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m In this part we consider the mathematics of conservation laws.

m Conservation laws typically assert that the rate of change

within a region is governed by a flux function controlling the
rate of loss/increase through the boundary of the region.

Let
u=u(x,t) = (ui(x,t), -~ ,un(x,t)), x€R", t>0

be a vector function whose components are conserved in some
physical system under investigation. Let f : R™ — R™*" be
the flux function. Then the conservation law states

: /
— udx = — f(u)vdS
dt Jo 00 ()

for any smooth bounded domain Q C R”, where v denotes
the outward unit normal to 0f2.



By the divergence theorem we have

/utdx:—/divf(u)dx.
Q Q

Since € is arbistrary, we have

ur +divf(u) =0 on R" x (0, 00) (1)

This covers many equations from applications, including the
Euler's equations for compressible gas flow.

m In this course we only consider the scalar case of (1) in one
dimension, i.e. u is a scalar function of single variables,
together with the initial condition u(x,0) = up(x), x € R.
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1. The method of characteristics

We develop the method of characteristics to solve the nonlinear
first order PDE

F(x,u,Du) =0 in U, u=g onl, (2)

where U C R" is an openset, x € U, T C9U, g:T — R and
F:U xR xR" — R are given smooth functions. Writing

F = F(X727p) = F(Xla"' yXny Z, P17 7pn)>
we use the notation

DyF = (Fx, -+, Fx,), D.F=F,, DpF =(Fp, -, Fp,).
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The basic idea of the method is as follows:

m Given x € U, find a curve within U connecting x with a point
xg €.

m Determine u along this curve.

m This usually requires the knowledge of Du along this curve.

m Let x(s) be such a curve and set
z(s) = u(x(s)) and p(s) = Du(x(s)).

Then x(s), z(s), p(s) are determined by solving systems of
ODEs.

So, the key point is to derive the ODEs governing x(s), z(s), p(s).



To derive these equations, first

n

dxj dpi dx;
ZUXJ 57 E_Zuxixj(x( )) ds‘

j=1

In order to eliminate the second derivative Ux;x;, We differentiating
the PDE in (2) with respect to x; to get

n
Fig + Fztig + > Fptig = 0.
i=1

Restricting this equation to the curve x(s), we obtain

n
Fy(x,z,p) + Fz(x,z,p)p; + ZF i(X, 2, p) g (x(s)) = 0.
i=1
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Thus, if we set

dx;
E = FPI(X7Z7 p)7
then
d,‘ dz
Ti - _FX,-(Xa Z, p) - FZ(szvp)ph

We therefore obtain the system of ODEs

e — DyF(x, z,p),

ds
% :p'DpF(X7zvp)7
Tg = —DyF(x,z,p) — D;F(x,z,p)p.

which is called the characteristic ODEs for (2)

n
E = prFPi(X7Z7 P)
i=1



m We still need to determine appropriate initial conditions for
the characteristic ODEs (3) using u=g on .

m We use local parametrizations of I'. Let I be locally
parametrized by

xi=xi(01, - ,0n_1), i=1--,n

with parameters 61,--- ,60,_1. We will write x = x(6) for
short.

m Let x° := x(A°) be a point on I'. For the ODEs in (3) it is
natural to set x(0) = x° and z(0) = z° := g(x%). We need to
determine p(0) = p° := (p?,- -, pQ).

m By the PDE in (2) we have F(x?, 2%, p%) = 0.
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Using u = g on I, we have u(x(0)) = g(0) := g(x(0)).

Differentiating with respect to 0; gives

n

0X; )
. (x(0 gy.(0 =1,---,n—1
> (O g = (0). "
By setting # = 6% we obtain n equations on p°:

n

OX;
§ ' 05~ 90 0 =1 ... _
I 89 (0 ) J(e )7 ./ 17 7n 17

i=1

F(:,2%,p%) = 0,

In many situations, p° can be obtained by solving (4).
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Example 1

Consider the problem
uuy + u, = 2, u(x,x) = x.

Here F = F(x,y,z,p1,p2) = zp1 + p2 — 2. Since F, = F, =0,
F, = p1, Fp, = z, and F,, = 1, it follows from the characteristic
ODEs (3) that

dx Q B dz

ds Z, ds y ds p1z + p2

Recall that z = u(x,y), p1 = ux(x,y) and po = u,(x,y), we have

dz

— =2.
ds



To include the boundary condition u(x, x) = x, we fix any 7, let
(x(s), y(s)) be the characteristic curve with

(x(0), ¥(0)) = (7, 7).

Then z(0) = 7 and thus

% =z, x(0) =,
d)s/ =1, y(O) =T,
=2, z(0)=r

Solving these equations give

y(s)=s+r, z(s) =2s+, x(s)=s>+7s+T.
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Now for any (x,y) we determine s and 7 such that (x,y) =
(x(s),y(s))- It yields

Therefore

u(x,y) = u(x(s),y(s)) =z(s) =2s+ 1= 2y;i/y—x

This solution makes sense only if y # 1.

When the PDE in (2) has special structures, the characteristic
ODEs can be significantly simplified.



m Consider the first order linear PDE
b(x) - Du(x) + c(x)u(x) = 0.

Here F(x,z,p) = b(x) - p+ c(x)z. Since DpF = b(x), we
have d d
Ix V4
X =b(x),  SE=b(x)-p(s)
Since p(s) = Du(x(s)) = —c(x(s))u(x(s)) = —c(x(s))z(s),
we obtain the simplified characteristic ODEs
dx dz

g = b(X), g =

—c(x)z.

The equations on p are not needed.

16/219



17/219

m Consider the scalar Hamilton-Jacobi equation

us + f(uy) =0,

where f € C}(R). Here F = F(t,x,z,q,p) = q + f(p) with
p = ux and g = u;. Consequently

Fo=1, Fp=f(p), Fe=F,=F, =0
Therefore, it follows from the characteristic ODEs (3) that

dt dx dz

== b s (p)s = dtp (p),
dq dp

T _0 F_o

ds ’ ds
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Thus we may take s = t. Since ¢ = uy = —f(ux) = —f(p),
we obtain the simplified characteristic ODEs

% =),

g = pf'(p) — f(p),
dp _ ¢

dt :

These equations imply that
e p are constants along characteristics by the last equation .
e Characteristics are straight lines with velocity f'(p) by the first
equation.
e By the second equation, u can be obtained along characteristic
lines.

We will use these facts to discuss Hamilton-Jacobi equation
later. |
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Consider the initial value problem of the scalar conservation
law

us + f(u)x =0, (x,t) € R x (0,00),

u(x,0) = up(x), x € R, ®)

where f is a C! function. The equation can be write as
ur + f'(u)uxy = 0. Here F = F(t,x,u,q,p) = q+ f'(u)p with
g = uy and p = uy. Since

Fr=F.=0, Fa=1, Fp=F"(u), qu+p=0,
from the characteristic ODEs (3) we have

dt dx du
— =1 i - f! - 0.
b =, o=aq+pf(u)=0



We can take s = t. Thus for (5) the characteristic ODEs
become

@ =0

{427 (6

From these equation we can conclude

e u are constants along characteristics.
e Characteristics are straight lines with velocity f'(u).

We will use these facts to show the following result.

The problem (5) cannot have a C' solution defined for all t > 0 if
there exist x; < xp such that f'(ug(x2)) < f'(uo(x1)).
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Proof.

m Assume (5) has a C! solution defined for all t > 0.

m Then v are constants along characteristics and characteristics
are straight lines. For characteristic line crossing x-axis at x,
its velocity is f/(up(x)).

m Let /1, h be the two characteristics lines starting from (x,0)
and x,0). Their velocities are f'(up(x1)) and f'(up(x2))
respectively.

P

slope m, slope m,

Iy [

Xy X2 x

FIgLI [€. The plots of /; and I whose slopes are my = 1/f’(ug(x1)) and mp = 1/f’ (ug(x2)) respectively,



m Since f'(up(x2)) < f'(uo(x1)), these two lines must cross at
some point P in t > 0.

m Along /; we have u(x;, t) = up(x;), i = 1,2. Thus u must be
discontinuous at P. Contradiction! [ |
Conclusion:

m In general C! solutions of (5) can exits for only a finite time
no matter how smooth ug is.

m In order to allow (5) to admit solutions defined for all t > 0,
the notion of solution should be generalized to include
solutions with “discontinuities”.
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2. Weak solutions and Rankine-Hugoniot condition
Consider again the initial value problem (5), i.e.

us + f(u)x =0, u(x,0) = up(x). (7)
To motivate the notion of weak solution, assume u is a C! solution

of (7). Multiplying (7) by any test function ¢ € C§°(R X [0, c0)),
integrating over R x (0,00), and using integration by parts, it gives

Oz/ow/_Z(utJrf(u)x)gpdxdt
- /0 b /_ Z(uwt—l—f(u)gox)dxdt—i— /_ Z o (x)o(x, 0) dx.



Since the last equation makes sense provided that v and wug are
merely bounded and measurable, it leads to the following definition.

Definition 3

Let up € L*°(R). A function u € L*°(R x (0, 00)) is called a weak
solution of (7) if

/ / (upr + f(u gDX)dth+/ up(x)e(x,0)dx =0

for all ¢ € C3°(R x [0, 00)).
Remarks.

(i) If ue CY(R x [0,00)) is a classical solution of (7), then u is
automatically a weak solution.
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(i) If uis a weak solution of (7) and if uis C' in a domain
Q C R x(0,00), then uy + f(u)x =0 in Q. In fact, for any
¢ € C}(Q) we have by integration by parts that

o:/ooo /_Z(ugot—i—f(u)gox)dxdt:/ooo /_C:(ut+f(u)x)godxdt.

Since ¢ is arbitrary, it follows u; + f(u)x = 0 in Q.

(iii) If up € C(R) and u € CY(R x [0,00)) is a weak solution of
(7), then u is a classical solution. In fact, us + f(u)x =0 in
R x (0,00) by (ii). Thus, by the definition of weak solution
and integration by parts, we have

0= /OO (u(x,0) — uo(x))e(x,0)dx, Ve e CH(R x [0,00)).

— 00
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Therefore u(x,0) = up(x) for x € R.

The notion of weak solution places restrictions on the curve of
discontinuity.

m Let [ be a smooth curve across which u has a jump
discontinuity, and u is smooth away from T

m Let P €T and let D be a small ball in t > 0 centered at P.
Assume that the part of ' in D is given by x = x(t),
a<t<h.

m [ splits D into two parts: the left part D; and the right part
D>. Let

up = é!l\n}) u(x(t) —e,t), ur = all\n}) u(x(t) +e,t).



xy

m For any ¢ € C}(D), we have

0= // upe+f(u)px)dxdt = // // (upe+f(u)px)dxdt.
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Since uis C! in Dy and Dy, we have u; + f(u)x = 0 in Dy
and Dy. Therefore it follows from the divergence theorem that

//(ucpt b F(u)on)dxdt = //((ugo)t F (F(u)0))dxdt
D, D:

:/ o(—udx + f(u)dt)
oD
:/FSD(—U/dX-I-f(U/)dt).

Similarly,

/DZ(U% + f(u)px)dxdt = — /r o(—urdx + f(u,)dt).



Therefore

0= [ e(—luldx + F(u))e)
where [u] = v — v, and [f(u)] = f(u;) — f(u,) denote the

jumps across . Let s := % denote the speed of the curve of
discontinuities. Then

b
0= / o(—slu] + [F(u)]) .
a
By the arbitrariness of ¢, we can conclude that

s[u] = [f(u)] (8)

at each point on I, which is called the Rankine-Hugoniot
condition.
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Proposition 4

If u is a weak solution of (7), then on the curves of discontinuity
there must hold the Rankine-Hugoniot condition (8).

We give an example to indicate how to produce weak solutions by
the method of characteristics and the Rankine-Hugoniot condition .

Example 5

Consider the initial value problem of Burgers equation

1, x <0,
ur + (1?/2)x =0, u(x,0)=up(x) =< 1—x, 0<x<1,
0, x> 1.
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m We first use the method of characteristics to find the solution

defined for a finite time.

We know that all characteristics are straight lines and u are
constants along characteristics lines.

Since the flux is f(u) = u?/2, the characteristic line crossing
x-axis at xp is given by

x(t) = xo + tuo(xo), x0 € R.

and on this line
u = up(xo)-

Since all characteristics starting at (xp,0) with 0 < xp <1
cross at (1,1), u(x, t) can not be smooth for t > 1.



m By the knowledge of characteristics, u(x, t) for t < 1 can be
determined as follows:

o u(x,t)=1for x < tand u(x,t) =0 for x > 1.
e For (x,t) satisfying 0 < t < x < 1, the characteristic through
it intersects x-axis at (xp,0) with xo = (x — t)/(1 — t). So

—t 1_
u(x7t):u0(xo):1—X0:1—X = X

1—t 1—t
m Therefore, for t < 1 we have
1, x < t,
ux,t)=<¢ (1—x)/(1—1t), t<x<1,
0, x> 1.
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m Next we use the Rankine-Hugoniot condition to define u(x, t)

for t > 1.
e By the knowledge of characteristics, a curve of discontinuities
starting at the point (1,1) is expected with u = 1 on the left

and u = 0 on the right.
e By the Rankine-Hugoniot condition, the speed of the curve of

discontinuities is
2 2
ur/2—uz/2 1 1
t)=——— " = — r) = =.
s(t) — Sl +u) =7
So the curve is given by x(t) =1+ (t —1)/2, t > 1. Hence,
for t > 1 we have

(1 x<14(t-1)/2
”(X’t)_{o, x>1+(t—1)/2.



