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In this part we consider the mathematics of conservation laws.

Conservation laws typically assert that the rate of change
within a region is governed by a flux function controlling the
rate of loss/increase through the boundary of the region.

Let

u = u(x , t) = (u1(x , t), · · · , un(x , t)), x ∈ Rn, t ≥ 0

be a vector function whose components are conserved in some
physical system under investigation. Let f : Rm → Rm×n be
the flux function. Then the conservation law states

d

dt

∫
Ω

udx = −
∫
∂Ω

f (u)νdS

for any smooth bounded domain Ω ⊂ Rn, where ν denotes
the outward unit normal to ∂Ω.
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By the divergence theorem we have∫
Ω

utdx = −
∫

Ω
divf (u)dx .

Since Ω is arbistrary, we have

ut + divf (u) = 0 on Rn × (0,∞) (1)

This covers many equations from applications, including the
Euler’s equations for compressible gas flow.

In this course we only consider the scalar case of (1) in one
dimension, i.e. u is a scalar function of single variables,
together with the initial condition u(x , 0) = u0(x), x ∈ R.
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1. The method of characteristics

We develop the method of characteristics to solve the nonlinear
first order PDE

F (x , u,Du) = 0 in U, u = g on Γ, (2)

where U ⊂ Rn is an open set, x ∈ U, Γ ⊂ ∂U, g : Γ→ R and
F : U × R× Rn → R are given smooth functions. Writing

F = F (x , z ,p) = F (x1, · · · , xn, z , p1, · · · , pn),

we use the notation

DxF = (Fx1 , · · · ,Fxn), DzF = Fz , DpF = (Fp1 , · · · ,Fpn).
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The basic idea of the method is as follows:

Given x ∈ U, find a curve within U connecting x with a point
x0 ∈ Γ.

Determine u along this curve.

This usually requires the knowledge of Du along this curve.

Let x(s) be such a curve and set

z(s) = u(x(s)) and p(s) = Du(x(s)).

Then x(s), z(s),p(s) are determined by solving systems of
ODEs.

So, the key point is to derive the ODEs governing x(s), z(s),p(s).
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To derive these equations, first

dz

ds
=

n∑
j=1

uxj (x(s))
dxj
ds
,

dpi

ds
=

n∑
j=1

uxixj (x(s))
dxj
ds
.

In order to eliminate the second derivative uxixj , we differentiating
the PDE in (2) with respect to xj to get

Fxj + Fzuxj +
n∑

i=1

Fpi uxixj = 0.

Restricting this equation to the curve x(s), we obtain

Fxj (x , z ,p) + Fz(x , z ,p)pj +
n∑

i=1

Fpi (x , z ,p)uxixj (x(s)) = 0.
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Thus, if we set
dxi
ds

= Fpi (x , z ,p),

then

dpi

ds
= −Fxi (x , z ,p)− Fz(x , z ,p)pi ,

dz

ds
=

n∑
i=1

piFpi (x , z ,p).

We therefore obtain the system of ODEs
dx
ds = DpF (x , z ,p),
dz
ds = p · DpF (x , z ,p),
dp
ds = −DxF (x , z ,p)− DzF (x , z ,p)p.

(3)

which is called the characteristic ODEs for (2)
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We still need to determine appropriate initial conditions for
the characteristic ODEs (3) using u = g on Γ.

We use local parametrizations of Γ. Let Γ be locally
parametrized by

xi = xi (θ1, · · · , θn−1), i = 1, · · · , n

with parameters θ1, · · · , θn−1. We will write x = x(θ) for
short.

Let x0 := x(θ0) be a point on Γ. For the ODEs in (3) it is
natural to set x(0) = x0 and z(0) = z0 := g(x0). We need to
determine p(0) = p0 := (p0

1 , · · · , p0
n).

By the PDE in (2) we have F (x0, z0,p0) = 0.
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Using u = g on Γ, we have u(x(θ)) = g̃(θ) := g(x(θ)).
Differentiating with respect to θj gives

n∑
i=1

uxi (x(θ))
∂xi
∂θj

= g̃θj (θ), j = 1, · · · , n − 1.

By setting θ = θ0 we obtain n equations on p0:

n∑
i=1

p0
i

∂xi
∂θj

(θ0) = g̃θj (θ
0), j = 1, · · · , n − 1,

F (x0, z0,p0) = 0.

(4)

In many situations, p0 can be obtained by solving (4).
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Example 1

Consider the problem

uux + uy = 2, u(x , x) = x .

Here F = F (x , y , z , p1, p2) = zp1 + p2 − 2. Since Fx = Fy = 0,
Fz = p1, Fp1 = z , and Fp2 = 1, it follows from the characteristic
ODEs (3) that

dx

ds
= z ,

dy

ds
= 1,

dz

ds
= p1z + p2.

Recall that z = u(x , y), p1 = ux(x , y) and p2 = uy (x , y), we have

dz

ds
= 2.
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To include the boundary condition u(x , x) = x , we fix any τ , let
(x(s), y(s)) be the characteristic curve with

(x(0), y(0)) = (τ, τ).

Then z(0) = τ and thus
dx
ds = z , x(0) = τ,
dy
ds = 1, y(0) = τ,
dz
ds = 2, z(0) = τ.

Solving these equations give

y(s) = s + τ, z(s) = 2s + τ, x(s) = s2 + τs + τ.
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Now for any (x , y) we determine s and τ such that (x , y) =
(x(s), y(s)). It yields

s =
y − x

1− y
and τ =

x − y 2

1− y
.

Therefore

u(x , y) = u(x(s), y(s)) = z(s) = 2s + τ =
2y − y 2 − x

1− y
.

This solution makes sense only if y 6= 1. �

When the PDE in (2) has special structures, the characteristic
ODEs can be significantly simplified.
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Consider the first order linear PDE

b(x) · Du(x) + c(x)u(x) = 0.

Here F (x , z ,p) = b(x) · p + c(x)z . Since DpF = b(x), we
have

dx

ds
= b(x),

dz

ds
= b(x) · p(s).

Since p(s) = Du(x(s)) = −c(x(s))u(x(s)) = −c(x(s))z(s),
we obtain the simplified characteristic ODEs

dx

ds
= b(x),

dz

ds
= −c(x)z .

The equations on p are not needed. �
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Consider the scalar Hamilton-Jacobi equation

ut + f (ux) = 0,

where f ∈ C 1(R). Here F = F (t, x , z , q, p) = q + f (p) with
p = ux and q = ut . Consequently

Fq = 1, Fp = f ′(p), Ft = Fx = Fz = 0.

Therefore, it follows from the characteristic ODEs (3) that

dt

ds
= 1,

dx

ds
= f ′(p),

dz

ds
= q + pf ′(p),

dq

ds
= 0,

dp

ds
= 0.
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Thus we may take s = t. Since q = ut = −f (ux) = −f (p),
we obtain the simplified characteristic ODEs

dx
dt = f ′(p),
dz
dt = pf ′(p)− f (p),
dp
dt = 0.

These equations imply that

• p are constants along characteristics by the last equation .
• Characteristics are straight lines with velocity f ′(p) by the first

equation.
• By the second equation, u can be obtained along characteristic

lines.

We will use these facts to discuss Hamilton-Jacobi equation
later. �
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Consider the initial value problem of the scalar conservation
law

ut + f (u)x = 0, (x , t) ∈ R× (0,∞),

u(x , 0) = u0(x), x ∈ R,
(5)

where f is a C 1 function. The equation can be write as
ut + f ′(u)ux = 0. Here F = F (t, x , u, q, p) = q + f ′(u)p with
q = ut and p = ux . Since

Ft = Fx = 0, Fq = 1, Fp = f ′(u), qu + p = 0,

from the characteristic ODEs (3) we have

dt

ds
= 1,

dx

ds
= f ′(u),

du

ds
= q + pf ′(u) = 0.
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We can take s = t. Thus for (5) the characteristic ODEs
become {

dx
dt = f ′(u),
du
dt = 0.

(6)

From these equation we can conclude

• u are constants along characteristics.
• Characteristics are straight lines with velocity f ′(u).

We will use these facts to show the following result.

Lemma 2

The problem (5) cannot have a C 1 solution defined for all t > 0 if
there exist x1 < x2 such that f ′(u0(x2)) < f ′(u0(x1)).
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Proof.

Assume (5) has a C 1 solution defined for all t > 0.

Then u are constants along characteristics and characteristics
are straight lines. For characteristic line crossing x-axis at x ,
its velocity is f ′(u0(x)).

Let l1, l2 be the two characteristics lines starting from (x1, 0)
and x2, 0). Their velocities are f ′(u0(x1)) and f ′(u0(x2))
respectively.

 

Figure: The plots of l1 and l2 whose slopes are m1 = 1/f ′(u0(x1)) and m2 = 1/f ′(u0(x2)) respectively,
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Since f ′(u0(x2)) < f ′(u0(x1)), these two lines must cross at
some point P in t > 0.

Along li we have u(xi , t) = u0(xi ), i = 1, 2. Thus u must be
discontinuous at P. Contradiction! �

Conclusion:

In general C 1 solutions of (5) can exits for only a finite time
no matter how smooth u0 is.

In order to allow (5) to admit solutions defined for all t > 0,
the notion of solution should be generalized to include
solutions with “discontinuities”.
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2. Weak solutions and Rankine-Hugoniot condition

Consider again the initial value problem (5), i.e.

ut + f (u)x = 0, u(x , 0) = u0(x). (7)

To motivate the notion of weak solution, assume u is a C 1 solution
of (7). Multiplying (7) by any test function ϕ ∈ C∞0 (R× [0,∞)),
integrating over R× (0,∞), and using integration by parts, it gives

0 =

∫ ∞
0

∫ ∞
−∞

(ut + f (u)x)ϕdxdt

=

∫ ∞
0

∫ ∞
−∞

(uϕt + f (u)ϕx)dxdt +

∫ ∞
−∞

u0(x)ϕ(x , 0)dx .
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Since the last equation makes sense provided that u and u0 are
merely bounded and measurable, it leads to the following definition.

Definition 3

Let u0 ∈ L∞(R). A function u ∈ L∞(R× (0,∞)) is called a weak
solution of (7) if∫ ∞

0

∫ ∞
−∞

(uϕt + f (u)ϕx)dxdt +

∫ ∞
−∞

u0(x)ϕ(x , 0)dx = 0

for all ϕ ∈ C∞0 (R× [0,∞)).

Remarks.

(i) If u ∈ C 1(R× [0,∞)) is a classical solution of (7), then u is
automatically a weak solution.
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(ii) If u is a weak solution of (7) and if u is C 1 in a domain
Ω ⊂ R× (0,∞), then ut + f (u)x = 0 in Ω. In fact, for any
ϕ ∈ C 1

0 (Ω) we have by integration by parts that

0 =

∫ ∞
0

∫ ∞
−∞

(uϕt + f (u)ϕx)dxdt =

∫ ∞
0

∫ ∞
−∞

(ut + f (u)x)ϕdxdt.

Since ϕ is arbitrary, it follows ut + f (u)x = 0 in Ω.

(iii) If u0 ∈ C (R) and u ∈ C 1(R× [0,∞)) is a weak solution of
(7), then u is a classical solution. In fact, ut + f (u)x = 0 in
R× (0,∞) by (ii). Thus, by the definition of weak solution
and integration by parts, we have

0 =

∫ ∞
−∞

(u(x , 0)− u0(x))ϕ(x , 0)dx , ∀ϕ ∈ C 1
0 (R× [0,∞)).
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Therefore u(x , 0) = u0(x) for x ∈ R. �

The notion of weak solution places restrictions on the curve of
discontinuity.

Let Γ be a smooth curve across which u has a jump
discontinuity, and u is smooth away from Γ.

Let P ∈ Γ and let D be a small ball in t > 0 centered at P.
Assume that the part of Γ in D is given by x = x(t),
a ≤ t ≤ b.

Γ splits D into two parts: the left part D1 and the right part
D2. Let

ul := lim
ε↘0

u(x(t)− ε, t), ur := lim
ε↘0

u(x(t) + ε, t).
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For any ϕ ∈ C 1
0 (D), we have

0 =

∫∫
D

(uϕt+f (u)ϕx)dxdt =

∫∫
Dl

+

∫∫
Dr

 (uϕt+f (u)ϕx)dxdt.
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Since u is C 1 in D1 and D2, we have ut + f (u)x = 0 in D1

and D2. Therefore it follows from the divergence theorem that∫∫
D1

(uϕt + f (u)ϕx)dxdt =

∫∫
D1

((uϕ)t + (f (u)ϕ)x)dxdt

=

∫
∂D1

ϕ(−udx + f (u)dt)

=

∫
Γ
ϕ(−uldx + f (ul)dt).

Similarly,∫∫
D2

(uϕt + f (u)ϕx)dxdt = −
∫

Γ
ϕ(−urdx + f (ur )dt).
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Therefore

0 =

∫
Γ
ϕ(−[u]dx + [f (u)]dt),

where [u] = ul − ur and [f (u)] = f (ul)− f (ur ) denote the
jumps across Γ. Let s := dx

dt denote the speed of the curve of
discontinuities. Then

0 =

∫ b

a
ϕ(−s[u] + [f (u)])dt.

By the arbitrariness of ϕ, we can conclude that

s[u] = [f (u)] (8)

at each point on Γ, which is called the Rankine-Hugoniot
condition.
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Proposition 4

If u is a weak solution of (7), then on the curves of discontinuity
there must hold the Rankine-Hugoniot condition (8).

We give an example to indicate how to produce weak solutions by
the method of characteristics and the Rankine-Hugoniot condition .

Example 5

Consider the initial value problem of Burgers equation

ut + (u2/2)x = 0, u(x , 0) = u0(x) :=


1, x < 0,
1− x , 0 ≤ x ≤ 1,
0, x > 1.
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We first use the method of characteristics to find the solution
defined for a finite time.

We know that all characteristics are straight lines and u are
constants along characteristics lines.

Since the flux is f (u) = u2/2, the characteristic line crossing
x-axis at x0 is given by

x(t) = x0 + tu0(x0), x0 ∈ R.

and on this line
u = u0(x0).

Since all characteristics starting at (x0, 0) with 0 ≤ x0 ≤ 1
cross at (1, 1), u(x , t) can not be smooth for t ≥ 1.
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By the knowledge of characteristics, u(x , t) for t < 1 can be
determined as follows:

• u(x , t) = 1 for x < t and u(x , t) = 0 for x > 1.
• For (x , t) satisfying 0 < t ≤ x ≤ 1, the characteristic through

it intersects x-axis at (x0, 0) with x0 = (x − t)/(1− t). So

u(x , t) = u0(x0) = 1− x0 = 1− x − t

1− t
=

1− x

1− t
.

