Problem Sheet 4

Let X be a separable reflexive Banach space and $M \subset X$ be non-empty, closed and convex.
Question 1. Monotone Operators Let $A: M \rightarrow X^{*}$ be a monotone operator.
(1) Using monotonicity first, and then Minty's Lemma, show that A satisfies condition (H3).
(2) Show that if A is strictly monotone, i.e. so that $\langle A(u)-A(v), u-v\rangle>0$ for all $u \neq v$, then there exists at most one solution $u \in M$ of the variational inequality $\langle A(u), u-v\rangle \leq 0$ for all $v \in M$.
(3) Show that if A is strongly monotone, i.e. so that there exists $c>0$ such that

$$
\langle A(u)-A(v), u-v\rangle>c\|u-v\|^{2},
$$

and A maps bounded sets to bounded sets, then the variational inequality has a unique solution.
(4) Using the above show that the equation

$$
-\Delta u=f \text { in } \Omega, \quad u=0 \text { on } \partial \Omega
$$

has a unique solution for every $f \in L^{2}(\Omega), \Omega \subset \mathbb{R}^{n}$ a bounded open subset with smooth boundary.

Question 2. Monotonicity, Convexity

Let X be a Banach space and $F: X \rightarrow \mathbb{R}$ Gâteaux differentiable in every point $u \in X$ with Gâteaux derivative $F^{\prime}(u)$. Show that

$$
F \text { is convex } \quad \Leftrightarrow \quad F^{\prime}: X \rightarrow X^{*} \text { is monotone. }
$$

Remark:

- A map $G: X \rightarrow X^{*}$ is monotone if $\langle G(u)-G(v), u-v\rangle \geq 0$ for all $u, v \in X$ (i.e. hemicontinuity, as in the definition of a monotone operator, is not required).
- A function $F: X \rightarrow \mathbb{R}$ is convex on X, if $F(t u+(1-t) v) \leq t F(u)+(1-t) F(v)$ for all $t \in[0,1]$ and $u, v \in X$.
- Recall that a differentiable function $g: I \subset \mathbb{R} \rightarrow \mathbb{R}$ is convex on I if g^{\prime} is monotonically increasing on I. Consider $g(t):=F(t u+(1-t) v)$.

Question 3. Strongly monotone operator Let $\Omega=(-1,1)$ and $X=H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ endowed with the H^{2}-norm.
(a) Let $A: X \rightarrow X^{*}$ be defined via

$$
\langle A(u), v\rangle:=\int_{\Omega} u^{\prime \prime} v^{\prime \prime} d x
$$

Show that A is a strongly monotone operator, i.e. hemicontinuous and so that there exists some $c_{0}>0$ with

$$
\langle A(u)-A(v), u-v\rangle \geq c_{0}\|u-v\|^{2} \quad \text { for all } u, v \in M .
$$

Hint: Use Poincaré's inequality, as well as Poincaré's inequality for functions with mean value zero.
(b) Let now $F_{\mu}(u):=A(u)+\mu B(u)$ where $B(u)(v):=u(0) \cdot v(0)+\int_{\Omega} x \cdot v(x) d x$.

Show that $F_{\mu}: X \rightarrow X^{*}$ is well defined for any $\mu \in \mathbb{R}$ and that there exists a number $\mu_{0}>0$ so that for each μ with $|\mu| \leq \mu_{0}$ there exists a unique solution of the equation

$$
F_{\mu}(u)=0 .
$$

(c) Let now $\mu \geq 0$. Determine a functional $I_{\mu}: X \rightarrow \mathbb{R}$ so that the following holds: $u \in X$ is a solution of $F_{\mu}(u)=0$ if and only if u is a minimiser of I_{μ} on X

Question 4. Consider a domain $\Omega \subset \mathbb{R}^{n}$ which is smooth and bounded, and $g \in C^{2}\left(\mathbb{R}^{n}\right)$ such that $g \leq 0$ on $\partial \Omega$. Consider the energy I given by

$$
I(v)=\int_{\Omega}|\Delta v|^{2}+f v d x
$$

for some $f \in L^{2}(\Omega)$.
(1) Find the Euler-Lagrange equation satisfied by the critical points of $I(v)$ and prove that every critical point of I is a minimiser.
(2) Consider the set M given by

$$
M:=\left\{v \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \mid v \geq g \text { a.e. on } \Omega\right\} .
$$

Show that there exists a unique minimizer of I on M-check carefully that the assumptions of the Theorem(s) you use are satisfied. You may use without proof that for all $u \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$

$$
\|u\|_{H_{0}^{1}(\Omega)} \leq C\|\Delta u\|_{L^{2}(\Omega)}
$$

where the constant C is independent of u.

Question 5. Three approaches to the same problem. Consider a domain $\Omega=\{(x, y) \in$ \mathbb{R}^{2} s.t. $\left.x^{2}+y^{2} \leq 1\right\}$ and the equation

$$
-\Delta u+u^{5}=1 \text { in } \Omega, \quad u=0 \text { on } \partial \Omega
$$

- Show that this equation makes sense in $H_{0}^{1}(\Omega)$, that is, it has a legitimate weak variational formulation.
- Using the first part of the course, show that you can formulate it as a fixed point problem of the form $u=T(u)$ where T is a continuous compact map.
- Find a simple subsolution \underline{u} and a simple supersolution \bar{u}. Show that the problem can be transformed into

$$
-\Delta u+\lambda u=f_{\lambda}(u)
$$

for a constant $\lambda>0$ chosen so that $f_{\lambda}(u)$ is increasing when $\underline{u} \leq u \leq \bar{u}$, and use the method of sub and super solutions to show that a solution u can be found by a constructive (iterative) method.

- Using Schauder's FPT and the above show that there exists a solution.
- Use the variational inequality approach to find a solution in $H_{0}^{1}(\Omega)$.
- What can you say about uniqueness?