The solution u is depicted in the following figure.

‘ =14izt
¢ x =1+ 3
u=1
=20
e o m ot m e e e e e e = - —— I = }
u=1,/
3 Ty u=0
X = i3 ;
ﬁ'—i' —
T l-x
T l-a
m By definition it is easy to check that the above v is a weak
solution. [
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Example 6 (Nonuniqueness of weak solutions)

Consider the initial value problem of Burgers equation

0, x<0,
1, x>0.

u + (1?/2)x = 0, u(x,0) = {

The method of characteristics determines the solution everywhere
in t > 0 except in the sector 0 < x < t. By defining u in
0 < x < t carefully, we obtain two functions

0, x < 0,

0, x<t/2, B
ur(x, t) = { 1 x> )2, and w(x,t) =< x/t, 0<x<t,
1, X >t
both turn out to be weak solutions. [ |
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3. Entropy conditions

Example shows that weak solutions of conservation laws are
not necessarily unique.

Criteria should be developed to pick out the “physically
relevant” solution.
Such a criterion is called an entropy condition.

We motivate the entropy condition for the scalar conservation
laws

ur + f(u)xy =0, u(x,0) = up(x), (9)

where up € C! and f is C? with f”” > 0. Assume that (9) has
a smooth solution u (thus uj > 0 by Lemma 2).



m Recall that all characteristics of (9) are straight lines given by
(Xo + f/(UO(Xg))t, t), xo € R.

m For any (x,t) with t > 0 let xp be the crossing point of x-axis
and the characteristic through (x, t). Since u(x, t) = up(xo)
along the characteristic, we have

x=xp+ tf'(u(x,t)), ie xo=x—tf(u(x,t)).

So u satisfies the equation u = up(x — t f'(u)).
m Taking derivative with respect to x gives

up(x — t'(u))
1+ up(x — tf'(u))f"(u)t

ux(x,t) =
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m If up(x — tf'(u)) =0, then uy(x,t) = 0; If uy(x — tf'(u)) >0,
then

up(x — t f'(u)) _ 1 E
up(x — tf'(u))f"(u)t  "(u)t — t’

IN

ux(x,t) <

where E = 1/inf{f"(u) : |u| < ||uo||oc }, here we used |u(x, t)|
< ‘UOHoo-
m Consequently, we have for any t > 0, x € R and a > 0 that
U(X + a, t) — U(X7 t) E

<=,
a t

m This last inequality requires no smoothness of u and thus can
be used as a criterion to pick out the “right” weak solution.
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Definition 7 (Oleinik)

A weak solution u of the scalar conservation laws is said to satisfy
the Oleinik entropy condition if there is a constant E such that

u(x+a, t) — u(x,t)

E
< =
-t

for all t > 0 and x,a € R with a > 0.

We derive another entropy condition due to Lax which is easier to
extend for systems of conservation laws.

m Recall that the characteristics are given by

(Xo + f/(uO(Xo))t, t), xo € R.
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m Assume that, at some point on a curve C of discontinuities, u
has distinct left and right limits u; and u, and that a
characteristic from left and a characteristic from the right hit
C at this point. Then

f'(u) > s> f'(u), (10)
where s denote the speed of the discontinuous curve at that

point. We call (10) the Lax entropy condition.

Remark. In case f” > 0, Lax entropy condition can be deduced
from Oleinik entropy condition:

m Indeed, by Oleinik entropy condition we always have u; > u,
and thus u; > u, on the curve of discontinuities.



m Since " > 0, ' is strictly increasing and thus '(u;) > f'(u,).
m By Rankine-Hugoniot condition, the speed of discontinuous

curve is
) — F(ur)

uy— u,

= £(¢)

for some & € (uy, uy). Consequently f'(u;) > s > f’(u,) which
is the Lax entropy condition.

Definition 8

A curve of discontinuity for u is called a shock curve provided both
the Rankine-Hugoniot condition and the entropy condition hold.

Question: /s it possible to show existence and uniqueness of weak
solutions of conservation laws satisfying suitable entropy condition?
We will focus on scalar conservation laws with strictly convex flux.
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4. Uniqueness of entropy solutions

We will prove the following uniqueness result.

Theorem 9

Consider the initial value problem of the scalar conservation laws

us + f(u)x =0, x€eR, t>0,
u(x,0) = wp(x), xeR,

where f is a C? convex function. If u,v € L®(R x (0,00)) are two
weak solutions satisfying the Oleinik entropy condition, then

u=v inR x(0,00)

except a set of measure zero.
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Proof. Since u,v € L>(R x (0, 0)), it suffices to show that
/Ooo /x (u— v)pdxdt =0, Ve (R x (0,00)). (11)
By the definition of weak solution, for any ¢ € C}(R x [0,00)) we have
/Ooo /_OO (i + f(u)wx)dxdt—&—/_oo uo(X)t(x, 0)dx = 0,
/OOO /fO (v + f(v)z/zx)dxdt—i—/jo o (x)1(x, 0)dx = .
Therefore

0= /0 /_OO (0= v)be + (F(u) — F(v))iby} dxat.



By writing

1
f(u)—f(v) = /0 %[f(TU + (1= 7)v)]dT = b(u — v),
where
1
b(x,t) := /0 f'(tu(x, t) + (1 — 7)v(x, t))dT,
then it follows
0= /0 /_Oc(u —v) (Yt + biby) dxdt (12)

for all v € G&(R x [0, 00)).
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m If we could solve the linear transport equation
Yr + b = ¢ (13)

for any ¢ € C}(R x (0, 00)) to obtain ¢ € C}(R x [0, 0)),
then we would obtain (11) from (12).

m Unfortunately, (13) may not have a C} solution ¢ because b
is not continuous in general.

m To get around this difficulty, we need to use the mollification
technique.

m We take a mollifier, i.e. a function w € C§°(IR?) with

w >0, // w(x, t)dxdt =1, supp(w) C {x*>+ t* < 1}.
R2



46/219

m For any € > 0 set w.(x, t) = e 2w(x/e, t/e).
m To regularize u and v, we set u(x,t) = v(x,t) =0 for t <0

and define
U = U * W, Ve = V% We

where * denotes the convolution, i.e.

U we(x,t) = // u(y,s)w=(x — y, t — s)dydt.
R2
It is well known that both u. and v, are smooth functions and
lusl <M and |v.| <M, inRx][0,00), (14)

where M > 0 is a constant such that |u|, |v] < M.



m We use the Oleinik entropy condition to show for o > 0 that
Oxu: < E/a and  0Oxv. < E/a, Yt > a. (15)
Let h(x,t) := u(x,t) — Ex/a. Then for a>0and t > «

E Ea E
h(x+a,t)—h(x, t) = u(x+a, t)— u(x, t)—;"” < T""—;"” <0.

Thus x — (h* w:)(x, t) is decreasing for each t > «. Since

E. E
(hw)(xt) = ue(xt) — > 4+ = / / yoe(y, s)dyds,
(8] (8] R2

we obtain

0> Ox(hxw:) =0xu: — E/a, Vt > a.
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m Next define
1
b == / f'(Tu: + (1 — 7)v.)dT.
0

Because of (14) and f € C?, we have b. € C! and there is a
constant M; independent of € such that

|bo(x,t)| < My, (x,t) € R x[0,00). (16)
m Moreover, for any o > 0 there holds
Oxb: < GE/a, vVt > a, (17)

where Co := max{f”(&) : |£] < M}. In fact,

1
Oxb. = / f"(tue + (1 — 7)ve) (70xue + (1 — 7)0xve) dT.
0



Since f” > 0, we may use (15) and (14) to derive for t > «
that

E [! GE
deb. < / Frlru. + (1 — rw)dr < OF.
a Jo [0

m We next prove that b. — b locally in L' as ¢ — 0. To see
this, using f € C? we can write

be(x,t) — b(x, t)

- /o (z"’(Tu6 +(1—7)v.)—f(ru+ (1 - T)V)) dr

1
- /0 F1(€) (r(te — u) + (1 — 7)(ve — v)) dr.

where ¢ is between 7u; + (1 — 7)vz and Tu+ (1 — 7)v.
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By (14) we have || < M. Therefore
bu(x,£) — b, )] < 3 Go(Jue — u] + vz — v]).
Thus for any compact set K C R x [0, 00) we have
//|b — bldxdt < = Co// . — ul + |ve — v|) dxdt
ase — 0.
m For any fixed ¢ € C3(R x (0,00)), we consider the problem
G bl =, O(x,T) =0, (18)

where T > 0 is chosen such that ¢ =0 fort > T.
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By the method of characteristics, the solution of (18) is given

by
ot
vt = [ pbclsixt). s, (19)
T
where x:(s) := x.(s; x, t) is defined by
dx,
d—se = bo(xe,s), x:(t) = x.

Since b. € C! satisfies (16), x. exists for all s and is C! with
respect to s, x and t. Thus ¢ € C}(R x [0, 00)).

m We show that 1)° € CJ(R x [0,0)) and supp(¢)°) are
contained in a compact region independent of e.
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To see this, let S := supp(p). By the choice of T, S is a
compact set contained in {(x,t): 0 <t < T}. In view of
(19), ¥°(x,t) =0fort > T.

*y

Next let R be the region bounded by the lines t =0, t =T
and two lines with slopes 1/M; and —1/Mj such that S C R.
For any (x, t) &€ R with t < T, from (16) it follows that

x:(s;x,t) € R, Vi<s<T
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Since

d ox,
U clsix, 1), 8) = 05 + U5 = 05 + by

= p(xs(s; x,t),s) =0
for t <s < T, we have
PE(x, t) = v (xe(t; x, t),t) = P (x(T; x,t), T) = 0.
Therefore supp(y°) C R.

By using (12) with ¢ = 9)° and (18) we have

o= [ [Tt i+ G- b
0 Jooo



In view of (18) it follows

| et = [ [ @ v)ie - b
(20

To prove (11), it suffices to show that the right hand side of
(20) goes to 0 as ¢ — 0.

m We need to estimate 1)5. We first show that for any o > 0
there exists C, such that

Wl < Coy  VE>a (21)

Since ¢)°* =0 for t > T, it suffices to show (21) for a < ¢t
<T.
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By using (19) we obtain

Uil = [ ebelox 9 (sx e (22

T X

Recall that x.(t; x; t) = x, we have aXS(t x,t) = 1. Let

O0X:

e —(s; x, t).

ac(s) :=
Then a.(t) =1 and

Oac _ gaxs = gf)xg = 2b (x(s; x,t),5)
ds  Os Ox Ox ds  Ox LNl

= b, %Xf (Oxbe)a:
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Therefore
a:(s) = exp </ Oxbe(xe(7; x, t),T)dT> .
t

In view of (17), it follows a.(s) < e®ET/@ fora <t <s< T.
Thus we have from (22) that

)
e (x, £)] < / oxla(s)ds < Coy  Va<t<T.
t

e We next derive the total variation estimate on ¢°: For each
t>0let
oo
TV () ::/ |5 (x, t)] dx
—0oQ

denote the total variation of the function ¥°(-, t).
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Since the supports of 1)°) are contained in a compact region
independent of ¢, it follows from (21) that for any a > 0
there is a constant C, independent of € such that

TVi(v°) < Gy,  VE> o
We claim that
38 > 0 such that TV,(v°) < Czforall 0 <t < 3. (23)

To see this, by using ¢ € C}(R x (0,00)) we may take 3 >0
such that ¢ = 0 for 0 < t < . It then follows from (18) that

i+ boa)S =0 fort <. (24)



Fix 0 <t <p, let xg <x3 <--- < xn be any partition of R,
and set y; = x(B; xi, t) for i=0,--- ,N. Then yp < y1 < ---
< yn. Since (24) implies that ¢ is constant along the

characteristic curves s — x(s; x;, t) for 0 < s < /3, we have

¢E(Xiat):¢a(yi7ﬁ)7 I:0>1> 7N'

Therefore
N-1 N-1
D (1, ) = (i, )] < D 1% (viens B) — ¥ (v, B))
i=0 i=0
< TVi(y°).

Taking the supremum over all such partitions gives TV;(1°) <
TVs(¢#) < Cp.
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m Finally we complete the proof by estimating

/ / (u—v)(b. — byysdsdt| < I + b,
0 —00

/1:// lu— v]|b. — b||<|dxdt,
0 —00

/2:/ / |u — v||b: — b||v|dxdt.

By using (16) and (23) we obtain for 0 < a < 3 that

where

«
h <2M- 2/\/11/ TVi(y)dt < 4MMyaCs.
0
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Thus, for any n > 0 we can take 0 < o < 3 such that
h < 4MMyaCy < n/2.