Therefore, for t < 1 we have

u(x , t) =


1, x < t,
(1− x)/(1− t), t ≤ x ≤ 1,
0, x > 1.
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Next we use the Rankine-Hugoniot condition to define u(x , t)
for t ≥ 1.

• By the knowledge of characteristics, a curve of discontinuities
starting at the point (1, 1) is expected with u = 1 on the left
and u = 0 on the right.

• By the Rankine-Hugoniot condition, the speed of the curve of
discontinuities is

s(t) =
u2
l /2− u2

r /2

ul − ur
=

1

2
(ul + ur ) =

1

2
.

So the curve is given by x(t) = 1 + (t − 1)/2, t ≥ 1. Hence,
for t ≥ 1 we have

u(x , t) =

{
1, x < 1 + (t − 1)/2,
0, x > 1 + (t − 1)/2.
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The solution u is depicted in the following figure.

 
By definition it is easy to check that the above u is a weak
solution. �
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Example 6 (Nonuniqueness of weak solutions)

Consider the initial value problem of Burgers equation

ut + (u2/2)x = 0, u(x , 0) =

{
0, x < 0,
1, x > 0.

The method of characteristics determines the solution everywhere
in t > 0 except in the sector 0 < x < t. By defining u in
0 < x < t carefully, we obtain two functions

u1(x , t) =

{
0, x < t/2,
1, x > t/2,

and u2(x , t) =


0, x < 0,
x/t, 0 < x < t,
1, x > t;

both turn out to be weak solutions. �
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3. Entropy conditions

Example shows that weak solutions of conservation laws are
not necessarily unique.

Criteria should be developed to pick out the “physically
relevant” solution.

Such a criterion is called an entropy condition.

We motivate the entropy condition for the scalar conservation
laws

ut + f (u)x = 0, u(x , 0) = u0(x), (9)

where u0 ∈ C 1 and f is C 2 with f ′′ > 0. Assume that (9) has
a smooth solution u (thus u′0 ≥ 0 by Lemma 2).
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Recall that all characteristics of (9) are straight lines given by

(x0 + f ′(u0(x0))t, t), x0 ∈ R.

For any (x , t) with t > 0 let x0 be the crossing point of x-axis
and the characteristic through (x , t). Since u(x , t) = u0(x0)
along the characteristic, we have

x = x0 + t f ′(u(x , t)), i.e. x0 = x − t f ′(u(x , t)).

So u satisfies the equation u = u0(x − t f ′(u)).

Taking derivative with respect to x gives

ux(x , t) =
u′0(x − t f ′(u))

1 + u′0(x − t f ′(u))f ′′(u)t
.
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If u′0(x − tf ′(u)) = 0, then ux(x , t) = 0; If u′0(x − tf ′(u)) > 0,
then

ux(x , t) ≤ u′0(x − t f ′(u))

u′0(x − t f ′(u))f ′′(u)t
=

1

f ′′(u)t
≤ E

t
,

where E = 1/ inf{f ′′(u) : |u| ≤ ‖u0‖∞}, here we used |u(x , t)|
≤ |u0‖∞.

Consequently, we have for any t > 0, x ∈ R and a > 0 that

u(x + a, t)− u(x , t)

a
≤ E

t
.

This last inequality requires no smoothness of u and thus can
be used as a criterion to pick out the “right” weak solution.
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Definition 7 (Oleinik)

A weak solution u of the scalar conservation laws is said to satisfy
the Oleinik entropy condition if there is a constant E such that

u(x + a, t)− u(x , t)

a
≤ E

t

for all t > 0 and x , a ∈ R with a > 0.

We derive another entropy condition due to Lax which is easier to
extend for systems of conservation laws.

Recall that the characteristics are given by

(x0 + f ′(u0(x0))t, t), x0 ∈ R.
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Assume that, at some point on a curve C of discontinuities, u
has distinct left and right limits ul and ur and that a
characteristic from left and a characteristic from the right hit
C at this point. Then

f ′(ul) > s > f ′(ur ), (10)

where s denote the speed of the discontinuous curve at that
point. We call (10) the Lax entropy condition.

Remark. In case f ′′ > 0, Lax entropy condition can be deduced
from Oleinik entropy condition:

Indeed, by Oleinik entropy condition we always have ul ≥ ur

and thus ul > ur on the curve of discontinuities.
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Since f ′′ > 0, f ′ is strictly increasing and thus f ′(ul) > f ′(ur ).

By Rankine-Hugoniot condition, the speed of discontinuous
curve is

s =
f (ul)− f (ur )

ul − ur
= f ′(ξ)

for some ξ ∈ (ur , ul). Consequently f ′(ul) > s > f ′(ur ) which
is the Lax entropy condition.

Definition 8

A curve of discontinuity for u is called a shock curve provided both
the Rankine-Hugoniot condition and the entropy condition hold.

Question: Is it possible to show existence and uniqueness of weak
solutions of conservation laws satisfying suitable entropy condition?
We will focus on scalar conservation laws with strictly convex flux.
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4. Uniqueness of entropy solutions

We will prove the following uniqueness result.

Theorem 9

Consider the initial value problem of the scalar conservation laws{
ut + f (u)x = 0, x ∈ R, t > 0,
u(x , 0) = u0(x), x ∈ R,

where f is a C 2 convex function. If u, v ∈ L∞(R× (0,∞)) are two
weak solutions satisfying the Oleinik entropy condition, then

u = v in R× (0,∞)

except a set of measure zero.
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Proof. Since u, v ∈ L∞(R× (0,∞)), it suffices to show that∫ ∞
0

∫ ∞
−∞

(u − v)ϕdxdt = 0, ∀ϕ ∈ C 1
0 (R× (0,∞)). (11)

By the definition of weak solution, for any ψ ∈ C 1
0 (R× [0,∞)) we have∫ ∞

0

∫ ∞
−∞

(uψt + f (u)ψx) dxdt +

∫ ∞
−∞

u0(x)ψ(x , 0)dx = 0,∫ ∞
0

∫ ∞
−∞

(vψt + f (v)ψx) dxdt +

∫ ∞
−∞

u0(x)ψ(x , 0)dx = 0.

Therefore

0 =

∫ ∞
0

∫ ∞
−∞
{(u − v)ψt + (f (u)− f (v))ψx} dxdt.
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By writing

f (u)− f (v) =

∫ 1

0

d

dτ
[f (τu + (1− τ)v)]dτ = b(u − v),

where

b(x , t) :=

∫ 1

0
f ′(τu(x , t) + (1− τ)v(x , t))dτ,

then it follows

0 =

∫ ∞
0

∫ ∞
−∞

(u − v) (ψt + bψx) dxdt (12)

for all ψ ∈ C 1
0 (R× [0,∞)).
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If we could solve the linear transport equation

ψt + bψx = ϕ (13)

for any ϕ ∈ C 1
0 (R× (0,∞)) to obtain ψ ∈ C 1

0 (R× [0,∞)),
then we would obtain (11) from (12).

Unfortunately, (13) may not have a C 1
0 solution ψ because b

is not continuous in general.

To get around this difficulty, we need to use the mollification
technique.

We take a mollifier, i.e. a function ω ∈ C∞0 (R2) with

ω ≥ 0,

∫∫
R2

ω(x , t)dxdt = 1, supp(ω) ⊂ {x2 + t2 ≤ 1}.
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For any ε > 0 set ωε(x , t) = ε−2ω(x/ε, t/ε).

To regularize u and v , we set u(x , t) = v(x , t) = 0 for t < 0
and define

uε = u ∗ ωε, vε = v ∗ ωε
where ∗ denotes the convolution, i.e.

u ∗ ωε(x , t) =

∫∫
R2

u(y , s)ωε(x − y , t − s)dydt.

It is well known that both uε and vε are smooth functions and

|uε| ≤ M and |vε| ≤ M, in R× [0,∞), (14)

where M > 0 is a constant such that |u|, |v | ≤ M.
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We use the Oleinik entropy condition to show for α > 0 that

∂xuε ≤ E/α and ∂xvε ≤ E/α, ∀t ≥ α. (15)

Let h(x , t) := u(x , t)− Ex/α. Then for a ≥ 0 and t ≥ α

h(x +a, t)−h(x , t) = u(x +a, t)−u(x , t)−Ea

α
≤ Ea

t
−Ea

α
≤ 0.

Thus x → (h ∗ ωε)(x , t) is decreasing for each t ≥ α. Since

(h ∗ ωε)(x , t) = uε(x , t)− Ex

α
+

E

α

∫∫
R2

yωε(y , s)dyds,

we obtain

0 ≥ ∂x(h ∗ ωε) = ∂xuε − E/α, ∀t ≥ α.
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Next define

bε :=

∫ 1

0
f ′(τuε + (1− τ)vε)dτ.

Because of (14) and f ∈ C 2, we have bε ∈ C 1 and there is a
constant M1 independent of ε such that

|bε(x , t)| ≤ M1, (x , t) ∈ R× [0,∞). (16)

Moreover, for any α > 0 there holds

∂xbε ≤ C0E/α, ∀t ≥ α, (17)

where C0 := max{f ′′(ξ) : |ξ| ≤ M}. In fact,

∂xbε =

∫ 1

0
f ′′(τuε + (1− τ)vε) (τ∂xuε + (1− τ)∂xvε) dτ.
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Since f ′′ ≥ 0, we may use (15) and (14) to derive for t ≥ α
that

∂xbε ≤
E

α

∫ 1

0
f ′′(τuε + (1− τ)vε)dτ ≤ C0E

α
.

We next prove that bε → b locally in L1 as ε→ 0. To see
this, using f ∈ C 2 we can write

bε(x , t)− b(x , t)

=

∫ 1

0

(
f ′(τuε + (1− τ)vε)− f ′(τu + (1− τ)v)

)
dτ

=

∫ 1

0
f ′′(ξ) (τ(uε − u) + (1− τ)(vε − v)) dτ,

where ξ is between τuε + (1− τ)vε and τu + (1− τ)v .
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By (14) we have |ξ| ≤ M. Therefore

|bε(x , t)− b(x , t)| ≤ 1

2
C0 (|uε − u|+ |vε − v |) .

Thus for any compact set K ⊂ R× [0,∞) we have∫∫
K
|bε − b|dxdt ≤ 1

2
C0

∫∫
K

(|uε − u|+ |vε − v |) dxdt

→ 0 as ε→ 0.

For any fixed ϕ ∈ C 1
0 (R× (0,∞)), we consider the problem

ψεt + bεψ
ε
x = ϕ, ψε(x ,T ) = 0, (18)

where T > 0 is chosen such that ϕ = 0 for t ≥ T .
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By the method of characteristics, the solution of (18) is given
by

ψε(x , t) =

∫ t

T
ϕ(xε(s; x , t), s)ds, (19)

where xε(s) := xε(s; x , t) is defined by

dxε
ds

= bε(xε, s), xε(t) = x .

Since bε ∈ C 1 satisfies (16), xε exists for all s and is C 1 with
respect to s, x and t. Thus ψε ∈ C 1(R× [0,∞)).

We show that ψε ∈ C 1
0 (R× [0,∞)) and supp(ψε) are

contained in a compact region independent of ε.
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To see this, let S := supp(ϕ). By the choice of T , S is a
compact set contained in {(x , t) : 0 < t ≤ T}. In view of
(19), ψε(x , t) = 0 for t ≥ T .

 

Next let R be the region bounded by the lines t = 0, t = T
and two lines with slopes 1/M1 and −1/M1 such that S ⊂ R.
For any (x , t) 6∈ R with t < T , from (16) it follows that

xε(s; x , t) 6∈ R, ∀t ≤ s ≤ T
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Since

d

ds
ψε(xε(s; x , t), s) = ψεs + ψεx

∂xε
∂s

= ψεs + bεψ
ε
x

= ϕ(xε(s; x , t), s) = 0

for t ≤ s ≤ T , we have

ψε(x , t) = ψε(xε(t; x , t), t) = ψε(xε(T ; x , t),T ) = 0.

Therefore supp(ψε) ⊂ R.

By using (12) with ψ = ψε and (18) we have

0 =

∫ ∞
0

∫ ∞
−∞

(u − v) {ψεt + bεψ
ε
x + (b − bε)ψ

ε
x} dxdt.
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In view of (18) it follows∫ ∞
0

∫ ∞
−∞

(u − v)ϕdxdt =

∫ ∞
0

∫ ∞
−∞

(u − v)(bε − b)ψεxdxdt.

(20)

To prove (11), it suffices to show that the right hand side of
(20) goes to 0 as ε→ 0.

We need to estimate ψεx . We first show that for any α > 0
there exists Cα such that

|ψεx | ≤ Cα, ∀t ≥ α. (21)

Since ψε = 0 for t ≥ T , it suffices to show (21) for α ≤ t
< T .
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By using (19) we obtain

ψεx(x , t) =

∫ t

T
ϕx(xε(s, x , t), s)

∂xε
∂x

(s; x , t)ds. (22)

Recall that xε(t; x ; t) = x , we have ∂xε
∂x (t; x , t) = 1. Let

aε(s) :=
∂xε
∂x

(s; x , t).

Then aε(t) = 1 and

∂aε
∂s

=
∂

∂s

∂xε
∂x

=
∂

∂x

∂xε
∂s

=
∂

∂x
bε(xε(s; x , t), s)

= ∂xbε
∂xε
∂x

= (∂xbε)aε
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Therefore

aε(s) = exp

(∫ s

t
∂xbε(xε(τ ; x , t), τ)dτ

)
.

In view of (17), it follows aε(s) ≤ eC0ET/α for α ≤ t ≤ s ≤ T .
Thus we have from (22) that

|ψεx(x , t)| ≤
∫ T

t
|ϕx |aε(s)ds ≤ Cα, ∀α ≤ t ≤ T .

• We next derive the total variation estimate on ψε: For each
t > 0 let

TVt(ψ
ε) :=

∫ ∞
−∞
|ψεx(x , t)| dx

denote the total variation of the function ψε(·, t).
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Since the supports of ψε) are contained in a compact region
independent of ε, it follows from (21) that for any α > 0
there is a constant Ĉα independent of ε such that

TVt(ψ
ε) ≤ Ĉα, ∀t ≥ α.

We claim that

∃β > 0 such that TVt(ψ
ε) ≤ Ĉβ for all 0 < t ≤ β. (23)

To see this, by using ϕ ∈ C 1
0 (R× (0,∞)) we may take β > 0

such that ϕ = 0 for 0 ≤ t ≤ β. It then follows from (18) that

ψεt + bεψ
ε
x = 0 for t ≤ β. (24)
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Fix 0 ≤ t ≤ β, let x0 < x1 < · · · < xN be any partition of R,
and set yi = xε(β; xi , t) for i = 0, · · · ,N. Then y0 < y1 < · · ·
< yN . Since (24) implies that ψε is constant along the
characteristic curves s → xε(s; xi , t) for 0 ≤ s ≤ β, we have

ψε(xi , t) = ψε(yi , β), i = 0, 1, · · · ,N.

