

Problem Sheet 4

Let X be a separable reflexive Banach space and $M \subset X$ be non-empty, closed and convex.

QUESTION 1. Monotone Operators Let $A: M \to X^*$ be a monotone operator.

- (1) Using monotonicity first, and then Minty's Lemma, show that A satisfies condition (H3).
- (2) Show that if A is strictly monotone, i.e. so that $\langle A(u) A(v), u v \rangle > 0$ for all $u \neq v$, then there exists at most one solution $u \in M$ of the variational inequality $\langle A(u), u-v \rangle \leq 0$ for all $v \in M$.
- (3) Show that if A is strongly monotone, i.e. so that there exists c > 0 such that

$$|A(u) - A(v), u - v\rangle > c ||u - v||^2$$
,

and A maps bounded sets to bounded sets, then the variational inequality has a unique solution. (4) Using the above show that the equation

<

$$-\Delta u = f \text{ in } \Omega, \qquad u = 0 \text{ on } \partial \Omega$$

has a unique solution for every $f \in L^2(\Omega), \ \Omega \subset \mathbb{R}^n$ a bounded open subset with smooth boundary.

QUESTION 2. Monotonicity, Convexity

Let X be a Banach space and $F: X \to \mathbb{R}$ Gâteaux differentiable in every point $u \in X$ with Gâteaux derivative F'(u). Show that

$$F$$
 is convex \Leftrightarrow $F': X \to X^*$ is monotone.

Remark:

- A map $G: X \to X^*$ is monotone if $\langle G(u) G(v), u v \rangle \ge 0$ for all $u, v \in X$ (i.e. hemicontinuity, as in the definition of a monotone operator, is not required).
- A function $F: X \to \mathbb{R}$ is convex on X, if $F(tu + (1-t)v) \le tF(u) + (1-t)F(v)$ for all $t \in [0,1]$ and $u, v \in X$.
- Recall that a differentiable function $g: I \subset \mathbb{R} \to \mathbb{R}$ is convex on I if g' is monotonically increasing on I. Consider g(t) := F(tu + (1-t)v).

QUESTION 3. Strongly monotone operator Let $\Omega = (-1,1)$ and $X = H^2(\Omega) \cap H^1_0(\Omega)$ endowed with the H^2 -norm.

(a) Let $A: X \to X^*$ be defined via

$$\langle A(u),v\rangle := \int_{\Omega} u''v''dx.$$

Show that A is a strongly monotone operator, i.e. hemicontinuous and so that there exists some $c_0 > 0$ with

 $\langle A(u) - A(v), u - v \rangle \ge c_0 ||u - v||^2$ for all $u, v \in M$.

Hint: Use Poincaré's inequality, as well as Poincaré's inequality for functions with mean value zero.

(b) Let now $F_{\mu}(u) := A(u) + \mu B(u)$ where $B(u)(v) := u(0) \cdot v(0) + \int_{\Omega} x \cdot v(x) dx$.

Show that $F_{\mu}: X \to X^*$ is well defined for any $\mu \in \mathbb{R}$ and that there exists a number $\mu_0 > 0$ so that for each μ with $|\mu| \leq \mu_0$ there exists a unique solution of the equation

$$F_{\mu}(u) = 0$$

(c) Let now $\mu \geq 0$. Determine a functional $I_{\mu}: X \to \mathbb{R}$ so that the following holds: $u \in X$ is a solution of $F_{\mu}(u) = 0$ if and only if u is a minimiser of I_{μ} on X

QUESTION 4. Consider a domain $\Omega \subset \mathbb{R}^n$ which is smooth and bounded, and $g \in C^2(\mathbb{R}^n)$ such that $g \leq 0$ on $\partial\Omega$. Consider the energy I given by

$$I(v) = \int_{\Omega} \left| \Delta v \right|^2 + f v dx,$$

for some $f \in L^2(\Omega)$.

- (1) Find the Euler-Lagrange equation satisfied by the critical points of I(v) and prove that every critical point of I is a minimiser.
- (2) Consider the set M given by

$$M := \left\{ v \in H^2(\Omega) \cap H^1_0(\Omega) \, | \, v \ge g \text{ a.e. on } \Omega \right\}.$$

Show that there exists a unique minimizer of I on M —check carefully that the assumptions of the Theorem(s) you use are satisfied. You may use without proof that for all $u \in H_0^1(\Omega) \cap H^2(\Omega)$

$$||u||_{H^1_0(\Omega)} \le C ||\Delta u||_{L^2(\Omega)},$$

where the constant C is independent of u.

QUESTION 5. Three approaches to the same problem. Consider a domain $\Omega = \{(x,y) \in \mathbb{R}^2 \text{ s.t.} x^2 + y^2 \leq 1\}$ and the equation

$$-\Delta u + u^5 = 1$$
 in Ω , $u = 0$ on $\partial \Omega$.

- Show that this equation makes sense in $H_0^1(\Omega)$, that is, it has a legitimate weak variational formulation.
- Using the first part of the course, show that you can formulate it as a fixed point problem of the form u = T(u) where T is a continuous compact map.
- Find a simple subsolution \underline{u} and a simple supersolution \overline{u} . Show that the problem can be transformed into

$$-\Delta u + \lambda u = f_{\lambda}(u)$$

for a constant $\lambda > 0$ chosen so that $f_{\lambda}(u)$ is increasing when $\underline{u} \leq u \leq \overline{u}$, and use the method of sub and super solutions to show that a solution u can be found by a constructive (iterative) method.

- Using Schauder's FPT and the above show that there exists a solution.
- Use the variational inequality approach to find a solution in $H_0^1(\Omega)$.
- What can you say about uniqueness?