For this «, recall that the supports of )¢ are contained in a
compact region independent of €, we may use (21) and the
local convergence of b, to b in L! to obtain

I <n/2 for sufficiently small ¢ > 0.

Consequently, for small € > 0 there holds

/OOO /_Z(u —V)(b. — byySdsdt| < n.

Since n > 0 is arbitrary, we can conclude the proof.
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5. Riemann problems

Before giving the general existence result, we consider the scalar
conservation law with simple initial values:

uy, X<07

uy, x >0, (25)

ur +f(u)x =0, u(x,0)=up(x) = {
where u; and u, are constants. This problem is called Riemann
problem. We will determine the unique entropy solution explicitly
when " > ¢y > 0.

m Observing that if u(x, t) is a solution of (25), then, for any
A >0, upn(x,t) = u(Ax, At) is also a solution. It is natural to
determine the solution of the form u(x,t) = v(x/t).
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We need to consider two cases: u; > u, and u; < u,.

m Case 1. u; > u,.

e Since " > 0, we have f'(u;) > f’(u,). Thus any characteristic
line starting from the negative x-axis intersects characteristic
lines starting from the positive x-axis.

e Assume that the curve of discontinuities is s(t). We expect
that s(0) = 0 and s’(t) = o by Rankine-Hugoniot condition,

where
f(uy) — f(ur)

! < o=
(u) <o u—u,

< f’(u/).

So s(t) = ot.
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e Therefore we may define

uy, x < ot,
u(x,t) = 26
o= o xS ()
It is easy to check v is a weak solution. Since u; > u,, u thus

satisfies the Oleinik entropy condition. So, by Theorem 9, u is
the unique entropy solution which is called a shock wave.

Shock wave solving Riemann’s problem for uy>ur



m Case 2. u; < u,.

e In this case f'(u;) < f'(u,). By the method of characteristics,
u =y for x < f'(u))t and u = u, for x > f'(u,)t, but v is
undetermined in the region f'(u))t < x < f'(u,)t.

e In the region '(u))t < x < f'(u,)t, we expect u to be smooth
with u(x,t) = v(x/t). Then by u; + f(u)x = 0 we have

v(x/t) (F(v(x/t)) — x/t) = 0.

Assuming v’ never vanishes, we find f'(v(x/t)) = x/t.
e Since f" > ¢y >0, G:=(f)"!1: R — R exists and

16(x) = G(y)l < Ix —yl/e

for x,y € R (see Lemma 14).
e Therefore v(x/t) = G(x/t) for f'(u)t < x < f'(u,)t.

64/219



e Thus we can define

uy, x < f'(u)t,
u(x,t) =< G(x/t), f'(u)t<x<f'(u)t, (27)
Uy, x> f'(u,)t.

Then u is continuous in R x (0,00) and u; + f(u)x = 0 in each
of its region of definition. It is easy to check that v is a weak
solution.

\\\GLJ, // / /

Rarefaction wave solving Riemann’s problem for uj<ur
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e The Oleinik entropy condition can be directly checked case by
case; for instance, if f'(u/)t < x < x+a < f'(u,)t, then

u(x+a, t)=u(x, t) = ()7 ((x+2a)/t) = (F) 7 (x/t) < a/(cot).

So, by Theorem 9, u is the unique entropy solution which is
called a rarefaction wave.

Summarizing the above discussion we obtain

Theorem 10

Consider the Riemann problem (25), where f" > ¢y > 0.

(i) If u > u,, the unique entropy solution is given by the shock
wave (26).

(i) If u; < u,, the unique entropy solution is given by the
rarefaction wave (27).
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6. Existence of entropy solutions

Consider the initial value problem of the scalar conservation laws

{ us + f(u)x =0, (x,t) € R x (0,00), (28)

u(x,0) = up(x), x € R.
We will prove the following existence result.

Theorem 11

Let up € L®(R) and f € C?(R) with f"(€) > co > 0 on R. Then
(28) has a unique weak solution u € L°(R x [0, 0)) satisfying the
Oleinik entropy condition. Moreover

[ u(x, t)]] oo (®x(0,00)) < It lco-



m Theorem 11 has several different proofs. We present the one
based on the theory of Hamilton-Jacobi equations.

m To motivate it, let h(x) := 5 uo(y)dy and consider the initial
value problem of Hamilton-Jacobi equation

{ we + f(wy) =0, (x,t) € R x (0,00),

w(x,0) = h(x), xeR. (29)

If (29) has smooth solution, we set u = wy. Then u(x,0) =
wy(x,0) = up(x). Differentiating the equation in (29) gives

Uy = Wxt = (Wt)x = _f(WX)X - _f(u)x-

Thus u = wy is a solution of (28).
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m Unfortunately the solution of (29) is not necessarily smooth in
general.

m It is necessary to introduce the notion of weak solution of
(29).

Definition 12
Consider the problem (29), where h is Lipschitz continuous. A
Lipschitz continuous function w : R x [0,00) — R is called a weak
solution if

(i) w(x,0) = h(x) for all x € R;

(i) we(x,t) 4+ f(wy(x, t)) =0 for a.e. (x,t) € R x (0,00).
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m When f € C? with f” > ¢y > 0, we will show that the
solution of (29) is given by the Hopf-Lax formula.

m To motivate the formula, assuming (29) has a C! solution.
Along a characteristic curve x(t) we set z(t) := w(x(t), t)
and p(t) := wy(x(t), t). Then there hold

& =fp),

% = pf'(p) — f(p), (30)
dp _

dt :

Thus along characteristics p are constants. So, characteristics
are straight lines with velocity f'(p). To understand the
second equation in (30), we introduce the Legendre-Fenchel
conjugate
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f*(q) =sup{pqg —f(p)}, qeR.
pER

Since f is uniformly convex, the maximum is achieved at p
satisfying ¢ = f'(p). Thus

f*(q) = pf'(p) — f(p)  with f'(p) = q.

So % = f*(q) with ¢ = f'(p). Fix any (%,t) with ¥ > 0. For
a characteristic line through (x,t) that crosses x-axis at y, its
velocity is (x — ¥)/t. Thus, along this characteristic,

dz X—y

(D
dt ( t

), 2(0) = h(y).
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Therefore

w(,7) = 2(8) = h(y) + " (=) (31)

This formula is problematic since it involves the unknown .

m On the othe hand, by the convexity of f we have for any p

—we = f(wy) > f(p) + f'(p)(wx — p).

So
we + f'(p)wx < pf'(p) — f(p) = F*('(p)).

Consider the straight line (x(t), t) through (X, t) with velocity
f'(p), let y be the intersection point with x-axis. Then

filp) = (x - y)/t

72/219



73/219

and %
%W(X(t), t) < £(f(p)) = f*(xgy)'

Therefore

w(x,B) < hly) + I (==2). (32)
Since f"” > ¢y > 0, f’ is strictly increasing with f'(—o0) =
—o00 and f'(400) = +o0o. Thus (32) holds for all y € R since

we can take y to be any number by adjusting p. Since (31)
implies that the equality is achieved at some y, we expect

w(x, t) := inf {h(y) + tf*()<t)/)} (33)

yeR

which is called the Hopf-Lax formula.
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m The above argument is not rigorous since it requires w € C*.
m Our goal is to show that (33) gives a weak solution of (29).

We first give some properties on *.

Let f be a C! convex function on R. Then the following hold:

(i) * is convex;

(i) For any A > 0 we have

zgﬂg{/\\q\ — *(q)} <sup{f(x): |x| < A};

(iii) For any x € R we have supg,cg {gx — f*(q)} = f(x).
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Proof.

(i) f* is convex because f* is the supremum of linear functions.

(ii) By the definition of f* we have

() = sup (ay ~ (1)} > qf‘j’ (, T) = Alql - (4Aq/la).
Therefore

sup {Alq| — f*(q)} < sup{f(Aq/[q|)} = sup {f(x) : [x| < A}.
geR geR

(i) Since the definition of f* implies f*(q) > gx — f(x) for all
g € R, we have

s:p{qx— f*(q)} < f(x).
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To show the reverse inequality, we note that

gx — f*(q) = gx — sgﬂg{qy —f(y)} = yigﬂg{q(x —y)+fy)}

Thus
sup {gx — f*(q)} = supinf{q(x —y) + f(y)}
geR qg Y

2 inf {f'(x)(x = y) + f(y)}

Since f is convex, we have f(y) > f(x) + f'(x)(y — x) and
thus

Fy) + /() (x —y) = f(x), Vy.



So supger {gx — £7(q)} > f(x). The proof is complete. [

Let f € C? be such that f" > ¢y for some constant ¢y > 0. Then

(i) f* € C? is strictly convex and (f*)" = (f')~!, where (f')~!
denotes the inverse function of f';
(ii) (f*)" is Lipschitz continuous, i.e. for any p,q € R there holds

(7Y (o) - (Y (@)l < =2

Proof. By the condition on f, f’ is strictly increasing with f’'(—o0)
= —00 and f'(+00) = 400, and thus g := (/)71 : R — R exists
as a C! function with g'(x) = 1/f"(g(x)) > 0.
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(i) For any g € R, there always holds f*(q) = gx — f(x), where x
is determined by g = f/(x), i.e. x = (f')"1(q) = g(q). Thus

f*(q) = qg(q) — f(g(q)),  Va.

This implies that f* € C! and

() (q) = g(a) + q&’(q) — '(g(q))&'(q)
= g(q) + 9g'(q) — qg’(q) = g(q).

Consequently (f*)' = g and f* € C? with (f*)" =g’ > 0.
(i) For any p,q € R let x = (f*)'(p) and y = (f*)'(q). Then

p=Ff'(x) and q=f'(y).



Since f” > ¢y, we have

v
NI~ N

fly) — f(x) = F(x)(y —x) > Zcoly — x)?,

F(x) = Fly) = F'(y)(x —y) = Scolx — y)*.

Adding these two inequalities gives

co(x = y)? < (F(x) = F1¥)(x = y) < [F(x) = F¥)lIx — vl

This implies that co|x — y| < |f'(x) — f'(y)], i.e.
cl(f)'(p) = () (a) < Ip — ql.
This completes the proof. |
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Lemma 15

The function w defined by the Hopf-Lax formula (33) is Lipschitz
continuous on R x [0,00) and w(x,0) = h(x) for x € R.

Proof. We use
Lip(F) :=sup{|F(x) = F(y)I/Ix = y| : x,y € R and x # y}

to denote the Lipschitz constant of a Lipschitz function F.

m We first show that, for each t > 0, w(-, t) is Lipschitz with
Lip(w(-, t)) < Lip(h).
To see this, let x1, xo € R. We may take y; € R such that

wix, t) = hy) + ¢ (221,
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Then
w(xz, t) — w(x, t)

—int {h) + e (2D | ) - o (22

< h(x2 — x1 +y1) — h(y1) < Lip(h)|x2 — xu|.
Interchanging the role of x; and x> we then obtain
lw(x1, t) — w(xe, t)| < Lip(h)|x1 — x2|. (34)
m We next show that there is a constant Cy > 0 such that

lw(x, t) — h(x)| < Gt, VxeRandt>0.
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Indeed, we first have
w(x, t) < h(x)+ t £*(0).

Moreover, by using h(y) > h(x) — Lip(h)|x — y| we have

w(x, t) = inf {h(y) + tf*(X;y)}

yeR

> h(x) = sup { LiptW)lx ~y1 = 77}

yeR t
= h(x) - tigﬂg{Lip(h)\Z! - *(2)}
> h(X) — Clt,

where Ci := sup|y|< jp(n) f(y) by Lemma 13 (ii).



m We further show that there is a constant G, such that
‘W(X./ tl) — W(X7 t2)| < Cz(tg — tl) (35)

forall x e R and 0 < t; < tp. Indeed, letting y € R be such
that

w(x, t1) = h(y) + af" ((x — y)/t1),

we may use the definition of w(x, t;) to obtain

w(x, t2) < h(y) + tof " ((x — y)/t2) -

By writing

X — t1 X — t
y_1 y+<11>-0
to th t1 [59)
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and using the convexity of f* we have

w(x, t2) < h(y) + t {tlf*(x_y) + (1 - tl) f*(O)}

) t1

= h(y) + tlf*(%) + (t2 — t1)f*(0)
= w(x, t1) + (t2 — t1)f*(0).
Therefore
w(x, o) —w(x,t1) < (o —t1)f*(0), 0<t1 <tr. (36)
On the other hand, we may take z € R such that

w(x, t2) = h(z) + tof *((x — 2)/t2).



Let y = gx+ (1 — §)z. Since *72 = Y% = 7=, we have

— Z X —Z — Z
wix ) = h(z) + tf* (7 5) + of (5 5) — nf
.
> wly,t) + (& — 0)f* ().
tr —t1

Using (34) we have

w(y, t1) > w(x, t1) — Lip(h)|y — x|.