Therefore

N−1∑
i=0

|ψε(xi+1, t)− ψε(xi , t)| ≤
N−1∑
i=0

|ψε(yi+1, β)− ψε(yi , β)|

≤ TVβ(ψε).

Taking the supremum over all such partitions gives TVt(ψ
ε) ≤

TVβ(ψε) ≤ Ĉβ .
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Finally we complete the proof by estimating∣∣∣∣∫ ∞
0

∫ ∞
−∞

(u − v)(bε − b)ψεxdxdt

∣∣∣∣ ≤ I1 + I2,

where

I1 =

∫ α

0

∫ ∞
−∞
|u − v ||bε − b||ψεx |dxdt,

I2 =

∫ ∞
α

∫ ∞
−∞
|u − v ||bε − b||ψεx |dxdt.

By using (16) and (23) we obtain for 0 < α ≤ β that

I1 ≤ 2M · 2M1

∫ α

0
TVt(ψ

ε)dt ≤ 4MM1αĈβ.

59/219



Thus, for any η > 0 we can take 0 < α ≤ β such that

I1 ≤ 4MM1αĈβ < η/2.

For this α, recall that the supports of ψε are contained in a
compact region independent of ε, we may use (21) and the
local convergence of bε to b in L1 to obtain

I2 ≤ η/2 for sufficiently small ε > 0.

Consequently, for small ε > 0 there holds∣∣∣∣∫ ∞
0

∫ ∞
−∞

(u − v)(bε − b)ψεxdxdt

∣∣∣∣ ≤ η.
Since η > 0 is arbitrary, we can conclude the proof. �
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5. Riemann problems

Before giving the general existence result, we consider the scalar
conservation law with simple initial values:

ut + f (u)x = 0, u(x , 0) = u0(x) =

{
ul , x < 0,
ur , x > 0,

(25)

where ul and ur are constants. This problem is called Riemann
problem. We will determine the unique entropy solution explicitly
when f ′′ > c0 > 0.

Observing that if u(x , t) is a solution of (25), then, for any
λ > 0, uλ(x , t) = u(λx , λt) is also a solution. It is natural to
determine the solution of the form u(x , t) = v(x/t).
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We need to consider two cases: ul > ur and ul < ur .

Case 1. ul > ur .

• Since f ′′ > 0, we have f ′(ul) > f ′(ur ). Thus any characteristic
line starting from the negative x-axis intersects characteristic
lines starting from the positive x-axis.

• Assume that the curve of discontinuities is s(t). We expect
that s(0) = 0 and s ′(t) = σ by Rankine-Hugoniot condition,
where

f ′(ur ) < σ :=
f (ul)− f (ur )

ul − ur
< f ′(ul).

So s(t) = σt.
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• Therefore we may define

u(x , t) =

{
ul , x < σt,
ur , x > σt.

(26)

It is easy to check u is a weak solution. Since ul > ur , u thus
satisfies the Oleinik entropy condition. So, by Theorem 9, u is
the unique entropy solution which is called a shock wave.
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Case 2. ul < ur .

• In this case f ′(ul) < f ′(ur ). By the method of characteristics,
u = ul for x < f ′(ul)t and u = ur for x > f ′(ur )t, but u is
undetermined in the region f ′(ul)t < x < f ′(ur )t.

• In the region f ′(ul)t < x < f ′(ur )t, we expect u to be smooth
with u(x , t) = v(x/t). Then by ut + f (u)x = 0 we have

v ′(x/t) (f ′(v(x/t))− x/t) = 0.

Assuming v ′ never vanishes, we find f ′(v(x/t)) = x/t.
• Since f ′′ > c0 > 0, G := (f ′)−1 : R→ R exists and

|G (x)− G (y)| ≤ |x − y |/c0

for x , y ∈ R (see Lemma 14).
• Therefore v(x/t) = G (x/t) for f ′(ul)t < x < f ′(ur )t.
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• Thus we can define

u(x , t) =

 ul , x < f ′(ul)t,
G (x/t), f ′(ul)t < x < f ′(ur )t,
ur , x > f ′(ur )t.

(27)

Then u is continuous in R× (0,∞) and ut + f (u)x = 0 in each
of its region of definition. It is easy to check that u is a weak
solution.
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• The Oleinik entropy condition can be directly checked case by
case; for instance, if f ′(ul)t < x < x + a < f ′(ur )t, then

u(x+a, t)−u(x , t) = (f ′)−1((x+a)/t)−(f ′)−1(x/t) ≤ a/(c0t).

So, by Theorem 9, u is the unique entropy solution which is
called a rarefaction wave.

Summarizing the above discussion we obtain

Theorem 10

Consider the Riemann problem (25), where f ′′ ≥ c0 > 0.

(i) If ul > ur , the unique entropy solution is given by the shock
wave (26).

(ii) If ul < ur , the unique entropy solution is given by the
rarefaction wave (27).
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6. Existence of entropy solutions

Consider the initial value problem of the scalar conservation laws{
ut + f (u)x = 0, (x , t) ∈ R× (0,∞),
u(x , 0) = u0(x), x ∈ R. (28)

We will prove the following existence result.

Theorem 11

Let u0 ∈ L∞(R) and f ∈ C 2(R) with f ′′(ξ) ≥ c0 > 0 on R. Then
(28) has a unique weak solution u ∈ L∞(R× [0,∞)) satisfying the
Oleinik entropy condition. Moreover

‖u(x , t)‖L∞(R×(0,∞)) ≤ ‖u0‖∞.
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Theorem 11 has several different proofs. We present the one
based on the theory of Hamilton-Jacobi equations.

To motivate it, let h(x) :=
∫ x

0 u0(y)dy and consider the initial
value problem of Hamilton-Jacobi equation{

wt + f (wx) = 0, (x , t) ∈ R× (0,∞),
w(x , 0) = h(x), x ∈ R. (29)

If (29) has smooth solution, we set u = wx . Then u(x , 0) =
wx(x , 0) = u0(x). Differentiating the equation in (29) gives

ut = wxt = (wt)x = −f (wx)x = −f (u)x .

Thus u = wx is a solution of (28).
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Unfortunately the solution of (29) is not necessarily smooth in
general.

It is necessary to introduce the notion of weak solution of
(29).

Definition 12

Consider the problem (29), where h is Lipschitz continuous. A
Lipschitz continuous function w : R× [0,∞)→ R is called a weak
solution if

(i) w(x , 0) = h(x) for all x ∈ R;

(ii) wt(x , t) + f (wx(x , t)) = 0 for a.e. (x , t) ∈ R× (0,∞).
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When f ∈ C 2 with f ′′ ≥ c0 > 0, we will show that the
solution of (29) is given by the Hopf-Lax formula.

To motivate the formula, assuming (29) has a C 1 solution.
Along a characteristic curve x(t) we set z(t) := w(x(t), t)
and p(t) := wx(x(t), t). Then there hold

dx
dt = f ′(p),
dz
dt = pf ′(p)− f (p),
dp
dt = 0.

(30)

Thus along characteristics p are constants. So, characteristics
are straight lines with velocity f ′(p). To understand the
second equation in (30), we introduce the Legendre-Fenchel
conjugate
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f ∗(q) = sup
p∈R
{pq − f (p)} , q ∈ R.

Since f is uniformly convex, the maximum is achieved at p
satisfying q = f ′(p). Thus

f ∗(q) = pf ′(p)− f (p) with f ′(p) = q.

So dz
dt = f ∗(q) with q = f ′(p). Fix any (x̄ , t̄) with t̄ > 0. For

a characteristic line through (x̄ , t̄) that crosses x-axis at ȳ , its
velocity is (x̄ − ȳ)/t̄. Thus, along this characteristic,

dz

dt
= f ∗(

x̄ − ȳ

t̄
), z(0) = h(ȳ).
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Therefore

w(x̄ , t̄) = z(t̄) = h(ȳ) + t̄f ∗(
x̄ − ȳ

t̄
) (31)

This formula is problematic since it involves the unknown ȳ .

On the othe hand, by the convexity of f we have for any p

−wt = f (wx) ≥ f (p) + f ′(p)(wx − p).

So
wt + f ′(p)wx ≤ pf ′(p)− f (p) = f ∗(f ′(p)).

Consider the straight line (x(t), t) through (x̄ , t̄) with velocity
f ′(p), let y be the intersection point with x-axis. Then

f ′(p) = (x̄ − y)/t̄
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and
d

dt
w(x(t), t) ≤ f ∗(f ′(p)) = f ∗(

x̄ − y

t̄
).

Therefore

w(x̄ , t̄) ≤ h(y) + t̄f ∗(
x̄ − y

t̄
). (32)

Since f ′′ ≥ c0 > 0, f ′ is strictly increasing with f ′(−∞) =
−∞ and f ′(+∞) = +∞. Thus (32) holds for all y ∈ R since
we can take y to be any number by adjusting p. Since (31)
implies that the equality is achieved at some ȳ , we expect

w(x , t) := inf
y∈R

{
h(y) + t f ∗(

x − y

t
)

}
(33)

which is called the Hopf-Lax formula.
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The above argument is not rigorous since it requires w ∈ C 1.

Our goal is to show that (33) gives a weak solution of (29).

We first give some properties on f ∗.

Lemma 13

Let f be a C 1 convex function on R. Then the following hold:

(i) f ∗ is convex;

(ii) For any A > 0 we have

sup
q∈R
{A|q| − f ∗(q)} ≤ sup {f (x) : |x | ≤ A} ;

(iii) For any x ∈ R we have supq∈R {qx − f ∗(q)} = f (x).
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Proof.

(i) f ∗ is convex because f ∗ is the supremum of linear functions.

(ii) By the definition of f ∗ we have

f ∗(q) = sup
y∈R
{qy − f (y)} ≥ q

Aq

|q|
− f (

Aq

|q|
) = A|q| − f (Aq/|q|).

Therefore

sup
q∈R
{A|q| − f ∗(q)} ≤ sup

q∈R
{f (Aq/|q|)} = sup {f (x) : |x | ≤ A} .

(iii) Since the definition of f ∗ implies f ∗(q) ≥ qx − f (x) for all
q ∈ R, we have

sup
q∈R
{qx − f ∗(q)} ≤ f (x).
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To show the reverse inequality, we note that

qx − f ∗(q) = qx − sup
y∈R
{qy − f (y)} = inf

y∈R
{q(x − y) + f (y)}

Thus

sup
q∈R
{qx − f ∗(q)} = sup

q
inf
y
{q(x − y) + f (y)}

≥ inf
y

{
f ′(x)(x − y) + f (y)

}
Since f is convex, we have f (y) ≥ f (x) + f ′(x)(y − x) and
thus

f (y) + f ′(x)(x − y) ≥ f (x), ∀y .
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So supq∈R {qx − f ∗(q)} ≥ f (x). The proof is complete. �

Lemma 14

Let f ∈ C 2 be such that f ′′ ≥ c0 for some constant c0 > 0. Then

(i) f ∗ ∈ C 2 is strictly convex and (f ∗)′ = (f ′)−1, where (f ′)−1

denotes the inverse function of f ′;

(ii) (f ∗)′ is Lipschitz continuous, i.e. for any p, q ∈ R there holds

|(f ∗)′(p)− (f ∗)′(q)| ≤ |p − q|
c0

Proof. By the condition on f , f ′ is strictly increasing with f ′(−∞)
= −∞ and f ′(+∞) = +∞, and thus g := (f ′)−1 : R→ R exists
as a C 1 function with g ′(x) = 1/f ′′(g(x)) > 0.
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(i) For any q ∈ R, there always holds f ∗(q) = qx − f (x), where x
is determined by q = f ′(x), i.e. x = (f ′)−1(q) = g(q). Thus

f ∗(q) = qg(q)− f (g(q)), ∀q.

This implies that f ∗ ∈ C 1 and

(f ∗)′(q) = g(q) + qg ′(q)− f ′(g(q))g ′(q)

= g(q) + qg ′(q)− qg ′(q) = g(q).

Consequently (f ∗)′ = g and f ∗ ∈ C 2 with (f ∗)′′ = g ′ > 0.

(ii) For any p, q ∈ R let x = (f ∗)′(p) and y = (f ∗)′(q). Then

p = f ′(x) and q = f ′(y).
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Since f ′′ ≥ c0, we have

f (y)− f (x)− f ′(x)(y − x) ≥ 1

2
c0(y − x)2,

f (x)− f (y)− f ′(y)(x − y) ≥ 1

2
c0(x − y)2.

Adding these two inequalities gives

c0(x − y)2 ≤ (f ′(x)− f ′(y))(x − y) ≤ |f ′(x)− f ′(y)||x − y |

This implies that c0|x − y | ≤ |f ′(x)− f ′(y)|, i.e.

c0|(f ∗)′(p)− (f ∗)′(q)| ≤ |p − q|.

This completes the proof. �
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Lemma 15

The function w defined by the Hopf-Lax formula (33) is Lipschitz
continuous on R× [0,∞) and w(x , 0) = h(x) for x ∈ R.

Proof. We use

Lip(F ) := sup {|F (x)− F (y)|/|x − y | : x , y ∈ R and x 6= y}

to denote the Lipschitz constant of a Lipschitz function F .

We first show that, for each t > 0, w(·, t) is Lipschitz with

Lip(w(·, t)) ≤ Lip(h).

To see this, let x1, x2 ∈ R. We may take y1 ∈ R such that

w(x1, t) = h(y1) + t f ∗(
x1 − y1

t
).
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Then

w(x2, t)− w(x1, t)

= inf

{
h(y) + tf ∗(

x2 − y

t
)

}
− h(y1)− tf ∗(

x1 − y1

t
)

≤ h(x2 − x1 + y1)− h(y1) ≤ Lip(h)|x2 − x1|.

Interchanging the role of x1 and x2 we then obtain

|w(x1, t)− w(x2, t)| ≤ Lip(h)|x1 − x2|. (34)

We next show that there is a constant C0 > 0 such that

|w(x , t)− h(x)| ≤ C0t, ∀x ∈ R and t > 0.
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Indeed, we first have

w(x , t) ≤ h(x) + t f ∗(0).

