} \theta}{\mathrm{~d} s^{2}}+P_{0} \sin \theta+N_{0} \cos \theta=0
$$

(a) When the applied shear force is zero, obtain the dimensionless model

$$
\frac{\mathrm{d}^{2} \theta}{\mathrm{~d} \xi^{2}}+\pi^{2} \lambda \sin \theta=0, \quad \theta(0)=\theta(1)=0
$$

where the dimensionless variable ξ and parameter λ are to be defined.
(b) Assuming $|\theta| \ll 1$, show that nontrivial solutions $\theta=A \sin (n \pi \xi)$ exist when $\lambda=n^{2}$, where n is a positive integer.
(c) Now suppose that λ is close to one of the critical values so that $\lambda=n^{2}+\varepsilon \lambda_{1}$, where $0<\varepsilon \ll 1$. Show that solutions of the form

$$
\theta=\varepsilon^{1 / 2}\left\{A_{0} \sin (n \pi \xi)+\varepsilon \Theta_{1}+O\left(\varepsilon^{2}\right)\right\}
$$

exist provided the leading-order amplitude A_{0} satisfies

$$
A_{0}\left(A_{0}^{2}-\frac{8 \lambda_{1}}{n^{2}}\right)=0
$$

Plot the resulting response diagram.
(d) Now suppose there is a small applied shear force N_{0}, so that

$$
\frac{\mathrm{d}^{2} \theta}{\mathrm{~d} \xi^{2}}+\pi^{2} \lambda \sin \theta+\varepsilon^{3 / 2} F \cos \theta=0
$$

Define F in terms of N_{0}. Repeat the analysis of part (c) with $n=1$ to show that A_{0} now satisfies

$$
A_{0}\left(A_{0}^{2}-8 \lambda_{1}\right)=\frac{32 F}{\pi^{3}}
$$

Sketch the response diagram. Assuming that $F>0$, show that a negative amplitude A_{0} is possible only if the forcing parameter λ_{1} exceeds $3 F^{2 / 3} / 2^{1 / 3} \pi^{2}$.
2. (a) An elastic string is stretched to a uniform tension T over a nearly flat obstacle $z=f(x)$. If a transverse body force $p(x)$ per unit length is applied, show that the transverse displacement $z=w(x)$ satisfies $T \mathrm{~d}^{2} w / \mathrm{d} x^{2}=p(x)$ in the noncontact set and $w=f$ in the contact set, with continuity of w and $\mathrm{d} w / \mathrm{d} x$ on the boundary between them.
(b) Show that the above model is not complete by finding three solutions when $f(x)=-7 / 500, p(x) / T=x^{2}-4 / 75$ and $w=0$ at $x= \pm 1$.
(c) Which solution from part (b) satisfies the complementarity conditions

$$
\begin{equation*}
(w-f)\left(p-T \frac{\mathrm{~d}^{2} w}{\mathrm{~d} x^{2}}\right)=0, \quad w-f \geqslant 0, \quad p-T \frac{\mathrm{~d}^{2} w}{\mathrm{~d} x^{2}} \geqslant 0 ? \tag{*}
\end{equation*}
$$

Interpret these conditions physically.
3. It may be shown that $(*)$ is equivalent to the variational inequality

$$
T \int_{-1}^{1} \frac{\mathrm{~d} w}{\mathrm{~d} x}\left(\frac{\mathrm{~d} v}{\mathrm{~d} x}-\frac{\mathrm{d} w}{\mathrm{~d} x}\right) \mathrm{d} x \geqslant \int_{-1}^{1} p(w-v) \mathrm{d} x \quad \text { for all } \quad v \geqslant f
$$