Therefore

x—y).

w(x, t2) > w(x, t1) — Lip(h)|x — y| + (t2 — tl)f*(t2 _—
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Consequently

w(x, ) 2 w(x, t1) = (t2 = tr) sup {Lip(h) n] — £ (1)}

So, by Lemma 13 (ii), we have
W(X, t2) — W(X, tl) > —Cl(tg — tl), 0< t1 <t

Combining this with (36) we obtain (35).
m Finally, by writing

[w(x1, t1)—w(x, t2)| < |w(xi, t1)—w(xe, t1)|+|w(xe, t1)—w(x2, t2)],

we may use (34) and (35) to complete the proof. |
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Theorem 16

The function w defined by the Hopf-Lax formula (33) is Lipschitz
continuous, is differentiable a.e. on R x (0,00) and is a weak
solution of (29).

Proof. By Lemma 15, w is Lipschitz on R x [0, 00) with w(-,0) =
h. So w is differentiable a.e. in R x (0,00) by Rademacher’s
Theorem. It remains only to show that

we(x, t) + f(wi(x,t)) =0

for any (x,t) € R x (0,00) at which w is differentiable.

m We first choose z € R such that

w(x,t) = h(z) + tf*((x — z)/t).
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Fixany 0 <e <tandsety=(1-%)x+ Sz Then

w(y, t—e) < h(z) + (t — e)f*(g).
Since *7% = ¥==, we have
w(x, t) — w(y,t —e) > tf*(’%z) —(t— E)f*(¥)
zef*(g).

Therefore

W(x,t)—w(x+%(z—x),t—€)> X—2z
€ o t




m Letting € N\, 0 gives

2w () + wix, 1) = F(E2),
Consequently, by the definition of *,
we(x, t) + F(wx(x, t))
> Fw(x, 1) + £ (F0) = T wilx, £) 2 0.

m On the other hand, fix any g € R and € > 0. Then

{h(y) Lt e)f*(X“"_y)} .

w(x +eq, t+¢e) = P

inf
yeR
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m Since

Xt+eq—y . € t x—y
e = qu + HE -, we may use the convexity of

f* to derive
X tTeEq—y * x XY
t ff(———=) < ef t(—=).
(t+o)r ) < (q) + e ()
Therefore

w(x +eq,t+¢e) <ef*(q)+ ylgf {h( )—l—tf*(X_ty)}

— e (q) + wix, 1)
So
w(x +eq,t+¢e)— w(x,t)
5

< f*(q).
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Letting € \( 0 gives
qWX(X7 t) + Wt(Xv t) < f*(q), Vq e R.
Therefore, by Lemma 13 (iii),

—wi(x, t) > zgﬂg{qwx(xy t) — (@)} = fwx(x; 1)),

i.e. we(x, t) + f(wy(x, t)) <0. The proof is thus complete. l

We are ready to complete the proof of Theorem 11. To this end,
let h(x fo up(y)dy and define w(x, t) by the Hopf-Lax formula

w(x, t) :yigR{h(y)—i— tf*(X;y)}.
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By Theorem 16, w is Lipschitz, is differentiable for a.e. (x, t), and

we + f(wx) =0 a.e. in R x (0, 00),
w(x,0) = h(x), xeR.

Lemma 17

Let u:= wy. Then u is a weak solution of (28).

Proof. Recall that Lip(w) < Lip(h) = ||uo||eo, tu € L°(R x (0, 00))
with
lulloo < Lip(w) < [|uofco-

Next for any ¢ € C}(R x [0, 00)) we have

0= /0 h /_ Z(Wt+ F(wy))pdt. (37)



Since w is Lipschitz, x — w(x, t) is absolute continuous for each
t >0 and t — w(x,t) is absolute continuous for each x € R. So,
integration by parts can be used to obtain

(e} [e.e]
/ / Wiy dxdt
0 —00
= —/ / W(pxthdt—/ w(x,0)px(x, 0)dx
0 —o0 —o0
:/ / chptdxdt—i—/ wy (X, 0)p(x, 0)dx.
0 —o0 —o0

Since wy(x,0) = up(x) for a.e. x, we have

/ / Wiy dxdt :/ / Wxaptdxdt+/ uo(x)ep(x,0)dx.
0 —00 0 —00 —00
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Combining this with (37) gives

0— /0 h / Z(chpt+f(wx)cpx)dxdt+ / ~ o(x)(x, 0)dx.

—0o0
Thus u = wy is a weak solution of (28).

m To complete the proof of Theorem 11, it remains only to show
that there is a function & with u = i a.e. in R x (0, 00) such
that T satisfies the Oleinik entropy condition.

m To this end, we will use, for each (x, t) with t > 0, the
minimizer of the function

Fre(y) == h(y) + tf*(%) over R.
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The following lemma shows that for each fixed t > 0, if x; < xo
then the minimizer of F,, ¢(y) is always on the left of the
minimizer of Fy, +(y).

Lemma 18

Assume that f € C? satisfies f"" > ¢y > 0. Fix t > 0 and x1 < xo.
If y1 € R is such that

min {h0) + 77D b= ) 4 (22,

then

hlya) + £ (Z22) < hly) + £ F1(Z2), Wy <.
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_ -y
Proof. Let 7 = pos— Then 0 < 7 <1 and

xx=y1=7(x1—y1)+(1—-7)x~—y),
xi—y=1-7)0a—-y1)+7(x2—y)

By the strict convexity of f*, see Lemma 14 (i), we have

« X2 — Y1 « X1 — Y1 x X2 =Y
PO < (B - e (),

« /X1 —Y « X1 — Y1 w X2 =Y
PO <@ ) prr (),

Adding these two inequalities gives

X2 x X1 Y X1 — Y1 X2y
£( ; )+f(f)<f(f)+f(f)~



Therefore

tf*(Ltyl) rerr t—y) + h(y1) + h(y)

< tf*(Lt”) rer(2 ;y) + h(y1) + h(y)
< tf*(g) + h(y) + tf*(g) + h(y);

for the last inequality we used the fact that y; is a minimizer. This
implies the conclusion. |

Now we are able to give the construction of & which is stated in
the following result.

97/219



There exists a function y(x, t) defined on R x (0, 00) such that

(i) for each t > 0, x — y(x, t) is nondecreasing;

(ii) for each (x,t) with t >0, y(x, t) is a minimizer of the
function .
Fraly) = hy) + (=),
(iii) if we set Gi(x, t) = (f*)' (= y(xt) ), then, for each t > 0,
u(x,t) = t(x,t) fora.e x.

In particular, u = 0 for a.e. (x,t) € R x (0,00).
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Proof.

m Fix t > 0. For each x € R let y(x, t) be the smallest of those
points y giving the minimum of F ¢(y).

m It follows from Lemma 18 that x — y(x, t) is nondecreasing
and thus y(-, t) is continuous for all but at most countably
many x.

m At a point x of continuity of y(-, t), y(x, t) is the unique
minimizer of F, (y) over R.

m From Theorem 16 it follows for each fixed t > 0 that

x = w(x, ) i= min {h(y) + tf*(xzy)}

= hly(x, ) + e (XD,

is differentiable a.e.



m Since x — y(x, t) is monotone, it is differentiable a.e. as well.

Thus, for a.e. x, f*(Lt(“)) is differentiable and therefore
x — h(y(x, t)) is differentiable as well.

m Consequently for a.e. x

o t) = o (h(y(x, ) + tf*(X_yt(X’t)))

= 2y ) + (Y D0y ),

m Since y(x, t) is a minimizer of F; +(y) over R, x must be a
minimizer of

z = Fily(z,t)) = h(y(z, t)) + tf*(X_yt(Z,t))'
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m Consequently 0 = 2 (Fxe(y(z,1))). ie

Z lz=X

0= 2 (htyte ) (Y2 D) )

t

We therefore obtain u(x, t) = (£*)/(X=X:1) ae. [ |

t

Theorem 20

Let f E C2 satisfy f" > ¢y > 0, let ug € L°(R) and let h(x) :=
Jo uo(y)dy. Then the function

i(x, 1) = (Fry (2D (38)

t

defined in Lemma 19 is a weak solution of (28) satisfying the
Oleinik entropy condition.
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Proof. By condition and Lemma 14, (*) is increasing. Thus, by
Lemma 19, we have for any t > 0 and x,a € R with a > 0 that

i, 1) = (1) (20D 5 (pry X YEE 2D,
By Lemma 14 (ii), we have
e, 1) > (7Y TRy g
= U(x+a,t)—a/(cot).
The proof is complete. |

Remark. The formula (38) is called the Lax-Oleinik formula. Recall
that (F*) = (f')71, we have i(x, t) = ()" 1((x — y(x, t))/t).
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7. Long time behavior

We prove a uniform decay estimate for the entropy solution of the
scalar conservation law

us + f(u)x =0, u(x,0) = up(x) (39)

with uniformly convex flux f(u).

Theorem 21

Let up € L®(R) N LY(R) and f € C? with f” > co > 0. Then the
entropy solution of (39) satisfies the estimate

Ju(x, t)] < €/,

where C is a constant depending only on ¢y and || ugl| 1.



Proof. We use the Lax-Oleinik formula

)= (rry D)

u(x,t) = "

In order to use the Lipschitz continuity of (f*), we take o € R
such that
(f*) (o) =0,

i.e. (f)7Y(o) = 0; we can take o = f/(0). Then

utx, 0 = |y =2 — (Y (o)

1
Si
(&)

x —y(x,t) —a‘

t (40)
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To estimate the right hand side, by the definition of y(x, t) we have

R e e LU G}
< h(x —ot) + tf*(o)

where h(x) = [ uo(n)dn. Since f” > ¢y > 0, we have
— t — t
f*(X yt(Xﬂ )) 2 f*(O') + (f*)/(o_) <X .yt(Xa ) _ O')

o (20 )

2 t
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Combining these last two inequalities gives

2
%tco <X_yt(“) - a> < h(x — ot) — h(y(x, t)).

Recall the definition of h and ug € L1(R), we have |h(x)| < ||uo| 2
for all x € R. Therefore

2
gt (2D o) <2l
i.e.
ST [4leoll s
t - Cot
Combining this with (40) gives the desired estimate. |
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Part 2. Lectures on wave equations
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1. Solutions of linear wave equations

We consider the Cauchy problem of linear wave equation

{utt—Au—f(x,t), xeR" t>0, (41)

U(X,O) = g(X)’ ut(X’ 0) = h(X)’ X € Rv
where A =37, 88722 denotes the Laplacian operator on R".

m A function u € C?(R" x [0, 00)) satisfying (41) is called a
classical solution of (41).

m We prove the uniqueness result by deriving energy estimate
and establish the existence result of classical solutions by
deriving the solution formulae.

108/219



1.1. Uniquessness

m We show that the Cauchy problem (41) has at most one
classical solution.

m We establish uniqueness result by proving a general result, the
so-called finite speed propagation property.

m Consider the homogeneous wave equation
Ou:=0?u—Au=0 inR"x[0,00). (42)
For any fixed (xo, tp) € R" x (0, 00), we introduce
Coto ={(x,t): 0 <t <tpand |x — xo| < to — t}

which is called the backward light cone with vertex (xo, to).
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The following result says that any “disturbance” originating
outside By(xp) := {x € R": |x — xo| < to} at t = 0 has no effect
on the solution within Cy 4.

Theorem 22 (finite speed of propagation)

Let u be a C? solution of (42) in Cyy 1. If u(x,0) = ue(x,0) =0
for x € By (x0), then u =0 in Cq 1.




Proof. Consider for 0 < t < tg the function
E(t) := / (|ut(x, l‘)\2 + |Vu(x, t)]2) dx
Bto— (XO)

_ /t“/ (Jue(x, )P + | Vu(x, £)[2) do(x)dr.
0 9B-(x0)

We have

d

L E() =2 /B g (0 B )+ V) Vo)) 0

[ (el 0+ (Fu ) dox)
9B1y—t(x0)
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Since Vu - Vuy = div(uVu) — urAu, we have

d
—E(t) = 2/ uOudx + 2/ div(u:Vu)dx
dt Bto—t(Xo) Btof (XO)

- / (Jue® + |Vul?) do.
8Bto—t X0

Using u = 0 and the divergence theorem we have

d
ZE(t) = 2/ uVu-vdo — / (Juel + |Vul]?) do,
dt 9Bty t(x0) 9Biy—t(x0)

where v denotes the outward unit normal to 9By, —+(xp). We have

20usVu - v| < 2lug||Vu| < |uel? + [Vul?.
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Consequently %E(t) < 0 which implies that
E(t) < E(0), 0<t<t.

Since u(+,0) = ue(+,0) = 0 on Byy(x0), we have E(0) = 0. Thus
E(t) =0 for 0 <t < ty. Therefore

up=Vu=0 in Cgyy-

So u = constant in Cy 4. Since u(x,0) = 0 for x € By, (xp), we
must have u =0 in Gy - n

Corollary 23

The Cauchy problem (41) of linear wave equation has at most one
classical solution.
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Proof. Assume that u; and wuy are two classical solutions of (41).
Then u = u; — up € C?(R" x [0, 00)) satisfies

Ou=uy —Au=0 inR"x(0,00),
u(x,0) =0, wu(x,0)=0, xeR"

Applying Theorem 22 to u, we conclude u =0 in R" x [0,00). W

1.2. Existence

The existence of (41) can be established by solving the following
two problems:

{ Uu = ug — Au=0 in R" x (0700)7 (43)

u(x,0) = g(x), u(x,0)=h(x), xeR"



and

{ Ou:=uy — Au="f(x,t) inR" x (0,00), (44)

u(x,0) =0, w(x,0)=0, xeR"

m If v is the solution of (43) and w is the solution of (44), then
u:= v+ w is the solution of (41).

m We will solve (43) by deriving the explicit solution formula.

m We then solve (44) by reducing it to a problem like (43) using
the Duhamel principle.