Moreover, by using h(y) ≥ h(x)− Lip(h)|x − y | we have

w(x , t) = inf
y∈R

{
h(y) + t f ∗(

x − y

t
)

}
≥ h(x)− sup

y∈R

{
Lip(h)|x − y | − t f ∗(

x − y

t
)

}
= h(x)− t sup

z∈R
{Lip(h)|z | − f ∗(z)}

≥ h(x)− C1t,

where C1 := sup|y |≤Lip(h) f (y) by Lemma 13 (ii).
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We further show that there is a constant C2 such that

|w(x , t1)− w(x , t2)| ≤ C2(t2 − t1) (35)

for all x ∈ R and 0 < t1 < t2. Indeed, letting y ∈ R be such
that

w(x , t1) = h(y) + t1f ∗ ((x − y)/t1) ,

we may use the definition of w(x , t2) to obtain

w(x , t2) ≤ h(y) + t2f ∗ ((x − y)/t2) .

By writing

x − y

t2
=

t1

t2

x − y

t1
+

(
1− t1

t2

)
· 0
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and using the convexity of f ∗ we have

w(x , t2) ≤ h(y) + t2

{
t1

t2
f ∗(

x − y

t1
) +

(
1− t1

t2

)
f ∗(0)

}
= h(y) + t1f ∗(

x − y

t1
) + (t2 − t1)f ∗(0)

= w(x , t1) + (t2 − t1)f ∗(0).

Therefore

w(x , t2)− w(x , t1) ≤ (t2 − t1)f ∗(0), 0 < t1 < t2. (36)

On the other hand, we may take z ∈ R such that

w(x , t2) = h(z) + t2f ∗((x − z)/t2).
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Let y = t1
t2

x + (1− t1
t2

)z . Since x−z
t2

= y−z
t1

= x−y
t2−t1

, we have

w(x , t2) = h(z) + t1f ∗(
y − z

t1
) + t2f ∗(

x − z

t2
)− t1f ∗(

y − z

t1
)

≥ w(y , t1) + (t2 − t1)f ∗(
x − y

t2 − t1
).

Using (34) we have

w(y , t1) ≥ w(x , t1)− Lip(h)|y − x |.

Therefore

w(x , t2) ≥ w(x , t1)− Lip(h)|x − y |+ (t2 − t1)f ∗(
x − y

t2 − t1
).
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Consequently

w(x , t2) ≥ w(x , t1)− (t2 − t1) sup
η∈R
{Lip(h)|η| − f ∗(η)}

So, by Lemma 13 (ii), we have

w(x , t2)− w(x , t1) ≥ −C1(t2 − t1), 0 < t1 < t2.

Combining this with (36) we obtain (35).

Finally, by writing

|w(x1, t1)−w(x2, t2)| ≤ |w(x1, t1)−w(x2, t1)|+|w(x2, t1)−w(x2, t2)|,

we may use (34) and (35) to complete the proof. �
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Theorem 16

The function w defined by the Hopf-Lax formula (33) is Lipschitz
continuous, is differentiable a.e. on R× (0,∞) and is a weak
solution of (29).

Proof. By Lemma 15, w is Lipschitz on R× [0,∞) with w(·, 0) =
h. So w is differentiable a.e. in R× (0,∞) by Rademacher’s
Theorem. It remains only to show that

wt(x , t) + f (wx(x , t)) = 0

for any (x , t) ∈ R× (0,∞) at which w is differentiable.

We first choose z ∈ R such that

w(x , t) = h(z) + t f ∗((x − z)/t).
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Fix any 0 < ε < t and set y = (1− ε
t )x + ε

t z . Then

w(y , t − ε) ≤ h(z) + (t − ε)f ∗(
y − z

t − ε
).

Since x−z
t = y−z

t−ε , we have

w(x , t)− w(y , t − ε) ≥ t f ∗(
x − z

t
)− (t − ε)f ∗(

x − z

t
)

= εf ∗(
x − z

t
).

Therefore

w(x , t)− w(x + ε
t (z − x), t − ε)

ε
≥ f ∗(

x − z

t
).
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Letting ε↘ 0 gives

x − z

t
wx(x , t) + wt(x , t) ≥ f ∗(

x − z

t
).

Consequently, by the definition of f ∗,

wt(x , t) + f (wx(x , t))

≥ f (wx(x , t)) + f ∗(
x − z

t
)− x − z

t
wx(x , t) ≥ 0.

On the other hand, fix any q ∈ R and ε > 0. Then

w(x + εq, t + ε) = inf
y∈R

{
h(y) + (t + ε)f ∗(

x + εq − y

t + ε
)

}
.
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Since x+εq−y
t+ε = ε

t+εq + t
t+ε

x−y
t , we may use the convexity of

f ∗ to derive

(t + ε)f ∗(
x + εq − y

t + ε
) ≤ ε f ∗(q) + t f ∗(

x − y

t
).

Therefore

w(x + εq, t + ε) ≤ εf ∗(q) + inf
y∈R

{
h(y) + tf ∗(

x − y

t
)

}
= εf ∗(q) + w(x , t).

So
w(x + εq, t + ε)− w(x , t)

ε
≤ f ∗(q).
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Letting ε↘ 0 gives

qwx(x , t) + wt(x , t) ≤ f ∗(q), ∀q ∈ R.

Therefore, by Lemma 13 (iii),

−wt(x , t) ≥ sup
q∈R
{qwx(x , t)− f ∗(q)} = f (wx(x , t)),

i.e. wt(x , t) + f (wx(x , t)) ≤ 0. The proof is thus complete. �

We are ready to complete the proof of Theorem 11. To this end,
let h(x) =

∫ x
0 u0(y)dy and define w(x , t) by the Hopf-Lax formula

w(x , t) = inf
y∈R

{
h(y) + t f ∗(

x − y

t
)

}
.
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By Theorem 16, w is Lipschitz, is differentiable for a.e. (x , t), and

wt + f (wx) = 0 a.e. in R× (0,∞),

w(x , 0) = h(x), x ∈ R.

Lemma 17

Let u := wx . Then u is a weak solution of (28).

Proof. Recall that Lip(w) ≤ Lip(h) = ‖u0‖∞, u ∈ L∞(R× (0,∞))
with

‖u‖∞ ≤ Lip(w) ≤ ‖u0‖∞.

Next for any ϕ ∈ C 1
0 (R× [0,∞)) we have

0 =

∫ ∞
0

∫ ∞
−∞

(wt + f (wx))ϕxdxdt. (37)
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Since w is Lipschitz, x → w(x , t) is absolute continuous for each
t ≥ 0 and t → w(x , t) is absolute continuous for each x ∈ R. So,
integration by parts can be used to obtain∫ ∞

0

∫ ∞
−∞

wtϕxdxdt

= −
∫ ∞

0

∫ ∞
−∞

wϕxtdxdt −
∫ ∞
−∞

w(x , 0)ϕx(x , 0)dx

=

∫ ∞
0

∫ ∞
−∞

wxϕtdxdt +

∫ ∞
−∞

wx(x , 0)ϕ(x , 0)dx .

Since wx(x , 0) = u0(x) for a.e. x , we have∫ ∞
0

∫ ∞
−∞

wtϕxdxdt =

∫ ∞
0

∫ ∞
−∞

wxϕtdxdt +

∫ ∞
−∞

u0(x)ϕ(x , 0)dx .
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Combining this with (37) gives

0 =

∫ ∞
0

∫ ∞
−∞

(wxϕt + f (wx)ϕx)dxdt +

∫ ∞
−∞

u0(x)ϕ(x , 0)dx .

Thus u = wx is a weak solution of (28).

To complete the proof of Theorem 11, it remains only to show
that there is a function ũ with u = ũ a.e. in R× (0,∞) such
that ũ satisfies the Oleinik entropy condition.

To this end, we will use, for each (x , t) with t > 0, the
minimizer of the function

Fx ,t(y) := h(y) + tf ∗(
x − y

t
) over R.
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The following lemma shows that for each fixed t > 0, if x1 < x2

then the minimizer of Fx1,t(y) is always on the left of the
minimizer of Fx2,t(y).

Lemma 18

Assume that f ∈ C 2 satisfies f ′′ ≥ c0 > 0. Fix t > 0 and x1 < x2.
If y1 ∈ R is such that

min
y∈R

{
h(y) + t f ∗(

x1 − y

t
)

}
= h(y1) + t f ∗(

x1 − y1

t
),

then

h(y1) + t f ∗(
x2 − y1

t
) < h(y) + t f ∗(

x2 − y

t
), ∀y < y1.
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Proof. Let τ = y1−y
x2−x1+y1−y . Then 0 < τ < 1 and

x2 − y1 = τ(x1 − y1) + (1− τ)(x2 − y),

x1 − y = (1− τ)(x1 − y1) + τ(x2 − y).

By the strict convexity of f ∗, see Lemma 14 (i), we have

f ∗(
x2 − y1

t
) < τ f ∗(

x1 − y1

t
) + (1− τ)f ∗(

x2 − y

t
),

f ∗(
x1 − y

t
) < (1− τ)f ∗(

x1 − y1

t
) + τ f ∗(

x2 − y

t
).

Adding these two inequalities gives

f ∗(
x2 − y1

t
) + f ∗(

x1 − y

t
) < f ∗(

x1 − y1

t
) + f ∗(

x2 − y

t
).
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Therefore

t f ∗(
x2 − y1

t
) + t f ∗(

x1 − y

t
) + h(y1) + h(y)

< t f ∗(
x1 − y1

t
) + t f ∗(

x2 − y

t
) + h(y1) + h(y)

≤ t f ∗(
x1 − y

t
) + h(y) + t f ∗(

x2 − y

t
) + h(y);

for the last inequality we used the fact that y1 is a minimizer. This
implies the conclusion. �

Now we are able to give the construction of ũ which is stated in
the following result.
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Lemma 19

There exists a function y(x , t) defined on R× (0,∞) such that

(i) for each t > 0, x → y(x , t) is nondecreasing;

(ii) for each (x , t) with t > 0, y(x , t) is a minimizer of the
function

Fx ,t(y) := h(y) + tf ∗(
x − y

t
).

(iii) if we set ũ(x , t) = (f ∗)′( x−y(x ,t)
t ), then, for each t > 0,

u(x , t) = ũ(x , t) for a.e. x .

In particular, u = ũ for a.e. (x , t) ∈ R× (0,∞).
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Proof.

Fix t > 0. For each x ∈ R let y(x , t) be the smallest of those
points y giving the minimum of Fx ,t(y).

It follows from Lemma 18 that x → y(x , t) is nondecreasing
and thus y(·, t) is continuous for all but at most countably
many x .

At a point x of continuity of y(·, t), y(x , t) is the unique
minimizer of Fx ,t(y) over R.

From Theorem 16 it follows for each fixed t > 0 that

x → w(x , t) := min
y∈R

{
h(y) + tf ∗(

x − y

t
)

}
= h(y(x , t)) + tf ∗(

x − y(x , t)

t
)

is differentiable a.e.
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Since x → y(x , t) is monotone, it is differentiable a.e. as well.

Thus, for a.e. x , f ∗( x−y(x ,t)
t ) is differentiable and therefore

x → h(y(x , t)) is differentiable as well.

Consequently for a.e. x

u(x , t) =
∂

∂x

(
h(y(x , t)) + tf ∗(

x − y(x , t)

t
)

)
=

∂

∂x
(h(y(x , t))) + (f ∗)′(

x − y(x , t)

t
)(1− yx(x , t)).

Since y(x , t) is a minimizer of Fx ,t(y) over R, x must be a
minimizer of

z → Fx ,t(y(z , t)) = h(y(z , t)) + tf ∗(
x − y(z , t)

t
).
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Consequently 0 = ∂
∂z

∣∣
z=x

(Fx ,t(y(z , t))), i.e.

0 =
∂

∂x
(h(y(x , t)))− (f ∗)′(

x − y(x , t)

t
)yx(x , t)

We therefore obtain u(x , t) = (f ∗)′( x−y(x ,t)
t ) a.e. �

Theorem 20

Let f ∈ C 2 satisfy f ′′ ≥ c0 > 0, let u0 ∈ L∞(R) and let h(x) :=∫ x
0 u0(y)dy. Then the function

ũ(x , t) = (f ∗)′(
x − y(x , t)

t
) (38)

defined in Lemma 19 is a weak solution of (28) satisfying the
Oleinik entropy condition.
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Proof. By condition and Lemma 14, (f ∗)′ is increasing. Thus, by
Lemma 19, we have for any t > 0 and x , a ∈ R with a > 0 that

ũ(x , t) = (f ∗)′(
x − y(x , t)

t
) ≥ (f ∗)′(

x − y(x + a, t)

t
).

By Lemma 14 (ii), we have

ũ(x , t) ≥ (f ∗)′(
x + a− y(x + a, t)

t
)− a/(c0t)

= ũ(x + a, t)− a/(c0t).

The proof is complete. �

Remark. The formula (38) is called the Lax-Oleinik formula. Recall
that (f ∗)′ = (f ′)−1, we have ũ(x , t) = (f ′)−1((x − y(x , t))/t).
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7. Long time behavior

We prove a uniform decay estimate for the entropy solution of the
scalar conservation law

ut + f (u)x = 0, u(x , 0) = u0(x) (39)

with uniformly convex flux f (u).

Theorem 21

Let u0 ∈ L∞(R) ∩ L1(R) and f ∈ C 2 with f ′′ ≥ c0 > 0. Then the
entropy solution of (39) satisfies the estimate

|u(x , t)| ≤ C/t1/2,

where C is a constant depending only on c0 and ‖u0‖L1 .
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Proof. We use the Lax-Oleinik formula

u(x , t) = (f ∗)′(
x − y(x , t)

t
).

In order to use the Lipschitz continuity of (f ∗)′, we take σ ∈ R
such that

(f ∗)′(σ) = 0,

i.e. (f ′)−1(σ) = 0; we can take σ = f ′(0). Then

|u(x , t)| =

∣∣∣∣(f ∗)′(
x − y(x , t)

t
)− (f ∗)′(σ)

∣∣∣∣
≤ 1

c0

∣∣∣∣x − y(x , t)

t
− σ

∣∣∣∣ . (40)
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To estimate the right hand side, by the definition of y(x , t) we have

h(y(x , t)) + tf ∗(
x − y(x , t)

t
) = min

y∈R

{
h(y) + tf ∗(

x − y

t
)

}
≤ h(x − σt) + tf ∗(σ)

where h(x) =
∫ x

0 u0(η)dη. Since f ′′ ≥ c0 > 0, we have

f ∗(
x − y(x , t)

t
) ≥ f ∗(σ) + (f ∗)′(σ)

(
x − y(x , t)

t
− σ

)
+

1

2
c0

(
x − y(x , t)

t
− σ

)2

.
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Combining these last two inequalities gives

1

2
tc0

(
x − y(x , t)

t
− σ

)2

≤ h(x − σt)− h(y(x , t)).