Now we will show that (\dagger) is equivalent to minimising the net strain and potential energy over all displacements that do not interpenetrate the obstacle.
(a) Show that, if

$$
U[w]=\int_{-1}^{1}\left(\frac{T}{2}\left(\frac{\mathrm{~d} w}{\mathrm{~d} x}\right)^{2}+p w\right) \mathrm{d} x
$$

then

$$
U[w]-U[v]=\int_{-1}^{1} p(w-v) \mathrm{d} x-T \int_{-1}^{1} \frac{\mathrm{~d} w}{\mathrm{~d} x}\left(\frac{\mathrm{~d} v}{\mathrm{~d} x}-\frac{\mathrm{d} w}{\mathrm{~d} x}\right) \mathrm{d} x-\frac{T}{2} \int_{-1}^{1}\left(\frac{\mathrm{~d} w}{\mathrm{~d} x}-\frac{\mathrm{d} v}{\mathrm{~d} x}\right)^{2} \mathrm{~d} x
$$

and deduce that, if w satisfies (\dagger), then it minimises U.
(b) Note that, if v_{1} and v_{2} belong to the set $\{v: v \geqslant f$ on $(-1,1)\}$, then so does $\alpha v_{1}+(1-\alpha) v_{2}$ for $0<\alpha<1$ [this means that the set is convex]. Show that if w minimises U, then

$$
U[w] \leqslant U[\alpha v+(1-\alpha) w]
$$

for all $v \geqslant f$. Expand this inequality for small α to obtain (\dagger).
4. A thin elliptical Mode III crack, whose boundary $\partial \Omega$ is given by

$$
\frac{x^{2}}{c^{2} \cosh ^{2} \varepsilon}+\frac{y^{2}}{c^{2} \sinh ^{2} \varepsilon}=1
$$

is subject to an antiplane strain displacement field $\boldsymbol{u}=(0,0, w(x, y))^{\mathrm{T}}$.
(a) If a shear stress $\tau_{y z}=\sigma$ is applied in the far field, justify the conditions

$$
\frac{\partial w}{\partial n}=0 \quad \text { on } \partial \Omega, \quad w \sim \frac{\sigma y}{\mu} \quad \text { as } x^{2}+y^{2} \rightarrow \infty
$$

(b) Show that the Joukowsky transformation

$$
x+\mathrm{i} y=z=\frac{c}{2}\left(\zeta+\frac{1}{\zeta}\right)
$$

conformally maps the region $|\zeta|>\mathrm{e}^{\varepsilon}(\varepsilon>0)$ onto the outside of the crack. What happens as $\varepsilon \rightarrow 0$? What is the inverse map from z to ζ ?
(c) Introducing polar coordinates (r, θ) such that $\zeta=r \mathrm{e}^{\mathrm{i} \theta}$, show that w satisfies the conditions

$$
\frac{\partial w}{\partial r}=0 \quad \text { on } r=\mathrm{e}^{\varepsilon}, \quad w \sim \frac{c \sigma}{2 \mu} r \sin \theta \quad \text { as } r \rightarrow \infty .
$$

Hence obtain the solution

$$
w=\frac{c \sigma}{2 \mu} \operatorname{Im}\left\{\zeta-\frac{\mathrm{e}^{2 \varepsilon}}{\zeta}\right\}
$$

(d) In the limit $\varepsilon \rightarrow 0$, deduce that

$$
w=\frac{\sigma}{\mu} \operatorname{Im}\left\{\sqrt{z^{2}-c^{2}}\right\}
$$

and carefully define the square root.
5. If the displacement in antiplane strain is given by $w(x, y)=\operatorname{Im}\{f(z)\}$, where $z=x+\mathrm{i} y$, show that the corresponding stress components are

$$
\tau_{x z}=\mu \operatorname{Im}\left\{f^{\prime}(z)\right\}, \quad \tau_{y z}=\mu \operatorname{Re}\left\{f^{\prime}(z)\right\}
$$

Hence show that the stress components ahead of the crack, on $y=0, x>c$, due to the displacement field (\ddagger), are given by

$$
\tau_{x z}=0, \quad \tau_{y z}=\frac{\sigma x}{\sqrt{x^{2}-c^{2}}}
$$

Suppose that the crack tip propagates when the stress intensity factor

$$
K_{\mathrm{III}}=\sqrt{2 \pi} \lim _{x \downarrow c}\left\{\tau_{y z}(x, 0) \sqrt{x-c}\right\}
$$

exceeds a critical value K_{\star}. Deduce that the crack will grow if the applied shear stress exceeds $K_{\star} / \sqrt{\pi c}$.