We now derive the solution formula of (43) when n=1,2,3.

Case n =1: Consider the Cauchy problem of 1D homogeneous
wave equation
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Ut — Usyx = 0 in R x (0, 00),
(45)
u(x,0) = g(x), ue(x,0)=h(x), x€eR,

where g € C?(R) and h € C}(R).
m Observing that vy — g = (0r — 9x) (¢ + Ox)u. We introduce
v = us+ Ux. Then v — v, =0 in R x (0,00). By the method
of Characteristics, we have

v(x, ) = w(x + t),

where vp(x) := v(x,0).
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m So u + ux = vp(x + t). Let up(x) := u(x,0). Then, by the
method of characteristics again, it follows

u(x,t) = up(x — t) + /Ot vo(x — t + 2s)ds

1

x+t
w55 [ (e

m The initial conditions give up(x) = g(x) and vp(x) = h(x)+
g'(x). Therefore

e t) = gle— 1)+ [ (810 + he) e
~ b+ +at- )+ [ hede
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We therefore obtain the following result.

Theorem 24

Assume that g € C?(R) and h € CL(R). Then the d’Alembert
formula

i) = 5 e+ )+ gl — 1)+ 5 [ HE)de

gives the unique classical solution of (45)

We next consider the Cauchy problem (41) in high dimensions.

m The general idea is to reduce the high dimensional problems
to one-dimensional problem so that the d'Alembert formula
can be used.



m This can be achieved by considering the spherical mean.
m Given x € R” and r > 0, we use B,(x) and 9B,(x) to denote

the ball of radius r with center x and its boundary respectively.
Let w, denote the surface area of unit sphere, then

1
0B, (x)| = wpr™™t and  |B(x)| = Zwar”
n

m Let u € C?(R" x [0,00)) be a solution of (41). For a fixed

x € R", define
U(r, £ x) ! uly, )do(y), r>0
Y 7 = ) g )
[0B:(x)] Jos, ()
which is called the mean value of u over the sphere 9B,(x) at
time t.
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m Notice that
lim U(r, t;x) = u(x, t).
r—0

If we can find a formula for U(r, t; x) for r > 0, then we can
obtain u(x, t) by taking r — 0.
m Write U(r, t; x) as

1
U(r,t;x) = — /§|—1 u(x + rg, t)do(§).

Wn
Then
oU(rtx) =~ [ Vu(x+re,t)-edol€)
wn Jig=1
1 y—Xx
= o ), Ve o)
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Since (y — x)/r is the outward unit normal to 0B, (x) at y, we
may use the divergence theorem to derive

1
U(r,t;x) = ———— Au(y,t)d
AU tx) = oty [ty 0
m Using polar coordinates, we have

=3y
Au(y, t)do(y)dT.
wprn—1 0 JOB-(x) ( ) ( )

U(r,t; x) =

Consequently

O2U(r, t; x)
1

- - Au Au(
wpr1 /aB,(x) . t)do wnr"/ uly ¢
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m By using uyy — Au =0, we have

1

wpr—1

-1
D2U(r, t;x) = / urt(y, t)do(y) — L@,U(r, t; x)
0B, (x) r

= 02U(r, t;x) — n;rl(?,U(r, t; x).

m By the above expressions, we have

lim U(r, t; x) = u(x, t),
r—0

rlm Ur(r,t;x) =0, (46)

1
[ AERY =-A » 5
lm}U (r,t;x) p u(x, t)
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m Moreover, if uis a C? solution of (43), then, for fixed x € R”,
U(r, t; x) as a function of (r,t) is in C%([0,00) x [0,00)) and
satisfies the Euler-Poisson-Darboux equation

U — Uy — =20, =0 forr>0,t>0, (47)
U=G, U=H fort=0,
where

G(r;x) L g(y)do(y)
) = o )

[0B,(x)| Jos,(x)

1

H(r;x) := h(y)do(y).
)= 108,001 Jog ) ")

We hope to transform (47) into the usual 1D wave equation. This
can be done easily when n = 3. So we consider this case first.
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Case n = 3. We consider the Cauchy problem (43) of 3D wave
equation. The Euler-Poisson-Darboux equation becomes

2
Utt - Urr - ;Ur =0.
Thus 82(rU) = 82(rU). Let U = rU, G = rG and H = rH. Then

Ott—Dﬂ:O forr >0, t>0,
U=G, U=H att=0andr>0.

Moreover, in view of (46), we have

U=0, U = u(x,t), U, =0 when r=0.

o
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Thus, we may extend U to R x [0, 00) by odd reflection, i.e. we set

U(r,t) = U(r, t; x), r>0,t>0,
) —U(=r,t;x), r<0,t>0.

Then U € C?(R x [0,00)) and

Ug—U,=0 —oco<r<oo, t>0,
U(r,0) = G(r), U,(r,0)=H(r), —oo<r< o0,

G- 60 Tz A= { ez



By the d'Alembert formula,
_ 1 _ 1 [rtt__
U(r, t):2(G(r+t)+G(r—t))—|—2/ H(s)ds

—t

a(r+t)+5(r—t) +3 '+tﬁ(s)ds r>t>0,
+ = ft+r s)ds, 0<r<t.

NI= N[

Consequently, for t > 0 we have

u(x,t) = lim 1U(r t;x) = G'(t) + H(t).

r—0 r
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Using the definition of G and H, and the fact |0B,(x)| = 47t2 in
R3 we obtain

Theorem 25 (Kirchoff formula)
Let g € C3(R3) and h € C?(R3). Then

ulx,t) = o (;t /W:tg(y)d“(y)) e L2

= # /|y—x|—t (g(y) + Valy) - (y — x) + th(y)) do(y)

gives the unique solution u € C?(R3 x [0,00)) of the Cauchy
problem (43) for 3D wave equation.



Case n = 2:

m The procedure for n = 3 does not work for 2D wave equations.

m We use the Hadamard's method of descent to derive the
solution formula for 2D wave equation from the Kirchoff
formula for 3D wave equation.

m Write x = (x1,x2) and X = (x, x3) and consider the Cauchy
problem of the 3D wave equation

Utt — AU — UX3X3 =0 in R3 X (O, OO),
U(x,0) = g(x), U:(x,0) = h(x), xcR3,

where A denotes 2D Laplacian, i.e. AU = Uy, + Usoxo-
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m By the Kirchoff formula,

U(x, x3,t) = U(x, t) = gt <471Tt /|____tg(y)d0(7)>

1
ant ). 3=

where y = (y1,y2) and y = (y, y3). Since g and h do not
depend on y3, U is independent of x3 and hence it is a
solution of the Cauchy problem (43) of 2D wave equation.

m We simplify U by rewriting the two integrals over the sphere
y—xl =t
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m The sphere |y — X| = t is a union of the two hemispheres

y3=0x(y) =3 £/t = |y —x]%,

where |y — x| < t. On both hemispheres, we have

do(7) = \/1+ [Vé.(y)l2dy = mdy.

Therefore

01 g(y)
1 h(y)

+ e dy
27 Jiy—xi<t /17 = |y = x|?
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This immediately gives the following result.

Theorem 26 (Poisson formula)

Let g € C3(R?) and h € C?(R?). Then

t g(x +ty) t h(x + ty)
u(x,t) =0 | =— ——=dy | + — ———dy
Fat) =8 <27T i<t /1= yf? > 21 Jiyl<1 /1=yl
1 g(y) +th(y) +Vg(y) - (v — x)

21 Jly <t V2 =y —x[?

gives the unique solution in C2(R? x [0, 00)) of the Cauchy
problem (43) for 2D wave equation.

The procedures for n = 2,3 can be extended to derive solution
formulae of the Cauchy problems (43) for higher dimensional wave
equations.



Since the procedure is lengthy and boring, we state the results
without proofs.

Theorem 27

If g € CI/A+2(R") and h € CI/2HY(R™), then (43) has a unique
solution u € C?([0,00) x R"), where [n/2] denotes the greatest
integer not greater than n/2.

Moreover, if n > 3 is odd, then, with v, =1-3-5-...- (n—2),
19 (19 7 tn—2
u(x,t - gdo
bot) = Y Ot <f5t> (!351&( )| Jog.(x) )

n—3
1 /19)\ 2 th—2
+—| == hdo
vn<t6t> (mst( )| Jos.(0 )
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while, if n > 2 is even, then, with v, =2-4-...-(n—2) - n,

n—2

19 /10) 2 tn g(y)
at = L ar d
ubet) = %at<tat> (rst( W oo VE— Ty —xP

n—2
1 /10) 2 tn h(y)

L L N 4o ).
%<t3t> (IBt(X)l B(x) V12— |y — xJ? )

Remark.

m Given (xp, tg) € R" x (0,00). Theorem 22 shows that
u(xo, to) is completely determined by the values of f and g in
the ball |X —X0| < to.

m When n > 3 is odd, by the solution formula this result can be
strengthened: u(tp, xo) depends only on the values of f and g
(and derivatives) on the sphere |x — xp| = to. This is called
the Huygens' principle.
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Duhamel Principle

We now consider the inhomogeneous problem (44), i.e.

{ ug — Au = f(x, t) in R” x (0, 00),

u(x,00=0, u(x,00=0, x€R, (48)

where f € CI"/2H1(R" x [0, 00)). We use the Duhamel principle,
i.e. for any s > 0, we first consider the homogeneous problem

{ Wi — Aw =0 in R" x (s,00),

w=0, w=f(,s), whent=s (49)

which has a unique solution, denoted as w(x, t;s); we then define

u(x, t) :/0 w(x, t;s)ds. (50)



The following result shows that v is the solution of (48).

Theorem 28

Let f € CI/A+L(R" x [0,00)). Then the u defined by (50) is the
unique solution of (48) in C?(R" x [0, c)).

Proof. Clearly u(x,0) =0 and

t t
ur(x, t) = w(x, t; t) + / we(x, t;s)ds = / we(x, t; s)ds.
0 0

So u(x,0) = 0. Moreover

t t
ure(x, t) = we(x, t; t) +/ wee(x, t;5)ds = f(x,t) + / Aw(x, t;s)ds
0 0

= f(x, t)+A/t w(x, t;s)ds = f(x,t) + Au(x, t). |
0
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We conclude this section by giving the explicit solution formulae of
(48) for n=1,2,3.

m When n =1, by the d’Alembert formula the solution of (49) is

given by
1 X+(t75)
w(x, t;s) = / f(y,s)dy.
2 Jx—(t-s)

Therefore the solution of (48) for n =1 is given by

/ / s)dyds
(t—s)
X+T
:/ / f(y,t —7)dyd.
2 0 X—T
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m When n = 3, by the Kirchoff formula the solution of (49) is

_
47T(t - 5) ly—x|=t—s

Therefore, the solution of (48) is

)
t) d d
X 47T / /y x|=t—s t -S U(y) °

47r//yx f(y’T " do(y)dr

f(yvt_’y_XD
47T ly—x|<t |y—X‘

w(x, t;s) = f(y:s)do(y).

dy

which is called the retarded potential because u(x, t) depends
on the values of f at the earlier times t' =t — |y — x|.
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m When n = 2, by Poisson formula the solution of (49) is given
by

1 f(y,s)
w(x, t;s) = / dy.
27 Jysi<es E— 5P — [y — P

Therefore the solution of (48) is given by

1 /t/ f(y,s)
u(x,t) = — dyds
RAE 0 Jlyxli<t—s \/(t = 5)2 = [y —x2

t
Fly. t —
= 1/ / —(y7 7-) dydT.
21 Jo Jiy—xj<r /T2 — |y — x|?
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2. Local existence of semi-linear wave equations

m We will consider the Cauchy problem of semi-linear wave

equation

{ Ou = vy — Au = F(u,0u), inR"x (0, T], (51)

u(x,0) = g(x), wue(x,0)=h(x), xecR"

where du = (0:u, Vu) and F € C* satisfies F(0,0) = 0.
Under certain conditions on g and h, we will establish a local
existence result, i.e. there is a small T > 0 such that (51) has
a unique solution in R" x [0, T].

The proof is based on the Picard iteration which defines a
sequence {um}; the solution of (51) is obtained by the limit of
this sequence.



m The sequence {up,} is defined by solving the Cauchy problem
of linear wave equation

{ Oum = F(um—1,0Um-1), in R" x (0, T], (52)

um(x,0) = g(x), Orum(x,0) = h(x), xecR"

form=20,1,---, where we set u_; = 0.

m So it is necessary to understand the Cauchy problems of linear
wave equations deeper.

m We need some knowledge on Sobolev spaces.