Recall the definition of h and u0 ∈ L1(R), we have |h(x)| ≤ ‖u0‖L1

for all x ∈ R. Therefore

1

2
tc0

(
x − y(x , t)

t
− σ

)2

≤ 2‖u0‖L1 ,

i.e. ∣∣∣∣x − y(x , t)

t
− σ

∣∣∣∣ ≤
√

4‖u0‖L1

c0t
.

Combining this with (40) gives the desired estimate. �
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Part 2. Lectures on wave equations
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1. Solutions of linear wave equations

We consider the Cauchy problem of linear wave equation{
utt −4u = f (x , t), x ∈ Rn, t > 0,
u(x , 0) = g(x), ut(x , 0) = h(x), x ∈ R, (41)

where 4 =
∑n

i=1
∂2

∂x2
i

denotes the Laplacian operator on Rn.

A function u ∈ C 2(Rn × [0,∞)) satisfying (41) is called a
classical solution of (41).

We prove the uniqueness result by deriving energy estimate
and establish the existence result of classical solutions by
deriving the solution formulae.
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1.1. Uniquessness

We show that the Cauchy problem (41) has at most one
classical solution.

We establish uniqueness result by proving a general result, the
so-called finite speed propagation property.

Consider the homogeneous wave equation

�u := ∂2
t u −4u = 0 in Rn × [0,∞). (42)

For any fixed (x0, t0) ∈ Rn × (0,∞), we introduce

Cx0,t0 := {(x , t) : 0 ≤ t ≤ t0 and |x − x0| ≤ t0 − t}

which is called the backward light cone with vertex (x0, t0).
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The following result says that any “disturbance” originating
outside Bt0(x0) := {x ∈ Rn : |x − x0| ≤ t0} at t = 0 has no effect
on the solution within Cx0,t0 .

Theorem 22 (finite speed of propagation)

Let u be a C 2 solution of (42) in Cx0,t0 . If u(x , 0) ≡ ut(x , 0) ≡ 0
for x ∈ Bt0(x0), then u ≡ 0 in Cx0,t0 .
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Proof. Consider for 0 ≤ t ≤ t0 the function

E (t) :=

∫
Bt0−t(x0)

(
|ut(x , t)|2 + |∇u(x , t)|2

)
dx

=

∫ t0−t

0

∫
∂Bτ (x0)

(
|ut(x , t)|2 + |∇u(x , t)|2

)
dσ(x)dτ.

We have

d

dt
E (t) = 2

∫
Bt0−t(x0)

(ut(x , t)utt(x , t) +∇u(x , t) · ∇ut(x , t)) dx

−
∫
∂Bt0−t(x0)

(
|ut(x , t)|2 + |∇u(x , t)|2

)
dσ(x).
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Since ∇u · ∇ut = div(ut∇u)− ut4u, we have

d

dt
E (t) = 2

∫
Bt0−t(x0)

ut�udx + 2

∫
Bt0−t(x0)

div(ut∇u)dx

−
∫
∂Bt0−t(x0)

(
|ut |2 + |∇u|2

)
dσ.

Using �u = 0 and the divergence theorem we have

d

dt
E (t) = 2

∫
∂Bt0−t(x0)

ut∇u · νdσ −
∫
∂Bt0−t(x0)

(
|ut |2 + |∇u|2

)
dσ,

where ν denotes the outward unit normal to ∂Bt0−t(x0). We have

2|ut∇u · ν| ≤ 2|ut ||∇u| ≤ |ut |2 + |∇u|2.
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Consequently d
dt E (t) ≤ 0 which implies that

E (t) ≤ E (0), 0 ≤ t ≤ t0.

Since u(·, 0) ≡ ut(·, 0) ≡ 0 on Bt0(x0), we have E (0) = 0. Thus
E (t) ≡ 0 for 0 ≤ t ≤ t0. Therefore

ut = ∇u = 0 in Cx0,t0 .

So u = constant in Cx0,t0 . Since u(x , 0) = 0 for x ∈ Bt0(x0), we
must have u ≡ 0 in Ct0,x0 . �

Corollary 23

The Cauchy problem (41) of linear wave equation has at most one
classical solution.
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Proof. Assume that u1 and u2 are two classical solutions of (41).
Then u := u1 − u2 ∈ C 2(Rn × [0,∞)) satisfies{

�u = utt −4u = 0 in Rn × (0,∞),
u(x , 0) = 0, ut(x , 0) = 0, x ∈ Rn.

Applying Theorem 22 to u, we conclude u = 0 in Rn × [0,∞). �

1.2. Existence

The existence of (41) can be established by solving the following
two problems:{

�u := utt −4u = 0 in Rn × (0,∞),
u(x , 0) = g(x), ut(x , 0) = h(x), x ∈ Rn (43)
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and {
�u := utt −4u = f (x , t) in Rn × (0,∞),
u(x , 0) = 0, ut(x , 0) = 0, x ∈ Rn.

(44)

If v is the solution of (43) and w is the solution of (44), then
u := v + w is the solution of (41).

We will solve (43) by deriving the explicit solution formula.

We then solve (44) by reducing it to a problem like (43) using
the Duhamel principle.

We now derive the solution formula of (43) when n = 1, 2, 3.

Case n = 1: Consider the Cauchy problem of 1D homogeneous
wave equation
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utt − uxx = 0 in R× (0,∞),

u(x , 0) = g(x), ut(x , 0) = h(x), x ∈ R,
(45)

where g ∈ C 2(R) and h ∈ C 1(R).

Observing that utt − uxx = (∂t − ∂x)(∂t + ∂x)u. We introduce
v = ut + ux . Then vt − vx = 0 in R× (0,∞). By the method
of Characteristics, we have

v(x , t) = v0(x + t),

where v0(x) := v(x , 0).
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So ut + ux = v0(x + t). Let u0(x) := u(x , 0). Then, by the
method of characteristics again, it follows

u(x , t) = u0(x − t) +

∫ t

0
v0(x − t + 2s)ds

= u0(x − t) +
1

2

∫ x+t

x−t
v0(ξ)dξ.

The initial conditions give u0(x) = g(x) and v0(x) = h(x)+
g ′(x). Therefore

u(x , t) = g(x − t) +
1

2

∫ x+t

x−t

(
g ′(ξ) + h(ξ)

)
dξ

=
1

2
(g(x + t) + g(x − t)) +

1

2

∫ x+t

x−t
h(ξ)dξ.
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We therefore obtain the following result.

Theorem 24

Assume that g ∈ C 2(R) and h ∈ C 1(R). Then the d’Alembert
formula

u(x , t) =
1

2
(g(x + t) + g(x − t)) +

1

2

∫ x+t

x−t
h(ξ)dξ

gives the unique classical solution of (45)

We next consider the Cauchy problem (41) in high dimensions.

The general idea is to reduce the high dimensional problems
to one-dimensional problem so that the d’Alembert formula
can be used.
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This can be achieved by considering the spherical mean.

Given x ∈ Rn and r > 0, we use Br (x) and ∂Br (x) to denote
the ball of radius r with center x and its boundary respectively.
Let ωn denote the surface area of unit sphere, then

|∂Br (x)| = ωnrn−1 and |Br (x)| =
1

n
ωnrn.

Let u ∈ C 2(Rn × [0,∞)) be a solution of (41). For a fixed
x ∈ Rn, define

U(r , t; x) :=
1

|∂Br (x)|

∫
∂Br (x)

u(y , t)dσ(y), r > 0

which is called the mean value of u over the sphere ∂Br (x) at
time t.
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Notice that
lim
r→0

U(r , t; x) = u(x , t).

If we can find a formula for U(r , t; x) for r > 0, then we can
obtain u(x , t) by taking r → 0.

Write U(r , t; x) as

U(r , t; x) =
1

ωn

∫
|ξ|=1

u(x + rξ, t)dσ(ξ).

Then

∂rU(r , t; x) =
1

ωn

∫
|ξ|=1

∇u(x + rξ, t) · ξdσ(ξ)

=
1

ωnrn−1

∫
∂Br (x)

∇u(y , t) · y − x

r
dσ(y).
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Since (y − x)/r is the outward unit normal to ∂Br (x) at y , we
may use the divergence theorem to derive

∂rU(r , t; x) =
1

ωnrn−1

∫
Br (x)

4u(y , t)dy .

Using polar coordinates, we have

∂rU(r , t; x) =
1

ωnrn−1

∫ r

0

∫
∂Bτ (x)

4u(y , t)dσ(y)dτ.

Consequently

∂2
r U(r , t; x)

=
1

ωnrn−1

∫
∂Br (x)

4u(y , t)dσ(y)− n − 1

ωnrn

∫
Br (x)

4u(y , t)dy .

.
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By using utt −4u = 0, we have

∂2
r U(r , t; x) =

1

ωnrn−1

∫
∂Br (x)

utt(y , t)dσ(y)− n − 1

r
∂rU(r , t; x)

= ∂2
t U(r , t; x)− n − 1

r
∂rU(r , t; x).

By the above expressions, we have

lim
r→0

U(r , t; x) = u(x , t),

lim
r→0

Ur (r , t; x) = 0,

lim
r→0

Urr (r , t; x) =
1

n
4u(x , t).

(46)
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Moreover, if u is a C 2 solution of (43), then, for fixed x ∈ Rn,
U(r , t; x) as a function of (r , t) is in C 2([0,∞)× [0,∞)) and
satisfies the Euler-Poisson-Darboux equation{

Utt − Urr − n−1
r Ur = 0 for r > 0, t > 0,

U = G , Ut = H for t = 0,
(47)

where

G (r ; x) :=
1

|∂Br (x)|

∫
∂Br (x)

g(y)dσ(y),

H(r ; x) :=
1

|∂Br (x)|

∫
∂Br (x)

h(y)dσ(y).

We hope to transform (47) into the usual 1D wave equation. This
can be done easily when n = 3. So we consider this case first.
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Case n = 3. We consider the Cauchy problem (43) of 3D wave
equation. The Euler-Poisson-Darboux equation becomes

Utt − Urr −
2

r
Ur = 0.

Thus ∂2
r (rU) = ∂2

t (rU). Let Ũ = rU, G̃ = rG and H̃ = rH. Then{
Ũtt − Ũrr = 0 for r > 0, t > 0,

Ũ = G̃ , Ũt = H̃ at t = 0 and r > 0.

Moreover, in view of (46), we have

Ũ = 0, Ũr = u(x , t), Ũrr = 0 when r = 0.

124/219



Thus, we may extend Ũ to R× [0,∞) by odd reflection, i.e. we set

U(r , t) =

{
Ũ(r , t; x), r ≥ 0, t ≥ 0,

−Ũ(−r , t; x), r < 0, t ≥ 0.

Then U ∈ C 2(R× [0,∞)) and{
Utt − U rr = 0, −∞ < r <∞, t > 0,

U(r , 0) = G (r), U r (r , 0) = H(r), −∞ < r <∞,

where

G (r) =

{
G̃ (r ; x), r ≥ 0,

−G̃ (−r ; x), r < 0,
H(r) =

{
H̃(r ; x), r ≥ 0,

−H̃(−r ; x), r < 0.
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By the d’Alembert formula,

U(r , t) =
1

2

(
G (r + t) + G (r − t)

)
+

1

2

∫ r+t

r−t
H(s)ds.

Thus

Ũ(r , t; x)

=


1
2

(
G̃ (r + t) + G̃ (r − t)

)
+ 1

2

∫ r+t
r−t H̃(s)ds, r > t > 0,

1
2

(
G̃ (r + t)− G̃ (t − r)

)
+ 1

2

∫ t+r
t−r H̃(s)ds, 0 ≤ r ≤ t.

Consequently, for t > 0 we have

u(x , t) = lim
r→0

1

r
Ũ(r , t; x) = G̃ ′(t) + H̃(t).
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Using the definition of G̃ and H̃, and the fact |∂Br (x)| = 4πt2 in
R3 we obtain

Theorem 25 (Kirchoff formula)

Let g ∈ C 3(R3) and h ∈ C 2(R3). Then

u(x , t) =
∂

∂t

(
1

4πt

∫
|y−x |=t

g(y)dσ(y)

)
+

1

4πt

∫
|y−x |=t

h(y)dσ(y)

=
1

4πt2

∫
|y−x |=t

(g(y) +∇g(y) · (y − x) + th(y)) dσ(y)

gives the unique solution u ∈ C 2(R3 × [0,∞)) of the Cauchy
problem (43) for 3D wave equation.

127/219



Case n = 2:

The procedure for n = 3 does not work for 2D wave equations.

We use the Hadamard’s method of descent to derive the
solution formula for 2D wave equation from the Kirchoff
formula for 3D wave equation.

Write x = (x1, x2) and x̄ = (x , x3) and consider the Cauchy
problem of the 3D wave equation{

Utt −4U − Ux3x3 = 0 in R3 × (0,∞),
U(x̄ , 0) = g(x), Ut(x̄ , 0) = h(x), x̄ ∈ R3,

where 4 denotes 2D Laplacian, i.e. 4U = Ux1x1 + Ux2x2 .
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By the Kirchoff formula,

U(x , x3, t) = U(x̄ , t) =
∂

∂t

(
1

4πt

∫
|ȳ−x̄ |=t

g(y)dσ(ȳ)

)

+
1

4πt

∫
|ȳ−x̄ |=t

h(y)dσ(ȳ)

where y = (y1, y2) and ȳ = (y , y3). Since g and h do not
depend on y3, U is independent of x3 and hence it is a
solution of the Cauchy problem (43) of 2D wave equation.

We simplify U by rewriting the two integrals over the sphere
|ȳ − x̄ | = t.
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The sphere |ȳ − x̄ | = t is a union of the two hemispheres

y3 = φ±(y) := x3 ±
√

t2 − |y − x |2,

where |y − x | ≤ t. On both hemispheres, we have

dσ(ȳ) =
√

1 + |∇φ±(y)|2dy =
t√

t2 − |y − x |2
dy .

Therefore

U(x , t) =
∂

∂t

(
1

2π

∫
|y−x |<t

g(y)√
t2 − |y − x |2

dy

)

+
1

2π

∫
|y−x |<t

h(y)√
t2 − |y − x |2

dy .
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This immediately gives the following result.

Theorem 26 (Poisson formula)

Let g ∈ C 3(R2) and h ∈ C 2(R2). Then

u(x , t) = ∂t

(
t

2π

∫
|y |<1

g(x + ty)√
1− |y |2

dy

)
+

t

2π

∫
|y |<1

h(x + ty)√
1− |y |2

dy

=
1

2π

∫
|y−x |<t

g(y) + th(y) +∇g(y) · (y − x)√
t2 − |y − x |2

dy

gives the unique solution in C 2(R2 × [0,∞)) of the Cauchy
problem (43) for 2D wave equation.

The procedures for n = 2, 3 can be extended to derive solution
formulae of the Cauchy problems (43) for higher dimensional wave
equations.
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Since the procedure is lengthy and boring, we state the results
without proofs.

Theorem 27

If g ∈ C [n/2]+2(Rn) and h ∈ C [n/2]+1(Rn), then (43) has a unique
solution u ∈ C 2([0,∞)× Rn), where [n/2] denotes the greatest
integer not greater than n/2.

Moreover, if n ≥ 3 is odd, then, with γn = 1 · 3 · 5 · ... · (n − 2),

u(x , t) =
1

γn

∂

∂t

(
1

t

∂

∂t

) n−3
2

(
tn−2

|∂Bt(x)|

∫
∂Bt(x)

gdσ

)

+
1

γn

(
1

t

∂

∂t

) n−3
2

(
tn−2

|∂Bt(x)|

∫
∂Bt(x)

hdσ

)
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while, if n ≥ 2 is even, then, with γn = 2 · 4 · ... · (n − 2) · n,

u(x , t) =
1

γn

∂

∂t

(
1

t

∂

∂t

) n−2
2

(
tn

|Bt(x)|

∫
Bt(x)

g(y)√
t2 − |y − x |2

dy

)

+
1

γn

(
1

t

∂

∂t

) n−2
2

(
tn

|Bt(x)|

∫
Bt(x)

h(y)√
t2 − |y − x |2

dσ

)
.

Remark.

Given (x0, t0) ∈ Rn × (0,∞). Theorem 22 shows that
u(x0, t0) is completely determined by the values of f and g in
the ball |x − x0| ≤ t0.

When n ≥ 3 is odd, by the solution formula this result can be
strengthened: u(t0, x0) depends only on the values of f and g
(and derivatives) on the sphere |x − x0| = t0. This is called
the Huygens’ principle.
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Duhamel Principle

We now consider the inhomogeneous problem (44), i.e.{
utt −4u = f (x , t) in Rn × (0,∞),
u(x , 0) = 0, ut(x , 0) = 0, x ∈ R, (48)

where f ∈ C [n/2]+1(Rn × [0,∞)). We use the Duhamel principle,
i.e. for any s ≥ 0, we first consider the homogeneous problem{

wtt −4w = 0 in Rn × (s,∞),
w = 0, wt = f (·, s), when t = s

(49)

which has a unique solution, denoted as w(x , t; s); we then define

u(x , t) =

∫ t

0
w(x , t; s)ds. (50)
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The following result shows that u is the solution of (48).

Theorem 28

Let f ∈ C [n/2]+1(Rn × [0,∞)). Then the u defined by (50) is the
unique solution of (48) in C 2(Rn × [0,∞)).

Proof. Clearly u(x , 0) = 0 and

ut(x , t) = w(x , t; t) +

∫ t

0
wt(x , t; s)ds =

∫ t

0
wt(x , t; s)ds.

So u(x , 0) = 0. Moreover

utt(x , t) = wt(x , t; t) +

∫ t

0
wtt(x , t; s)ds = f (x , t) +

∫ t

0
4w(x , t; s)ds

= f (x , t) +4
∫ t

0
w(x , t; s)ds = f (x , t) +4u(x , t). �
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We conclude this section by giving the explicit solution formulae of
(48) for n = 1, 2, 3.

When n = 1, by the d’Alembert formula the solution of (49) is
given by

w(x , t; s) =
1

2

∫ x+(t−s)

x−(t−s)
f (y , s)dy .

Therefore the solution of (48) for n = 1 is given by

u(x , t) =
1

2

∫ t

0

∫ x+(t−s)

x−(t−s)
f (y , s)dyds

=
1

2

∫ t

0

∫ x+τ

x−τ
f (y , t − τ)dydτ.
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When n = 3, by the Kirchoff formula the solution of (49) is

w(x , t; s) =
1

4π(t − s)

∫
|y−x |=t−s

f (y ; s)dσ(y).

Therefore, the solution of (48) is

u(x , t) =
1

4π

∫ t

0

∫
|y−x |=t−s

f (y , s)

t − s
dσ(y)ds

=
1

4π

∫ t

0

∫
|y−x |=τ

f (y , t − τ)

τ
dσ(y)dτ

=
1

4π

∫
|y−x |≤t

f (y , t − |y − x |)
|y − x |

dy

which is called the retarded potential because u(x , t) depends
on the values of f at the earlier times t ′ = t − |y − x |.
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When n = 2, by Poisson formula the solution of (49) is given
by

w(x , t; s) =
1

2π

∫
|y−x |<t−s

f (y , s)√
(t − s)2 − |y − x |2

dy .

Therefore the solution of (48) is given by

u(x , t) =
1

2π

∫ t

0

∫
|y−x |<t−s

f (y , s)√
(t − s)2 − |y − x |2

dyds

=
1

2π

∫ t

0

∫
|y−x |<τ

f (y , t − τ)√
τ2 − |y − x |2

dydτ.
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2. Local existence of semi-linear wave equations

We will consider the Cauchy problem of semi-linear wave
equation{

�u := utt −4u = F (u, ∂u), in Rn × (0,T ],
u(x , 0) = g(x), ut(x , 0) = h(x), x ∈ Rn (51)

where ∂u = (∂tu,∇u) and F ∈ C∞ satisfies F (0, 0) = 0.

Under certain conditions on g and h, we will establish a local
existence result, i.e. there is a small T > 0 such that (51) has
a unique solution in Rn × [0,T ].

The proof is based on the Picard iteration which defines a
sequence {um}; the solution of (51) is obtained by the limit of
this sequence.
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The sequence {um} is defined by solving the Cauchy problem
of linear wave equation{

�um = F (um−1, ∂um−1), in Rn × (0,T ],
um(x , 0) = g(x), ∂tum(x , 0) = h(x), x ∈ Rn (52)

for m = 0, 1, · · · , where we set u−1 = 0.

So it is necessary to understand the Cauchy problems of linear
wave equations deeper.

We need some knowledge on Sobolev spaces.

2.1. The Sobolev spaces Hs

For any fixed s ∈ R, Hs := Hs(Rn) denotes the completion of
C∞0 (Rn) with respect to the norm
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‖f ‖Hs :=

(∫
Rn

(1 + |ξ|2)s |f̂ (ξ)|2dξ

)1/2

,

where f̂ (ξ) :=
∫
Rn e−i〈x ,ξ〉f (x)dx is the Fourier transform of f .

Hs is a Hilbert space and H0 = L2.

If s ≥ 0 is an integer, then ‖f ‖Hs ≈
∑
|α|≤s ‖∂αf ‖L2 .

Hs2 ⊂ Hs1 for any −∞ < s1 ≤ s2 <∞.

H−s is the dual space of Hs for any s ∈ R.

If s > k + n/2 for some integer k ≥ 0, then Hs ↪→ C k(Rn)
compactly and there is a constant Cs such that∑

|α|≤k

‖∂αf ‖L∞ ≤ Cs‖f ‖Hs , ∀f ∈ Hs .
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Given integer k ≥ 0, C k([0,T ],Hs) consists of functions
f (x , t) such that t → ‖∂jt f (·, t)‖Hs is continuous on [0,T ] for
j = 0, · · · , k. It is a Banach space under the norm

k∑
j=0

max
0≤t≤T

‖∂jt f (·, t)‖Hs .

L1([0,T ],Hs) consists of functions f (x , t) such that∫ T

0
‖f (·, t)‖Hs dt <∞.

2.1. Solutions of linear wave equations

Let � = ∂2
t −4 denote the d’Alembertian. We first establish the

following energy estimate.
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Lemma 29

For any u ∈ C 2(Rn × [0,T ]) there holds

‖∂u(·, t)‖L2 ≤ ‖∂u(·, 0)‖L2 +

∫ t

0
‖�u(·, τ)‖L2dτ, 0 ≤ t ≤ T .

Proof. Fix T0 > T and consider the energy

E (t) :=

∫
|x |≤T0−t

(
|ut(x , t)|2 + |∇u(x , t)|2

)
dx .

From the proof of Theorem 22 we have

d

dt
E (t) ≤ 2

∫
|x |≤T0−t

ut(x , t)�u(x , t)dx .
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By the Cauchy-Schwartz inequality we can obtain

d

dt
E (t) ≤ 2

(∫
|x |≤T0−t

|ut(x , t)|2dx

)1/2(∫
|x |≤T0−t

|�u(x , t)|2dx

)1/2

= 2E (t)1/2‖�u(·, t)‖L2(BT0−t(0)).

Therefore d
dt E (t)1/2 ≤ ‖�u(·, t)‖L2(BT0−t(0). Consequently

‖∂u(·, t)‖L2(BT0−t(0)) = E (t)1/2 ≤ E (0)1/2 +

∫ t

0
‖�u(·, τ)‖L2(BT0−t(0))dτ

≤ ‖∂u(·, 0)‖L2 +

∫ t

0
‖�u(·, τ)‖L2dτ.

Letting T0 →∞ gives the desired inequality. �

144/219



The energy estimate in Lemma 29 can be extended as follows.

Theorem 30

Let u ∈ C∞(Rn × [0,T ]). Then, for any s ∈ R, there is a constant
C depending on T such that

∑
|α|≤1

‖∂αu(·, t)‖Hs ≤ C

∑
|α|≤1

‖∂αu(·, 0)‖Hs +

∫ t

0
‖�u(·, τ)‖Hs dτ


for 0 ≤ t ≤ T .

Proof. Consider only s ∈ Z. We may assume that the right hand
side is finite. There are three cases to be considered.
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Case 1: s = 0. We need to establish∑
|α|≤1

‖∂αu(·, t)‖L2 .
∑
|α|≤1

‖∂αu(·, 0)‖L2 +

∫ t

0
‖�u(·, τ)‖L2dτ.

(53)
To see this, we first use Lemma 29 to obtain

‖∂u(·, t)‖L2 . ‖∂u(·, 0)‖L2 +

∫ t

0
‖�u(·, τ)‖L2dτ. (54)

By the fundamental theorem of Calculus we can write

u(x , t) = u(x , 0) +

∫ t

0
ut(x , τ)dτ.
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Thus it follows from the Minkowski inequality that

‖u(·, t)‖L2 ≤ ‖u(·, 0)‖L2 +

∫ t

0
‖ut(·, τ)‖L2dτ.

Adding this inequality to (54) gives

∑
|α|≤1

‖∂αu(·, t)‖L2 .
∑
|α|≤1

‖∂αu(·, 0)‖L2 +

∫ t

0
‖�u(·, τ)‖L2dτ

+

∫ t

0

∑
|α|≤1

‖∂αu(·, τ)‖L2dτ.

An application of the Gronwall inequality then gives (53).
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Case 2: s ∈ N. Let β be any multi-index with |β| ≤ s. We apply

(53) to ∂βx u to obtain

∑
|α|≤1

‖∂βx ∂αu(·, t)‖L2 .
∑
|α|≤1

‖∂βx ∂αu(·, t)‖L2 +

∫ t

0
‖�∂βx u(·, τ)‖L2dτ

.
∑
|α|≤1

‖∂βx ∂αu(·, 0)‖L2 +

∫ t

0
‖∂βx�u(·, τ)‖L2dτ.

Summing over all β with |β| ≤ s we obtain

∑
|α|≤1

‖∂αu(·, t)‖Hs .
∑
|α|≤1

‖∂αu(·, 0)‖Hs +

∫ t

0
‖�u(·, τ)‖Hs dτ.
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Case 3: s ∈ −N. We consider

v(·, t) := (I −4)su(·, t).

Since −s ∈ N, we can apply the estimate established in Case 2 to
v to derive that∑
|α|≤1

‖∂αv(·, t)‖H−s .
∑
|α|≤1

‖∂αv(·, 0)‖H−s +

∫ t

0
‖�v(·, τ)‖H−s dτ.

Since � and (I −4)s commute, we have

�v(·, τ) = (I −4)s�u(·, τ).
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Therefore
‖�v(·, τ)‖H−s = ‖�u(·, τ)‖Hs .

Consequently∑
|α|≤1

‖∂αv(·, t)‖H−s .
∑
|α|≤1

‖∂αv(·, 0)‖H−s +

∫ t

0
‖�u(·, τ)‖Hs dτ.

Since ‖∂αv(·, t)‖H−s = ‖∂αu(·, t)‖Hs , the proof is complete. �

We now prove the following existence and uniqueness result for the
Cauchy problem of linear wave equation{

�u = f (x , t), in Rn × (0,T ],
u(x , 0) = g(x), ∂tu(x , 0) = h(x), x ∈ Rn (55)
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Theorem 31

If g , h ∈ C∞(Rn) and f ∈ C∞(Rn × [0,T ]), then (55) has a
unique solution u ∈ C∞(Rn × [0,T ]). If in addition there is s ∈ R
such that

g ∈ Hs+1(Rn), h ∈ Hs(Rn) and f ∈ L1([0,T ],Hs(Rn)),

then
u ∈ C ([0,T ],Hs+1) ∩ C 1([0,T ],Hs)

and, for 0 ≤ t ≤ T there holds the estimate∑
|α|≤1

‖∂αu(·, t)‖Hs . ‖g‖Hs+1 + ‖h‖Hs +

∫ t

0
‖f (·, τ)‖Hs dτ.
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Proof. The existence and uniqueness follow from the previous
chapter. The remaining part is a consequence of Theorem 30. �

2.2. Semi-linear wave equations

We next consider the semi-linear wave equation (51), i.e.

�u = F (u, ∂u) in Rn × (0,T ],

u(·, 0) = g , ut(·, 0) = h,
(56)

where F ∈ C∞ satisfies F (0, 0) = 0.

For this equation, there holds the finite propagation speed
property, i.e. if u ∈ C 2(Rn × [0,T ]) is a solution with
u(x , 0) = ut(x , 0) = 0 for |x − x0| ≤ t0, then u ≡ 0 in the
backward light cone Cx0,t0 . (see Exercise)
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Theorem 32

If g , h ∈ C∞0 (Rn), then there is a T > 0 such that (56) has a
unique solution u ∈ C∞0 (Rn × [0,T ]).

Proof. 1. We first prove uniqueness. Let u and ũ be two solutions.
Then v := u − ũ satisfies

vtt −4v = R, v(0, ·) = 0, vt(0, ·) = 0,

where R := F (u, ∂u)− F (ũ, ∂ũ). It is clear that

|R| ≤ C (|v |+ |∂v |).

In view of Theorem 30, we have∑
|α|≤1

‖∂αv(·, t)‖L2 .
∫ t

0
‖R(·, τ)‖L2dτ .