2.1. The Sobolev spaces H*

For any fixed s € R, H® := H*(IR") denotes the completion of
C5°(R™) with respect to the norm
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X 1/2
I = ( [ @+ lepyip@Rae)

where (&) := Jgo e "€ f(x)dx is the Fourier transform of f.

m H? is a Hilbert space and H® = [2.

m If s > 0 is an integer, then ||f||ns &~ >, <, |0f]| 2.
m H® C H* for any —o0 < 51 < 55 < 0.

m H~° is the dual space of H® for any s € R.

[

If s > k + n/2 for some integer k > 0, then HS — Ck(R")
compactly and there is a constant Cs such that

Z 10%F || oo < Csl|F|ps, VF € H°.
o<k
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m Given integer k > 0, CX(]0, T], H%) consists of functions
f(x,t) such that t — ||04f(-, t)||s is continuous on [0, T] for

j=0,---, k. It is a Banach space under the norm
k .
(-5 t)|ps-
> ma 124 )
J:

m L1([0, T], H®) consists of functions f(x, t) such that

-
/ | (-, t)||gsdt < oc.
0

2.1. Solutions of linear wave equations

Let O = 02 — A denote the d'Alembertian. We first establish the
following energy estimate.
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Lemma 29
For any u € C2(R" x [0, T]) there holds

t
10u(-; )|z < [|Ou(-, )] 2 +/ 1B0u, )l 2d7, 0<t<T.
0

Proof. Fix Tg > T and consider the energy
E(t) = / (Jue(x, )2 + [Vu(x, ) dx.
‘X‘SToft

From the proof of Theorem 22 we have

d
—E(t) < 2/ ur(x, t)du(x, t)dx.
dt X|<To—t
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By the Cauchy-Schwartz inequality we can obtain

J 1/2 1/2
—E(t) <2 / lug(x, t)[2dx / IDu(x, t)|?dx
dt Ix|<To—t [x|<To—t

= 2E(t)"?|0u(, )l i2(87, (0))-
Therefore %E(t“)l/2 < |0uf(, t)HL2(BTO—t(0)' Consequently
t
[0u(:, )l 2(B7, _(0)) = E(t)Y/? < E(0)*/? +/0 18u(, )l i2(Br, . (0))dT

t
< [10u(-, 0)l|.2 + /0 10u(-, 7) 27

Letting Tg — oo gives the desired inequality. |
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The energy estimate in Lemma 29 can be extended as follows.

Theorem 30

Let u e C>®(R" x [0, T]). Then, for any s € R, there is a constant
C depending on T such that

t
S 10%uC, Ol < € [ S 10%u(, 0w + /0 10u(, )| edr

jof<1 laf<1

for0<t<T.

Proof. Consider only s € Z. We may assume that the right hand
side is finite. There are three cases to be considered.



Case 1: s = 0. We need to establish

t
ST 0% u Ol S S 10 u(- )]z + /0 10u(-, 7 2.

|| <1 la|<1
(53)
To see this, we first use Lemma 29 to obtain

t
10u(; t)ll2 < [1Ou(-, 0)] 2 +/0 [Ou, )l 2d7. (54)

By the fundamental theorem of Calculus we can write

u(x, t) = u(x,0) —I—/O ur(x, 7)dT.
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Thus it follows from the Minkowski inequality that

luC, 1)1z < |W+/Hw .

Adding this inequality to (54) gives

t
S oot e < S 0% u(- np+Awmummm

la|<1 o<1

L/}jwa dr.

la|<1

An application of the Gronwall inequality then gives (53).
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Case 2: s € N. Let 8 be any multi-index with || <'s. We apply
(53) to 9% u to obtain

Do ot ul )l S Y 119707 u(: t)||L2+/ 100 u(:, )l 2d7

| <1 || <1

< S 100 a0z + [ 040uC )l

la|<1

Summing over all 5 with |3| < s we obtain

t
S0t &)l S S 0% u(-, 0 s + /0 10u(., 7).

laf<1 lal<1
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Case 3: s €¢ —N. We consider

v(-,t) == (I — A)°u(-, t).

Since —s € N, we can apply the estimate established in Case 2 to
v to derive that

t
STV )l S S 107V 0) s + /O IOV (7).

lol<1 o<1
Since O and (I — A)® commute, we have

Ov(-,7) = (| — A)*Ou-, 7).
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Therefore
1Bv( Tl = 10u(:, 7) |-
Consequently

t
S 10vC )l S S 1107V 0)ll s + /0 100u(, 7)o

jof<1 lal<1

Since ||0“v(-, t)||y-s = [|0%u(-, t)||Hs, the proof is complete. |

We now prove the following existence and uniqueness result for the
Cauchy problem of linear wave equation

{ Ou = f(x, t), in R" x (0, T, (55)

u(x,0) = g(x), O0:u(x,0)=h(x), xeR"
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Theorem 31

Ifg,h€ C®°(R") and f € C>°(R" x [0, T]), then (55) has a
unique solution u € C*°(R" x [0, T]). If in addition there is s € R
such that

g € H*TYR"), he H(R™) and f e L}([0, T], H*(R")),
then
ue C([0, T, H*H)y n C([o, T], H°)
and, for 0 < t < T there holds the estimate

t
S 10%(, Dllte S el + 1 Allis + /0 VG e

la|<1
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Proof. The existence and uniqueness follow from the previous
chapter. The remaining part is a consequence of Theorem 30. W

2.2. Semi-linear wave equations

We next consider the semi-linear wave equation (51), i.e.

Ou = F(u, 0u) in R" x (0, T],

U(-,O) =8, Ut(',O) = h, (56)

where F € C* satisfies F(0,0) = 0.

m For this equation, there holds the finite propagation speed
property, i.e. if u € C2(R" x [0, T]) is a solution with
u(x,0) = ut(x,0) =0 for |x — xo| < tp, then u =0 in the
backward light cone C,, ¢,. (see Exercise)
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Theorem 32

If g, h € C§°(R"), then there is a T > 0 such that (56) has a
unique solution u € Cg°(R" x [0, T]).

Proof. 1. We first prove uniqueness. Let v and @i be two solutions.
Then v := u — @ satisfies

vie — Av =R, v(0,-)=0, w(0,-)=0,
where R := F(u,du) — F (@, 00). It is clear that
[Rl < C(lv] + 0v]).

In view of Theorem 30, we have

S v 0le £ [ IRCDladr < [ 3 10wt r)lsdn

o] <1 la|<1



By Gronwall inequality, } |, <1[[0%v[[;2 = 0. Thus 0 = v = u —@.
2. Next we prove existence. We first fix an integer s > n + 2.

m We use the Picard iteration. Let u_; = 0 and define u,,,
m > 0, successively by

Oum = F(Uum-1,0Um-1) in R" x (0, 00),

in(-0) =g Oyun(0) = h. (57)

By Theorem 31, all up, are in C*°(R" x [0, 00)).
m For any index + satisfying |y| < s we have

00 upm = O"[F(um—1, Oum—1)].
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m Therefore, it follows from Theorem 30 that

D 10707 um(, )2

|8I<1

t
<G| > 10°0 um(-,0) 2 +/ 107[F (um—1,0um—1)]l| 2dT
18]<1 0

for all v with |y| <'s. Summing over all such v gives

> 0% um(-, £)lle2

lal<s+1

t
<G ( Z |0% um(-, 0)|| 2 +/ Z |8‘X[F(um1,aum1)]||L2dT)
|or| <s+1 0

lo<s
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m Let

Am(t) =Y 10%Um(-, 1)l 2.

|o| <s+1

Then

Am(t) < C0<Am(0)+/0t - Haa[F(um_l,8um_1)]\|de7).

lal<s
By using (57) it is easy to show that
Am(0) < Ag, m=0,1,---

for some number Ag independent of m; in fact we can take Ag
to be a multiple of ||g||ys+1 + || h]| Hs-
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m Consequently

t
Am(t) < CO(A0+/ > 0% [F (um-1, D127 ).
lal<s
(58)

Step 1. We show that there is 0 < T < 1 independent of m such
that

Am(t) < 2CoAy, YO<t<Tandm=01,--. (59)

m We prove (59) by induction on m. Since F(0,0) = 0 and
u_1 = 0, we can obtain (59) with m = 0 from (58). Next we

assume that (59) is true for m = k and show that it is also
true for m = k + 1. During the argument we will indicate the

choice of T.
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In view of (58), we have
t
Arsa(t) < Go( Ao +/ > 19°[F (u. due)llizdr ). (60)
O Jal<s
Observing that 0“[F (uk, Quk)] is the sum of the terms
a(ug, Oug )0 uy - - 0P @1 Auy - - - O™ Ay

where |B1] + - + 81| + 71| + -+ + [vm| = |@|. Therefore
18| < |a|/2 and || < |a|/2 except one of the multi-indices.

So O%[F (uk,duk)] is the sum of finitely many terms, each is a
product of derivatives of uy in which at most one factor where
u is differentiated more than |a|/24+1 <s/2 + 1 times.



For 07 ux with |y] <s/2+ 1, by Sobolev embedding we have
for r > n/2+1+s/2 that

Yo 107ux ) < € Y 1107w, 1) 2

Iv[<s/2+1 ly|<r

Since s > n+2, we have s+ 1 > n/2+ 1+ s/2 and thus by
induction hypothesis

Yo 10wt <C Y 107w 1)l

[v[<s/2+1 [v|<s+1
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Therefore

0°IF (g, Qui)]| < Cag > 10%uil, Vol <s.
|8]<s+1

Consequently, by the induction hypothesis, we have

> 10°F (uk, dullliz < CapAn(t) < Cape (62)

la|<s
In view of (60), we obtain
Ars1(t) < Go (Ao + Cagt) < Co(Ao+ Ca T), 0t T,

So, by taking 0 < T < 1 so small that C4, T < Ap, we obtain
Ak+1(t) < 2CoAp for 0 < t < T. This completes the proof of
(59).
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Step 2. Next we show that {up} is convergent under the norm

R e
luli= max 3" (. o)l

T Jal<s+1

To this end, consider

Em(t) = Z 10%(um+1 — um) (-5 )| 2

|or|<s+1
By the definition of {un,}, we have

O(um+1 — um) = Rm in R" x (0, T,

(Um+1 - Um)|t:0 = 07 at(um—‘rl - Um)’t:O = 07
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where
Rm = F(um, Oum) — F(um—1,0um—1).

By the same argument for deriving (58), we obtain
)< co/ S (0% (e, ) | 27
|a|<s

By (59) and the similar argument for deriving (62) we have

Y 10%Rn( )|z < CEm-a(t).
jal<s

Thus .
En(t )<C/ Em—1(T)dr, m=1,2,---
0
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Consequently

(€t) sup Eo(t), m=0,1,---.

E..(t) <
m(t) < m! o<i<T

So Y .. Em(t) < Co. Therefore {um} converges to some function u
under the norm || - ||. By Sobolev embedding, we can conclude

Um — u in CSHA=M/2A(R" » [0, T]) and hence in C?(R" x [0, T])
since s > n+ 2. By taking m — oo in (57) we obtain that u is a
solution of (56).

Step 3. The T obtained in Step 1 depends on s. If we can show
(59), i.e.

> 0%Um(n e <A, 0<t<T

o <s+1



forall m=20,1,--- with T > 0 independent of s, then we can
conclude that u € C*(R" x [0, T]).

m We now fix sy > n+ 3 and let T > 0 be such that

0r<nta<XT Z Haaum('ﬂt)HB < CO < 00, m:O717"'
T |al<sp+1

and show that for all s > sy there holds

max > [0%um(t, )2 < G <00, Ym.  (63)

m We show (63) by induction on s. Assume that (63) is true for
some s > sp, we show it is also true with s replaced by s + 1.
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By the induction hypothesis and Sobolev embedding,

>y |0%Um(x, t)| < As < 00, Vm.

max
CDERXOTY ) i1 T(n42)/2]

Since s > n+3, we have [(s+4)/2] <s+1—[(n+2)/2]. So

max > 10%um(x, ) < As, Y.
(x,t)€R"x[0,T] al<(o14)/2

This is exactly (61) with s replaced by s 4 2. Same argument
there can be used to derive that

max Oum(-, t < Coy1 <00, Vm.
max > [0%un( )iz < G < o,

|or|<s+2
We complete the induction argument and obtain a C*
solution. [
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m The interval of existence for semi-linear wave equation could
be very small.

m The following theorem gives a criterion on extending solutions
which is important in establishing global existence results.

Theorem 33 (Continuation principle)

Assume that u be the solution of the Cauchy problem (56) with
g, he C(RM). Let

T. :=sup{T > 0: u satisfies (56) on [0, T]}.
If T, < oo, then

Z |0%u(t, x)| ¢ L°(R" x [0, T4]). (64)

la|<(n+6)/2
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Proof. Assume that (64) does not hold, then

sup Z |0%u(t, x)| < C < oc.
[0.T)XR |4 |< (n+6) /2

Applying the argument in deriving (59) we have

sup Z 10%u(-, )]l 2 < Co < o0
R"X[O,T*) ‘O‘|S50+1

where sy = n+ 3. By the argument in Step 3 of the proof of
Theorem 32 we obtain for all s > sy that

sup > [0%u(t, )2 < G < 0.
[07T*)><Rn|06|§5+1



So u can be extend to u € C*>([0, T,] x R").