∫ t

0

∑
|α|≤1

‖∂αv(·, τ)‖L2dτ.
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By Gronwall inequality,
∑
|α|≤1‖∂αv‖L2 = 0. Thus 0 = v = u − ũ.

2. Next we prove existence. We first fix an integer s ≥ n + 2.

We use the Picard iteration. Let u−1 = 0 and define um,
m ≥ 0, successively by

�um = F (um−1, ∂um−1) in Rn × (0,∞),

um(·, 0) = g , ∂tum(·, 0) = h.
(57)

By Theorem 31, all um are in C∞(Rn × [0,∞)).

For any index γ satisfying |γ| ≤ s we have

�∂γum = ∂γ [F (um−1, ∂um−1)].
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Therefore, it follows from Theorem 30 that∑
|β|≤1

‖∂β∂γum(·, t)‖L2

≤ C0

∑
|β|≤1

‖∂β∂γum(·, 0)‖L2 +

∫ t

0
‖∂γ [F (um−1, ∂um−1)]‖L2dτ


for all γ with |γ| ≤ s. Summing over all such γ gives∑
|α|≤s+1

‖∂αum(·, t)‖L2

≤ C0

 ∑
|α|≤s+1

‖∂αum(·, 0)‖L2 +

∫ t

0

∑
|α|≤s

‖∂α[F (um−1, ∂um−1)]‖L2 dτ
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Let
Am(t) :=

∑
|α|≤s+1

‖∂αum(·, t)‖L2 .

Then

Am(t) ≤ C0

(
Am(0) +

∫ t

0

∑
|α|≤s

‖∂α[F (um−1, ∂um−1)]‖L2dτ
)
.

By using (57) it is easy to show that

Am(0) ≤ A0, m = 0, 1, · · ·

for some number A0 independent of m; in fact we can take A0

to be a multiple of ‖g‖Hs+1 + ‖h‖Hs .
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Consequently

Am(t) ≤ C0

(
A0 +

∫ t

0

∑
|α|≤s

‖∂α[F (um−1, ∂um−1)]‖L2dτ
)
.

(58)

Step 1. We show that there is 0 < T ≤ 1 independent of m such
that

Am(t) ≤ 2C0A0, ∀0 ≤ t ≤ T and m = 0, 1, · · · . (59)

We prove (59) by induction on m. Since F (0, 0) = 0 and
u−1 = 0, we can obtain (59) with m = 0 from (58). Next we
assume that (59) is true for m = k and show that it is also
true for m = k + 1. During the argument we will indicate the
choice of T .
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In view of (58), we have

Ak+1(t) ≤ C0

(
A0 +

∫ t

0

∑
|α|≤s

‖∂α[F (uk , ∂uk)]‖L2dτ
)
. (60)

Observing that ∂α[F (uk , ∂uk)] is the sum of the terms

a(uk , ∂uk)∂β1uk · · · ∂βl uk∂
γ1∂uk · · · ∂γm∂uk

where |β1|+ · · ·+ |βl |+ |γ1|+ · · ·+ |γm| = |α|. Therefore
|βj | ≤ |α|/2 and |γj | ≤ |α|/2 except one of the multi-indices.

So ∂α[F (uk , ∂uk)] is the sum of finitely many terms, each is a
product of derivatives of uk in which at most one factor where
uk is differentiated more than |α|/2 + 1 ≤ s/2 + 1 times.
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For ∂γuk with |γ| ≤ s/2 + 1, by Sobolev embedding we have
for r > n/2 + 1 + s/2 that∑

|γ|≤s/2+1

|∂γuk(x , t)| ≤ C
∑
|γ|≤r

‖∂γuk(·, t)‖L2 .

Since s ≥ n + 2, we have s + 1 > n/2 + 1 + s/2 and thus by
induction hypothesis

∑
|γ|≤s/2+1

|∂γuk(x , t)| ≤ C
∑
|γ|≤s+1

‖∂γuk(·, t)‖L2

≤ CAk(t) ≤ 2CC0A0. (61)
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Therefore

|∂α[F (uk , ∂uk)]| ≤ CA0

∑
|β|≤s+1

|∂βuk |, ∀|α| ≤ s.

Consequently, by the induction hypothesis, we have∑
|α|≤s

‖∂α[F (uk , ∂uk)]‖L2 ≤ CA0Ak(t) ≤ CA0 . (62)

In view of (60), we obtain

Ak+1(t) ≤ C0 (A0 + CA0t) ≤ C0 (A0 + CA0T ) , 0 ≤ t ≤ T .

So, by taking 0 < T ≤ 1 so small that CA0T ≤ A0, we obtain
Ak+1(t) ≤ 2C0A0 for 0 ≤ t ≤ T . This completes the proof of
(59).
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Step 2. Next we show that {um} is convergent under the norm

|||u||| := max
0≤t≤T

∑
|α|≤s+1

‖∂αu(·, t)‖L2 .

To this end, consider

Em(t) :=
∑
|α|≤s+1

‖∂α(um+1 − um)(·, t)‖L2 .

By the definition of {um}, we have

�(um+1 − um) = Rm in Rn × (0,T ],

(um+1 − um)|t=0 = 0, ∂t(um+1 − um)|t=0 = 0,
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where
Rm := F (um, ∂um)− F (um−1, ∂um−1).

By the same argument for deriving (58), we obtain

Em(t) ≤ C0

∫ t

0

∑
|α|≤s

‖∂αRm(·, τ)‖L2dτ.

By (59) and the similar argument for deriving (62) we have∑
|α|≤s

‖∂αRm(·, t)‖L2 ≤ CEm−1(t).

Thus

Em(t) ≤ C

∫ t

0
Em−1(τ)dτ, m = 1, 2, · · · .
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Consequently

Em(t) ≤ (Ct)m

m!
sup

0≤t≤T
E0(t), m = 0, 1, · · · .

So
∑

m Em(t) ≤ C0. Therefore {um} converges to some function u
under the norm ||| · |||. By Sobolev embedding, we can conclude
um → u in C s+[(1−n)/2](Rn × [0,T ]) and hence in C 2(Rn × [0,T ])
since s ≥ n + 2. By taking m→∞ in (57) we obtain that u is a
solution of (56).

Step 3. The T obtained in Step 1 depends on s. If we can show
(59), i.e. ∑

|α|≤s+1

‖∂αum(·, t)‖L2 ≤ As , 0 ≤ t ≤ T
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for all m = 0, 1, · · · with T > 0 independent of s, then we can
conclude that u ∈ C∞(Rn × [0,T ]).

We now fix s0 ≥ n + 3 and let T > 0 be such that

max
0≤t≤T

∑
|α|≤s0+1

‖∂αum(·, t)‖L2 ≤ C0 <∞, m = 0, 1, · · ·

and show that for all s ≥ s0 there holds

max
0≤t≤T

∑
|α|≤s+1

‖∂αum(t, ·)‖L2 ≤ Cs <∞, ∀m. (63)

We show (63) by induction on s. Assume that (63) is true for
some s ≥ s0, we show it is also true with s replaced by s + 1.
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By the induction hypothesis and Sobolev embedding,

max
(x ,t)∈Rn×[0,T ]

∑
|α|≤s+1−[(n+2)/2]

|∂αum(x , t)| ≤ As <∞, ∀m.

Since s ≥ n + 3, we have [(s + 4)/2] ≤ s + 1− [(n + 2)/2]. So

max
(x ,t)∈Rn×[0,T ]

∑
|α|≤(s+4)/2

|∂αum(x , t)| ≤ As , ∀m.

This is exactly (61) with s replaced by s + 2. Same argument
there can be used to derive that

max
0≤t≤T

∑
|α|≤s+2

‖∂αum(·, t)‖L2 ≤ Cs+1 <∞, ∀m.

We complete the induction argument and obtain a C∞

solution. �
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The interval of existence for semi-linear wave equation could
be very small.

The following theorem gives a criterion on extending solutions
which is important in establishing global existence results.

Theorem 33 (Continuation principle)

Assume that u be the solution of the Cauchy problem (56) with
g , h ∈ C∞0 (Rn). Let

T∗ := sup {T > 0 : u satisfies (56) on [0,T ]} .

If T∗ <∞, then∑
|α|≤(n+6)/2

|∂αu(t, x)| 6∈ L∞(Rn × [0,T∗]). (64)
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Proof. Assume that (64) does not hold, then

sup
[0,T∗)×Rn

∑
|α|≤(n+6)/2

|∂αu(t, x)| ≤ C <∞.

Applying the argument in deriving (59) we have

sup
Rn×[0,T∗)

∑
|α|≤s0+1

‖∂αu(·, t)‖L2 ≤ C0 <∞

where s0 = n + 3. By the argument in Step 3 of the proof of
Theorem 32 we obtain for all s ≥ s0 that

sup
[0,T∗)×Rn

∑
|α|≤s+1

‖∂αu(t, ·)‖L2 ≤ Cs <∞.
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So u can be extend to u ∈ C∞([0,T∗]× Rn).

Since g , h ∈ C∞0 (Rn), by the finite speed of propagation we can
find a number R (possibly depending on T∗) such that u(x , t) = 0
for all |x | ≥ R and 0 ≤ t < T∗. Consequently

u(x ,T∗) = ∂tu(x ,T∗) = 0 when |x | ≥ R.

Thus, u(x ,T∗) and ∂tu(x ,T∗) are in C∞0 (Rn), and can be used as
initial data at t = T∗ to extend u beyond T∗ by theorem 32. This
contradicts the definition of T∗. �
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3. Invariant vector fields in Minkowski space

First are some conventions. We will set

R1+n := {(t, x) : t ∈ R and x ∈ Rn},

where t denotes the time and x := (x1, · · · , xn) the space variable.
We sometimes write t = x0 and use

∂0 =
∂

∂t
and ∂j :=

∂

∂x j
for j = 1, · · · , n.

For any multi-index α = (α0, · · · , αn) and any function u(t, x) we
write

|α| := α0 + α1 + · · ·+ αn and ∂αu := ∂α0
0 ∂α1

1 · · · ∂
αn
n u.
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Given any function u(t, x), we use

|∂xu|2 :=
n∑

j=1

|∂ju|2 and |∂u|2 := |∂0u|2 + |∂xu|2.

We will use Einstein summation convention: any term in which an
index appears twice stands for the sum of all such terms as the
index assumes all of a preassigned range of values.

A Greek letter is used for index taking values 0, · · · , n.

A Latin letter is used for index taking values 1, · · · , n.

For instance

bµ∂µu =
n∑

µ=0

bµ∂µu and bj∂ju =
n∑

j=1

bj∂ju.
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3.1. Vector fields and tensor fields

We use x = (x0, x1, · · · , xn) to denote the natural coordinates
in R1+n, where x0 = t denotes time variable.

A vector field X in R1+n is a first order differential operator of
the form

X =
n∑

i=0

Xµ ∂

∂xµ
= Xµ∂µ,

where Xµ are smooth functions. We will identify X with (Xµ).

The collection of all vector fields on R1+n is called the
tangent space of R1+n and is denoted by TR1+n.
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For any two vector fields X = Xµ∂µ and Y = Y µ∂µ, one can
define the Lie bracket

[X ,Y ] := XY − YX .

Then

[X ,Y ] = (Xµ∂µ) (Y ν∂ν)− (Y ν∂ν) (Xµ∂µ)

= XµY ν∂µ∂ν + Xµ (∂µY ν) ∂ν − Y νXµ∂ν∂µ − Y ν (∂νXµ) ∂µ

= (Xµ∂µY ν − Y µ∂µX ν) ∂ν = (X (Y µ)− Y (Xµ)) ∂µ.

So [X ,Y ] is also a vector field.

A linear mapping η : TR1+n → R is called a 1-form if

η(fX ) = f η(X ), ∀f ∈ C∞(R1+n),X ∈ TR1+n.
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For each µ = 0, 1, · · · , n, we can define the 1-form dxµ by

dxµ(X ) = Xµ, ∀X = Xµ∂µ ∈ TR1+n.

Then for any 1-form η we have

η(X ) = Xµη(∂µ) = ηµdxµ(X ), where ηµ := η(∂µ).

Thus any 1-form in R1+n can be written as η = ηµdxµ with
smooth functions ηµ. We will identify η with (ηµ).

A bilinear mapping T : TR1+n × TR1+n → R is called a
(covariant) 2-tensor field if for any f ∈ C∞(R1+n) and X ,Y
∈ TR1+n there holds

T (fX ,Y ) = T (X , fY ) = fT (X ,Y ).
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It is called symmetric if T (X ,Y ) = T (Y ,X ) for all vector
fields X and Y .

Let
(mµν) = diag(−1, 1, · · · , 1)

be the (1 + n)× (1 + n) diagonal matrix. We define
m : TR1+n × TR1+n → R by

m(X ,Y ) := mµνXµY ν

for all X = Xµ∂µ and Y = Y µ∂µ in TR1+n. It is easy to
check m is a symmetric 2-tensor field on R1+n. We call m the
Minkowski metric on R1+n. Clearly

m(X ,X ) = −
(
X 0
)2

+
(
X 1
)2

+ · · ·+ (X n)2 .
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A vector field X in (R1+n,m) is called space-like, time-like, or
null if

m(X ,X ) > 0, m(X ,X ) < 0, or m(X ,X ) = 0

respectively. Consider the three vector fields X1 = 2∂0 − ∂1,
X2 = ∂0 − ∂1 and X3 = ∂0 − 2∂1. Then X1 is time-like, X2 is
null, and X3 is space-like.

In (R1+n,m) we define the d’Alembertian

� = mµν∂µ∂ν , where (mµν) := (mµν)−1.

In terms of the coordinates (t, x1, · · · , xn), � = −∂2
t +4,

where 4 = ∂2
1 + · · ·+ ∂2

n .
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3.2. Energy-momentum tensor

In order to derive the general energy estimates related to
�u = 0, we introduce the so called energy-momentum tensor.

To see how to write down this tensor, we consider a vector
field X = Xµ∂µ with constant Xµ. Then for any smooth
function u we have

(Xu)�u = X ρ∂ρu mµν∂µ∂νu

= ∂µ (X ρmµν∂νu∂ρu)− X ρmµν∂µ∂ρu∂νu.

Using the symmetry of (mµν) we can obtain

X ρmµν∂µ∂ρu∂νu = ∂ρ

(
1

2
X ρmµν∂µu∂νu

)
.
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Therefore (Xu)�u = ∂ν
(
Q[u]νµXµ

)
, where

Q[u]νµ = mνρ∂ρu∂µu − 1

2
δνµ (mρσ∂ρu∂σu)

in which δνµ denotes the Kronecker symbol, i.e. δνµ = 1 when
µ = ν and 0 otherwise.