Since g, h € C5°(R"), by the finite speed of propagation we can
find a number R (possibly depending on T,) such that u(x,t) =0
for all |[x| > R and 0 < t < T,. Consequently

u(x, Ty) = Oru(x, T.) =0 when |[x| > R.

Thus, u(x, T.) and Ou(x, T,) are in C§°(R"), and can be used as
initial data at t = T, to extend u beyond T, by theorem 32. This
contradicts the definition of T,. [ |
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3. Invariant vector fields in Minkowski space
First are some conventions. We will set
R = {(t,x): t € R and x € R"},

where t denotes the time and x := (x!,--- , x") the space variable.

We sometimes write t = x° and use

0 0 .
80—5 and 0; .—ﬁforj—l,'--,n.

For any multi-index o = (g, - - - , ) and any function u(t, x) we
write

la| ==apg+a1+---+a, and 0% :=9y°0" -0y u.



Given any function u(t, x), we use

Owu® = " [0jul’ and  [Oul* := |doul* + |Oyul*.
j=1

We will use Einstein summation convention: any term in which an
index appears twice stands for the sum of all such terms as the
index assumes all of a preassigned range of values.

m A Greek letter is used for index taking values O, --- , n.

m A Latin letter is used for index taking values 1,--- | n.

For instance

n n
b”@uu:Zb“(?“u and bjaju:ijﬁju.
1=0 j=1
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3.1. Vector fields and tensor fields

m We use x = (x%, x1,- - x") to denote the natural coordinates
in R1*" where x° = t denotes time variable.

m A vector field X in R1*" is a first order differential operator of
the form

° d
— W_Z Y
x_§' O:x T = X",

where X* are smooth functions. We will identify X with (X*).

m The collection of all vector fields on R1*" is called the
tangent space of R and is denoted by TR *".
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m For any two vector fields X = X*0, and Y = Y*#0,, one can
define the Lie bracket

[X,Y] = XY — YX.
Then

[X, Y] = (X"9,) (Y"0,) — (Y"9y) (X*O,.)
= XMY9,0, + X" (9,Y") 0, — Y’ X"D,8, — Y” (,X") 9,
= (XD, Y — YF9,XV) D, = (X(Y") — Y(X"))d,.

So [X, Y] is also a vector field.
m A linear mapping 17 : TR — R is called a 1-form if

n(fX) = fn(X), Vfe C®RY"), X ¢ TR
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For each 4 =10,1,---, n, we can define the 1-form dx* by
dx"(X) = X', VX = X"9, € TR,
Then for any 1-form 1 we have
n(X) = Xn(0u) = nuax"(X),  where 1, :=1(0,)-

Thus any 1-form in R can be written as 7 = nudx* with
smooth functions 1,. We will identify n with ().

m A bilinear mapping T : TR*" x TR*" — R is called a
(covariant) 2-tensor field if for any f € C°(R*") and X, Y
€ TR*" there holds

T(X,Y)=T(X,fY)=fT(X,Y).
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It is called symmetric if T(X,Y) = T(Y,X) for all vector
fields X and Y.

m Let
(mlﬂl) = diag(_lv 17 e 71)

be the (1 + n) x (1 + n) diagonal matrix. We define
m: TR x TR & R by

m(X,Y) :=my,X"Y"

for all X = X#9, and Y = Y#9, in TR, It is easy to
check m is a symmetric 2-tensor field on R*". We call m the
Minkowski metric on R1*7. Clearly

m(X, X) = = (X°)" 4+ ()" + o (X7
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m A vector field X in (R1*7 m) is called space-like, time-like, or
null if

m(X,X) >0, m(X,X)<0, or m(X,X)=0

respectively. Consider the three vector fields X; = 20y — 01,
Xo = 0g — 01 and X3 = 9y — 201. Then X is time-like, X5 is
null, and X3 is space-like.

m In (R'*" m) we define the d'Alembertian
O=m"9,0,, where (m"):=(m,,)"".

In terms of the coordinates (t,x%,--- ,x"), 0= —0? + A,
where A = 82 + -+ + 92
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3.2. Energy-momentum tensor

m In order to derive the general energy estimates related to
Uu = 0, we introduce the so called energy-momentum tensor.

m To see how to write down this tensor, we consider a vector
field X = X*#9,, with constant X*. Then for any smooth
function u we have

(Xu)Ou = XP0,um™ 8,0, u
= 9, (XPmH 9, ud,u) — XPm*™ 9,0,ud, u.

Using the symmetry of (m*”) we can obtain

X m"0,0,ud,u =0, <;X”m“”6uu8,,u> .
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Therefore (Xu)Ou = 9, (Q[u]/,X*) , where
QL = "3y — 53, (D, udpu)

in which 5,’; denotes the Kronecker symbol, i.e. 5Z =1 when
@ = v and 0 otherwise.

m This motivates to introduce the symmetric 2-tensor
. p 1 po
Qu]w = m,,,Qu]) = Oyud,u — im,w (m*?70,udyu)

which is called the energy-momentum tensor associated to
Ou = 0. Then for any vector fields X and Y we have

QLul(X, Y) = (Xu)(Yu) — %m(X, Y)m(0u, 0u)
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m For a 1-form 5 in (R1*" m), its divergence is a function
defined by
divn == m"”9,n,.

For a symmetric 2-tensor field T in (R'*", m), its divergence
is a 1-form defined by

(divT), :=m"9,T,,.
m The divergence of the energy-momentum tensor is
(divQ[u]), = m"*9,Q[ul.,
=m"9, <8l,u8pu — %ml,p (m”"&,u@nu)>

=m"9,0,ud,u = (Ou)o,u.
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m Let X be a vector field. Using Q[u] we can introduce the
1-form
P, = Qlu]wX".

Then its divergence is

divP = m"9,P, = m* 9, (Q[u],,X")
= "0, Q[u]yp X + m" Q[u], 0, X"
= (divQ[u]),X? + m"” Q[u],,0, X?
= 0ud,u XP + m" Q[u],,m""0,X,

= (T)Xu+ 5 QL (9%, + X,

where Q[u]*” := m**m?” Q[u],» and X, := m,, X"
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m For a vector field X, we define
X7 = 0%, + 0, X,

which is called the deformation tensor of X with respect to m.
Then we have

1
divP = 9,(m*"P,) = (Qu)Xu + 5 Q[u]" X (65)
m Assume that u vanishes for large |x| at each t. Then for any

to < t1, we integrate divP over [ty, t1] X R" and note that 0;
is the upward unit normal to each slice {t} x R", we obtain

// divPdxdt = /Q[u]X@t )dx — / Q[u](X, 9;)dx

[to,t1]xR" {t=t1} {t=to}
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This together with (65) then implies
Theorem 34

Let u € C?>(RY™™) that vanishes for large |x| at each t. Then for
any vector field X and ty < t; there holds

Qu](X, 1) dx = / Qu](X, 8¢)d + // (Clu) Xudsdt

{t=t1} {t=to} [to,t1] X R"

+% / / Q[u] Frr,,, dxdt. (66)

[to,tl] xRn

m By choosing X suitably, many useful energy estimates can be
derived from Theorem 34.
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For instance, we may take X = 9; in Theorem 34. Notice that
)7 = 0 and

QLul(@e, ) = 5 (10wl +Vul?)

we obtain for E(t) = %f{t}an(\ﬁtu\z + |Vul?)dx the identity

t
E(t):E(to)+/ / Ou Orudxdt’, Yt > to.
to n

This implies that

d

9 E() = / Oudeuds < V2| Du(-, 1) 2 E(H)Y2.
dt {t}xRn



Therefore

d
a'—”(i“)l/2 *IIDU( t)ll 2(rn)-

Consequently we obtain the energy estimate

E(t)Y? < E(t)Y? + /HDU ) 2@nydt’, Yt > to.

3.3. Killing vector fields

The identity (66) can be significantly simplified if (X)7 = 0. A
vector field X = X*9,, in (R m) is called a Killing vector field
if X7 =0, ie.

0uXy + 0, X, =0  in R,
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Corollary 35

Let u € C?(R™*") that vanishes for large |x| at each t. Then for
any Killing vector field X and ty < t; there holds

Q[u](X, 04)dx = / QLu](X, 84)dx + / (Cu) Xudsdt.

{t=t;} {t=to} [to,t1] xIR"

m We can determine all Killing vector fields in (R1T" m). Write
T = (X)WW, Then
DTy = 0,0, Xy + 0,0, X,
OuTp = 00y X, + 0,0,X0,
Oy pp = 0y0, Xy, + 0,0, X,
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Therefore
OuTup + OuTpy — OpTy = 20,0, X,.
If X is a Killing vector field, then (X)7 = 0 and hence
0,0, X, =0 forall u,v,p.

Thus each X, is an affine function, i.e. there are constants
ap, and b, such that

Xy, = apx” + b,.
Using (X)7r = 0 again we have

0=0.X, +0,X, = av, + au-



m Therefore a,, = —a,, and thus

X = X“&H =m" X, 0, = m" (a,,x” + b,) 0,

= Z (Z + Z) aypx’m* 0, + m* b9,

p<v  p>v
= E E aypx’m o, + E g a,px’m" 0, + m"'b,0,
v=0 p<v p=0v<p

n
= Z Z (avpX’m" 0, + ap, x"mt*9,) + m*b,0,
v=0 p<v

n
= Z Z ayp (xXPm* 9, — x"m"*9,) + m*b,0,,.

v=0 p<v
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Thus we obtain the following result on Killing vector fields.

Proposition 36

Any Killing vector field in (R1*" m) can be written as a linear
combination of the vector fields 0,,, 0 < pn < n and

Q= (MPHx” —m?x")0,, 0<pu<v<n.

m Since (m"”) = diag(—1,1,---,1), the vector fields {€,,}
consist of the following elements

Qoi = x'0p +t8;, 1<i<n,
Qj=x0;—x9;, 1<i<j<n

187/219



3.4. Conformal Killing vector fields

m When (X)WW = fm,,, for some function f, the identity (66)
can still be modified into a useful identity. To see this, we use
(65) to obtain

divP = 9, (m™ P,) = (Du)Xu + %fm’“’Q[u]W
= (Ou)Xu + ?fm“”@uu&,u.
We can write
fm*0,ud,u = m*"0,(fud,u) — m"ud,fo,u — fullu
= m"0,(fud,u) — m"’0, (;uzauf> + %UZDf — fullu

1 1
=m0, <fu81,u — 2u28,,f> + §u2Df — fulu

188/219



Consequently

Ou(m*”' P,) = (Ou)Xu + ?m‘“’@u (fuayu — ;uza,,f)

1—n 1—n

+ vPOf — fulu

Therefore, by introducing

~ -1 -1
P, = Pu+7n4 fu@uu—n

UZa#f,

we obtain

- - 1 1
divP = 8,(m"P,) = Ou <Xu + 2 2 fu> 0 —u0f.
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By integrating over [ty, t1] x R" as before, we obtain

Theorem 37

If X is a vector field in (R'", m) with X7 = fm, then for any
smooth function u vanishing for large |x| there holds

/QX(‘)tdx_/QXE?td // P Ofdxdt
[to,t1]><R"
// (Xu—l—

[to,t1] xR"

1 fu) Cudxdt,

where tg < t; and

Q(X,8:) == Qu](X, ;) + T <fu8tu —Su 8tf> .



m A vector field X = X#9,, in (R1*", m) is called conformal
Killing if there is a function f such that (X7 = fm, i.e.
OuXy + 0, X, = fmy,.

m Any Killing vector field is conformal Killing. However, there
are vector fields which are conformal Killing but not Killing.

(i) Consider the vector field

Lo = ZX”(?“ = x"0,.

u=0

we have (Lo)* = x* and so (Lp), = m,,x”. Consequently

(LO)WW = 0u(Lo)y + 0u(Lo)p = Op(myyx) + 9y (M x")

=m0, +m,,6;) =2m,,.

Therefore Ly is conformal Killing and (%) = 2m.
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(i) For each fixed 4 =0,1,---, n consider the vector field
K, = 2m,,x"x?0, — my, x"x"0,,.
We have (K,)? = 2m,, x"x” —m,, x"x"6f. Therefore
(Ku)p = Moy (Ku)" = 2mppmy, xVx" — mp,m,,, x¥x7.
By direct calculation we obtain
Ky — —
(K )77/"7 = 0p(Kyu)n + 0n(Ki)p = 4myx"m,,.

Thus each K|, is conformal Killing and (K = 4m,, x"m.
The vector field Kp is due to Morawetz (1961).

All these conformal Killing vector fields can be found by
looking at X = X*0,, with X* being quadratic.
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m We can determine all conformal Killing vector fields in
(R m) when n > 2.

Proposition 38

Any conformal Killing vector field in (R'*", m) can be written as a
linear combination of the vector fields

8ua 0<pu<n,

Qu = (mPXx” —mP"x1)0,, 0<pu<v<n,

LO = ZX“&M,

=0

Ky = my,x"x"0, — m,,x’x"0,,, p=0,1,---,n.
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Proof. Let X be conformal Killing, i.e. there is f such that
K = X, + 0y X, = fm,.
We first show that f is an affine function. Recall that
20,0,X, = 0Ty + OuTpy — OpTyn .
Therefore
20,0, X, = m,,0,f +m,,0,f —m,,0,f.
This gives

200X, = 2m* 9,0, X, = (1 — n)d,f.

(67)

(68)
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In view of (67), we have
(n+1)f =2m""9, X,
This together with (68) gives
(n+1)Of =2m"9,0X, = (1 — n)m"”0,0,f = (1 — n)Of.
So [Jf = 0. By using again (68) and (67) we have
1—n

(1= )80, f = (0,0, + 8,0,f) = 8,0X,, + 9,0X,
= 00X, + 8,X,) = m,, Of = 0.

Since n > 2, we have 0,0,f = 0. Thus f is an affine function, i.e.
there are constants a,, and b such that f = a,x" + b.
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Consequently

X7 = (apx" 4 b)m.

Recall that (L) = 2m and (K = 4m,,, x"m. Therefore, by

introducing the vector field

1

~ 1 y
X =X- EbLO — Zm“ aVKM,

we obtain
v 1 1
X g = X g — Zp (Lo)p _ “mt,, (K = 0.
2 4

Thus X is Killing. We may apply Proposition 36 to conclude that
X is a linear combination of 0, and €2,,,. The proof is complete. B
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4. Klainerman-Sobolev inequality

We turn to global existence of Cauchy problems for nonlinear wave

equations
Ou = F(u,du).

This requires good decay estimates on |u(t, x)| for large t. Recall
the classical Sobolev inequality

< S [0l VxeRT
|| <(n+2)/2

which is very useful. However, it is not enough for the purpose. To
derive good decay estimates for large t, one should replace Of by
Xf with suitable vector fields X that exploits the structure of
Minkowski space. This leads to Klainerman inequality of Sobolev

type.
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The formulation of Klainerman inequality involves only the
constant vector fields

Ouy 0 pu<n
and the homogeneous vector fields

Lo = xP0,,

Q= (MPHX" —m?Px")0,, 0<pu<v<n.

There are m + 1 such vector fields, where m = % We will
use I to denote any such vector field, i.e. I = (g, - ,I,) and

for any multi-index oo = (v, - - - , ay) we adopt the convention
o — oo, . ram
=T om
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It is now ready to state the Klainerman inequality of Sobolev type,
which will be used in the proof of global existence.

Theorem 39 (Klainerman)

Let u € C*([0,00) x R™) vanish when |x| is large. Then

(L4t XD A+ e = IxIDlu(t, )P < € Y lIFu(t, )iz

|laf< 22

for t > 0 and x € R", where C depends only on n.

We skip the proof of Theorem 39 since the argument is rather
lengthy. Before using this result, deeper understanding on the
vector fields I is necessary.



Lemma 40 (Commutator relations)

Among the vector fields 0, €2, and Ly we have the commutator
relations:

[0, 0v] = 0,
[@u LO] = aﬂa
[0p, Q] = (m7H5,) — m"”ég) s,
[Qu, Qpo] = m7HQ,, — mPHQs, + M Qg — m77Q,,
[Qu, Lo] = 0.
Therefore, the commutator between 0, and any other vector field
is a linear combination of {9, }, and the commutator of any two

homogeneous vector fields is a linear combination of homogeneous
vector fields.
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Proof. These identity can be checked by direct calculation. As an
example, we derive the formula for [Q,,,,Q,,]. Recall that

Q= (Mm"x” —m"™x") 0,.
Therefore
[9,,,Q2,5] = Qu (MTPx7 —M"7xP) 0 — Qe (M XY — M xH) 0,
= (m"x" —m7"x*) (m"”&'f — m""éﬁy’) O
— (M7"x7 —m"7x") (mm‘é: - m””éfy‘) Oy
=m7* (m"Px" — m"xP) 0, — mPH (m"7x” — m""x7) 0,
+m” (m"7x* —m"™x7) 0, — m7” (m"x* —m"x?) 0,

=mo"Q,, —mHQ,, + mPQ,, — m7YQ,,,.

This shows the result. |
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Lemma 41
For any 0 < p, v < n there hold

3,0, =0, [O0,9,]=0, [0, L)]=20

Consequently, for any multiple-index o there exist constants c,g
such that
Ore = ) cul0. (69)
18I<|a|

Proof. Direct calculation. [ |
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5. Global Existence in higher dimensions

We consider in R1*" the global existence of the Cauchy problem

Ou = F(du)

70
U|t=0:€f7 8tU’t:0:5g> ( )

where n >4, ¢ > 0is a number, and F : RM*" 5 R is a given C*
function which vanishes to the second order at the origin:

F(0) =0, DF(0)=0. (71)

The main result is as follows.



Theorem 42

Let n> 4 and let f,g € C°(R"). If F is a C* function satisfying
(71), then there exists eg > 0 such that (70) has a unique solution
u e C>®([0,00) x R") for any 0 < e < &p.

Proof. Let
T, :=sup{T > 0:(70) has a solution u € C*([0, T] x R™)}.

Then T, > 0 by Theorem 33. We only need to show that T, = oc.
Assume that T, < oo, then Theorem 33 implies

> [0%u(t,x)| € L([0, T.) x R).

la]<(n+6)/2
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We will derive a contradiction by showing that there is g9 > 0 such
that for all 0 < € < gq there holds

sup > [0%u(t,x)| < 0. (72)

(t,x)€[0, T ) xR" || <(n46)/2

Step 1. We derive (72) by showing that there exist A > 0 and
€0 > 0 such that

At):= > arcu(t, )l < Ae, 0<t<T, (73)
|a|<n+4

for 0 < € < gg, where the sum involves all invariant vector fields
a,lt' Lo and Q/ﬂ,.
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In fact, by Klainerman inequality in Theorem 39 we have for any
multi-index [ that

orfue,x) < c+0~7 Y Irearfu(, ).
o] <(n12)/2

Since [, 0] is either 0 or +0, see Lemma 40, using (73) we obtain
for |B] < (n+6)/2 that

orfu(t,x)| < CL+1)~7 Y arcu(t, )|
|a|<n+4
= C(1+1t)"T At)

n—1

< CAs(1+1t) 2.

(74)
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To estimate [P u(t, x)|, we need further property of u. Since
f,g € Cg°(R"), we can choose R > 0 such that

f(x)=g(x)=0 for|x| > R.
By the finite speed of propagation,
u(t,x) =0, f0<t< T,and|x|>R+t.
To show (72), it suffices to show that

sup ITu(t, x)| < oo, V]a| <(n+6)/2.
0<t< T, |x|<R+t



For any (t, x) satisfying 0 < t < T, and |x| < R + t, write
x = |x|w with |w| = 1. Then

Mu(t,x) = Tu(t, |x|w) — Tu(t, (R + t)w)
1
= / 9T u(t, (slx| + (1 = s)(R + t))w)ds (|x| — R — t)’.
0
In view of (74), we obtain for all |a] < (n+ 6)/2 that

IFu(t,x)| < CAs(1+ 1)~ "2 (R+t — |x|)
-3

< CAs(1+t)" 7
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Step 2. We prove (73).

m Since u € C*([0, T,) x R") and u(t,x) =0 for [x| > R + t,
we have A(t) € C([0, T)).

m Using initial data we can find a large number A such that

A(0) < - Ae. (75)

&=

By the continuity of A(t), there is 0 < T < T, such that
A(t) <Asfor0<t<T.

m Let
To=sup{T €0, T,) : A(t) < Ae,¥0 <t < T}.

Then Ty > 0. It suffices to show Tg = T,.
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We show Ty = T, be a contradiction argument. If Tg < T, then
A(t) < Ae for 0 < t < Ty. We will prove that for small £ > 0 there
holds

A(t) < %Ae for0<t< Ty
By the continuity of A(t), there is § > 0 such that
A(t) <Ae for0<t<Tg+94
which contradicts the definition of Tg.
Step 3. It remains only to prove that there is £g > 0 such that
A(t) < Aefor0 <t < To:>A(t)§%A5for0§t§ To

for 0 < ¢ < gy.
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By Klainerman inequality and A(t) < Ae for 0 < t < Ty, we have
for |B] < (n+6)/2 that

_n—2

0MPu(t, x)| < CAe(1+t)" 2, Y(t,x) €[0, To] x R". (76)

To estimate ||OM*u(t,-)||;2 for |a] < n+ 4, we use the energy
estimate to obtain

t
[T u(t, )2 < 107 u(0, )2 + C/O 1O u(r, )l 2d7. (77)

We write
Or¢e = [O,T%u 4+ I*(F(0u))

and estimate [|[*(F(0u))(7,)|;2 and |[[E, F*]u(T, )|l 2
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Since F(0) = DF(0) =0, we can write

F(ou) = Z ik (0u)0judu,
Jj,k=1

where Fj are smooth functions. Using this it is easy to see that
F*(F(Ou)) is a linear combination of following terms

Fay.om(Ou) - T 0u - T*20u - - - - - T Qu

where m > 2, F,,...q,, are smooth functions and |a1| + - - - + |am|
= |a| with at most one «; satisfying |«;| > |a|/2 and at least one
«a; satisfying |a;] < |a]/2.

m In view of (76), by taking o such that Aeg < 1, we obtain
| Fay-am(Ou)|| e < C for 0 < € < g with a constant C
independent of A and ¢.



m Since |a|/2 < (n+4)/2, using (76) all terms ' Ju, except

the one with largest ||, can be estimated as

. _n1
T 0u(t, x)|| oo (o, To)xrr) < CAe(1+ )™ 2

Therefore

IF(F(8u))(t, )|l 12 < CAe(1+ t)~ Z IFP8u(t,
1B<]al
< CAe(1+ 1) "7 Ab).

Recall that [0, T] is either 0 or 2LJ. Thus

O.rul s Y IFP0ul S Y IFP(F(0w)].

181<la| 181<la
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e

(78)



Therefore

IO, T (e, )l < € Y IIFP(F t,)lle2
18I<|al

< CAe(1+t)""T A1) (79)

Consequently, it follows from (77), (78) and (79) that

t
lor“u(t, )|z < ||OT%u(0, )| 2 + CAs/ L)n_dr
o (1+7)

Summing over all & with |a] < n+ 4 we obtain

A(t)SA(O)+CAa/t(A()1d < Ae+ CAe/t(A(T)nldT.
0 0

1+7)> 1+7)=
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By Gronwall inequality,

At) < A cae [ 9T\ g<ier
< JAcexp € ) Grneoz) 0sts 0-
For n >4, [° (HT;IW = % < 0o. (This is the reason we

need n > 4 for global existence). We now choose £y > 0 so that

2
—CA < 2.
eXP<n_|_2 60) =

Thus A(t) < Ag/2 for 0 <t < Ty and 0 < € < gg. The proof is
complete.
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Remark. The proof does not provide global existence result when
n < 3 in general. However, the argument can guarantee existence
on some interval [0, T.], where T. can be estimated as

e/s, n=3,
T.>1{ c¢/e?, n=2, (80)
c/e, n=1

In fact, let A(t) be defined as before, the key point is to show that,
forany T < T,

1
A(t) <Asfor0 <t < T:>A(t)§§A5forO§t§T



The same argument as above gives

At) < TAcexp [ CA /t‘” 0<t<T
=3P\ )y o) T

Thus we can improve the estimate to A(t) < 2Ae for 0 < ¢t < T if

T. satisfies
-
€ dr
—_— | <
exp <CA5/O i+ T)(nl)/2> <2

When n < 3, the maximal T, with this property satisfies (80).
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Remark. For n =2 or n = 3, the above argument can guarantee
global existence when F satisfies stronger condition

F(0)=0, DF(0)=0, ---, DKF(0)=o, (81)

where k =5 — n. Indeed, this condition guarantees that F(Ju) is a
linear combination of the terms

Fj j (8u)8j1 u--- 8jk+1 u.

1 Jk+1
Thus M'*(F(9u)) is a linear combination of the terms
fiyi, Q)T %100 - ... - T Qu,

where r > k+1, |oa| + - - + || = |a| and f;,...; are smooth
functions; there are at most one «; satisfying a;; > |«|/2 and at
least k of «; satisfying |a;| < |a|/2.
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We thus can obtain

(n—1)k

IT(F(Ou))(t,)ll2 < CAe(L+ )" 2 A(t),

(n—1)k

IO, T u(t, )|z < CAs(1+t)” 2 A(t).

Therefore

1 t dT
A(t) < ZAE exp (CA5/0 1+ T)((nl)k)/2> ’

Since k =5—n, [;* M{W converges for n =2 or n = 3.
The condition (81) is indeed too restrictive. In next lecture we
relax it to include quadratic terms when n = 3 using the so-called
null condition introduced by Klainerman.