This motivates to introduce the symmetric 2-tensor

Q[u]µν := mµρQ[u]ρν = ∂µu∂νu − 1

2
mµν (mρσ∂ρu∂σu)

which is called the energy-momentum tensor associated to
�u = 0. Then for any vector fields X and Y we have

Q[u](X ,Y ) = (Xu)(Yu)− 1

2
m(X ,Y )m(∂u, ∂u)

177/219



For a 1-form η in (R1+n,m), its divergence is a function
defined by

divη := mµν∂µην .

For a symmetric 2-tensor field T in (R1+n,m), its divergence
is a 1-form defined by

(divT )ρ := mµν∂µTνρ.

The divergence of the energy-momentum tensor is

(divQ[u])ρ = mµν∂µQ[u]νρ

= mµν∂µ

(
∂νu∂ρu − 1

2
mνρ (mση∂σu∂ηu)

)
= mµν∂µ∂νu∂ρu = (�u)∂ρu.
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Let X be a vector field. Using Q[u] we can introduce the
1-form

Pµ := Q[u]µνX ν .

Then its divergence is

divP = mµν∂µPν = mµν∂µ (Q[u]νρX ρ)

= mµν∂µQ[u]νρX ρ + mµνQ[u]νρ∂µX ρ

= (divQ[u])ρX ρ + mµνQ[u]νρ∂µX ρ

= �u ∂ρu X ρ + mµνQ[u]νρm
ρη∂µXη

= (�u)Xu +
1

2
Q[u]µρ (∂µXρ + ∂ρXµ) .

where Q[u]µν := mµρmσνQ[u]ρσ and Xη := mρηX ρ.
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For a vector field X , we define

(X )πµν := ∂µXν + ∂νXµ

which is called the deformation tensor of X with respect to m.
Then we have

divP = ∂µ(mµνPν) = (�u)Xu +
1

2
Q[u]µν (X )πµν . (65)

Assume that u vanishes for large |x | at each t. Then for any
t0 < t1, we integrate divP over [t0, t1]× Rn and note that ∂t
is the upward unit normal to each slice {t} × Rn, we obtain∫∫
[t0,t1]×Rn

divPdxdt =

∫
{t=t1}

Q[u](X , ∂t)dx −
∫
{t=t0}

Q[u](X , ∂t)dx .
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This together with (65) then implies

Theorem 34

Let u ∈ C 2(R1+n) that vanishes for large |x | at each t. Then for
any vector field X and t0 < t1 there holds∫
{t=t1}

Q[u](X , ∂t)dx =

∫
{t=t0}

Q[u](X , ∂t)dx +

∫∫
[t0,t1]×Rn

(�u)Xudxdt

+
1

2

∫∫
[t0,t1]×Rn

Q[u]µν (X )πµνdxdt. (66)

By choosing X suitably, many useful energy estimates can be
derived from Theorem 34.
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For instance, we may take X = ∂t in Theorem 34. Notice that
(∂t)π = 0 and

Q[u](∂t , ∂t) =
1

2

(
|∂tu|2 + |∇u|2

)
,

we obtain for E (t) = 1
2

∫
{t}×Rn(|∂tu|2 + |∇u|2)dx the identity

E (t) = E (t0) +

∫ t

t0

∫
Rn

�u ∂tudxdt ′, ∀t ≥ t0.

This implies that

d

dt
E (t) =

∫
{t}×Rn

�u∂tudx ≤
√

2‖�u(·, t)‖L2(Rn)E (t)1/2.
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Therefore
d

dt
E (t)1/2 ≤ 1√

2
‖�u(·, t)‖L2(Rn).

Consequently we obtain the energy estimate

E (t)1/2 ≤ E (t0)1/2 +
1√
2

∫ t

t0

‖�u(·, t ′)‖L2(Rn)dt ′, ∀t ≥ t0.

3.3. Killing vector fields

The identity (66) can be significantly simplified if (X )π = 0. A
vector field X = Xµ∂µ in (R1+n,m) is called a Killing vector field
if (X )π = 0, i.e.

∂µXν + ∂νXµ = 0 in R1+n.
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Corollary 35

Let u ∈ C 2(R1+n) that vanishes for large |x | at each t. Then for
any Killing vector field X and t0 < t1 there holds∫
{t=t1}

Q[u](X , ∂t)dx =

∫
{t=t0}

Q[u](X , ∂t)dx +

∫∫
[t0,t1]×Rn

(�u)Xudxdt.

We can determine all Killing vector fields in (R1+n,m). Write
πµν = (X )πµν , Then

∂ρπµν = ∂ρ∂µXν + ∂ρ∂νXµ,

∂µπνρ = ∂µ∂νXρ + ∂µ∂ρXν ,

∂νπρµ = ∂ν∂ρXµ + ∂ν∂µXρ.
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Therefore

∂µπνρ + ∂νπρµ − ∂ρπµν = 2∂µ∂νXρ.

If X is a Killing vector field, then (X )π = 0 and hence

∂µ∂νXρ = 0 for all µ, ν, ρ.

Thus each Xρ is an affine function, i.e. there are constants
aρν and bρ such that

Xρ = aρνxν + bρ.

Using (X )π = 0 again we have

0 = ∂µXν + ∂νXµ = aνµ + aµν .
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Therefore aµν = −aνµ and thus

X = Xµ∂µ = mµνXν∂µ = mµν (aνρxρ + bν) ∂µ

=
n∑
ν=0

(∑
ρ<ν

+
∑
ρ>ν

)
aνρxρmµν∂µ + mµνbν∂µ

=
n∑
ν=0

∑
ρ<ν

aνρxρmµν∂µ +
n∑
ρ=0

∑
ν<ρ

aνρxρmµν∂µ + mµνbν∂µ

=
n∑
ν=0

∑
ρ<ν

(aνρxρmµν∂µ + aρνxνmµρ∂µ) + mµνbν∂µ

=
n∑
ν=0

∑
ρ<ν

aνρ (xρmµν∂µ − xνmµρ∂µ) + mµνbν∂µ.
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Thus we obtain the following result on Killing vector fields.

Proposition 36

Any Killing vector field in (R1+n,m) can be written as a linear
combination of the vector fields ∂µ, 0 ≤ µ ≤ n and

Ωµν = (mρµxν −mρνxµ) ∂ρ, 0 ≤ µ < ν ≤ n.

Since (mµν) = diag(−1, 1, · · · , 1), the vector fields {Ωµν}
consist of the following elements

Ω0i = x i∂t + t∂i , 1 ≤ i ≤ n,

Ωij = x j∂i − x i∂j , 1 ≤ i < j ≤ n.
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3.4. Conformal Killing vector fields

When (X )πµν = f mµν for some function f , the identity (66)
can still be modified into a useful identity. To see this, we use
(65) to obtain

divP = ∂µ(mµνPν) = (�u)Xu +
1

2
f mµνQ[u]µν

= (�u)Xu +
1− n

4
f mµν∂µu∂νu.

We can write

f mµν∂µu∂νu = mµν∂µ(fu∂νu)−mµνu∂µf ∂νu − fu�u

= mµν∂µ(fu∂νu)−mµν∂ν

(
1

2
u2∂µf

)
+

1

2
u2�f − fu�u

= mµν∂µ

(
fu∂νu − 1

2
u2∂ν f

)
+

1

2
u2�f − fu�u
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Consequently

∂µ(mµνPν) = (�u)Xu +
1− n

4
mµν∂µ

(
fu∂νu − 1

2
u2∂ν f

)
+

1− n

8
u2�f − 1− n

4
fu�u

Therefore, by introducing

P̃µ := Pµ +
n − 1

4
fu∂µu − n − 1

8
u2∂µf ,

we obtain

divP̃ = ∂µ(mµνP̃ν) = �u

(
Xu +

n − 1

4
fu

)
− n − 1

8
u2�f .
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By integrating over [t0, t1]× Rn as before, we obtain

Theorem 37

If X is a vector field in (R1+n,m) with (X )π = f m, then for any
smooth function u vanishing for large |x | there holds∫

t=t1

Q̃(X , ∂t)dx =

∫
t=t0

Q̃(X , ∂t)dx − n − 1

8

∫∫
[t0,t1]×Rn

u2�fdxdt

+

∫∫
[t0,t1]×Rn

(
Xu +

n − 1

4
fu

)
�udxdt,

where t0 ≤ t1 and

Q̃(X , ∂t) := Q[u](X , ∂t) +
n − 1

4

(
fu∂tu −

1

2
u2∂t f

)
.
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A vector field X = Xµ∂µ in (R1+n,m) is called conformal
Killing if there is a function f such that (X )π = f m, i.e.
∂µXν + ∂νXµ = f mµν .

Any Killing vector field is conformal Killing. However, there
are vector fields which are conformal Killing but not Killing.

(i) Consider the vector field

L0 =
n∑
µ=0

xµ∂µ = xµ∂µ.

we have (L0)µ = xµ and so (L0)µ = mµνxν . Consequently

(L0)πµν = ∂µ(L0)ν + ∂ν(L0)µ = ∂µ(mνηxη) + ∂ν(mµηxη)

= mνηδ
η
µ + mµηδ

η
ν = 2mµν .

Therefore L0 is conformal Killing and (L0)π = 2m.
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(ii) For each fixed µ = 0, 1, · · · , n consider the vector field

Kµ := 2mµνxνxρ∂ρ −mηνxηxν∂µ.

We have (Kµ)ρ = 2mµνxνxρ −mηνxηxνδρµ. Therefore

(Kµ)ρ = mρη(Kµ)η = 2mρηmµνxνxη −mρµmνηxνxη.

By direct calculation we obtain

(Kµ)πρη = ∂ρ(Kµ)η + ∂η(Kµ)ρ = 4mµνxνmρη.

Thus each Kµ is conformal Killing and (Kµ)π = 4mµνxνm.
The vector field K0 is due to Morawetz (1961).

All these conformal Killing vector fields can be found by
looking at X = Xµ∂µ with Xµ being quadratic.
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We can determine all conformal Killing vector fields in
(R1+n,m) when n ≥ 2.

Proposition 38

Any conformal Killing vector field in (R1+n,m) can be written as a
linear combination of the vector fields

∂µ, 0 ≤ µ ≤ n,

Ωµν = (mρµxν −mρνxµ)∂ρ, 0 ≤ µ < ν ≤ n,

L0 =
n∑

µ=0

xµ∂µ,

Kµ = mµνxνxρ∂ρ −mρνxρxν∂µ, µ = 0, 1, · · · , n.
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Proof. Let X be conformal Killing, i.e. there is f such that

(X )πµν := ∂µXν + ∂νXµ = f mµν . (67)

We first show that f is an affine function. Recall that

2∂µ∂νXρ = ∂µπνρ + ∂νπρµ − ∂ρπµν .

Therefore

2∂µ∂νXρ = mνρ∂µf + mρµ∂ν f −mµν∂ρf .

This gives

2�Xρ = 2mµν∂µ∂νXρ = (1− n)∂ρf . (68)
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In view of (67), we have

(n + 1)f = 2mµν∂µXν

This together with (68) gives

(n + 1)�f = 2mµν∂µ�Xν = (1− n)mµν∂µ∂ν f = (1− n)�f .

So �f = 0. By using again (68) and (67) we have

(1− n)∂µ∂ν f =
1− n

2
(∂µ∂ν f + ∂ν∂µf ) = ∂µ�Xν + ∂ν�Xµ

= � (∂µXν + ∂νXµ) = mµν�f = 0.

Since n ≥ 2, we have ∂µ∂ν f = 0. Thus f is an affine function, i.e.
there are constants aµ and b such that f = aµxµ + b.
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Consequently
(X )π = (aµxµ + b)m.

Recall that (L0)π = 2m and (Kµ)π = 4mµνxνm. Therefore, by
introducing the vector field

X̃ := X − 1

2
bL0 −

1

4
mµνaνKµ,

we obtain

(X̃ )π = (X )π − 1

2
b (L0)π − 1

4
mµνaν

(Kµ)π = 0.

Thus X̃ is Killing. We may apply Proposition 36 to conclude that
X̃ is a linear combination of ∂µ and Ωµν . The proof is complete. �
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4. Klainerman-Sobolev inequality

We turn to global existence of Cauchy problems for nonlinear wave
equations

�u = F (u, ∂u).

This requires good decay estimates on |u(t, x)| for large t. Recall
the classical Sobolev inequality

|f (x)| ≤ C
∑

|α|≤(n+2)/2

‖∂αf ‖L2 , ∀x ∈ Rn

which is very useful. However, it is not enough for the purpose. To
derive good decay estimates for large t, one should replace ∂f by
Xf with suitable vector fields X that exploits the structure of
Minkowski space. This leads to Klainerman inequality of Sobolev
type.

197/219



The formulation of Klainerman inequality involves only the
constant vector fields

∂µ, 0 ≤ µ ≤ n

and the homogeneous vector fields

L0 = xρ∂ρ,

Ωµν = (mρµxν −mρνxµ) ∂ρ, 0 ≤ µ < ν ≤ n.

There are m + 1 such vector fields, where m = (n+1)(n+2)
2 . We will

use Γ to denote any such vector field, i.e. Γ = (Γ0, · · · , Γm) and
for any multi-index α = (α0, · · · , αm) we adopt the convention
Γα = Γα0

0 · · · Γαm
m .
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It is now ready to state the Klainerman inequality of Sobolev type,
which will be used in the proof of global existence.

Theorem 39 (Klainerman)

Let u ∈ C∞([0,∞)× Rn) vanish when |x | is large. Then

(1 + t + |x |)n−1(1 + |t − |x ||)|u(t, x)|2 ≤ C
∑
|α|≤ n+2

2

‖Γαu(t, ·)‖2
L2

for t > 0 and x ∈ Rn, where C depends only on n.

We skip the proof of Theorem 39 since the argument is rather
lengthy. Before using this result, deeper understanding on the
vector fields Γ is necessary.
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Lemma 40 (Commutator relations)

Among the vector fields ∂µ, Ωµν and L0 we have the commutator
relations:

[∂µ, ∂ν ] = 0,

[∂µ, L0] = ∂µ,

[∂ρ,Ωµν ] =
(
mσµδνρ −mσνδµρ

)
∂σ,

[Ωµν ,Ωρσ] = mσµΩρν −mρµΩσν + mρνΩσµ −mσνΩρµ,

[Ωµν , L0] = 0.

Therefore, the commutator between ∂µ and any other vector field
is a linear combination of {∂ν}, and the commutator of any two
homogeneous vector fields is a linear combination of homogeneous
vector fields.
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Proof. These identity can be checked by direct calculation. As an
example, we derive the formula for [Ωµν ,Ωρσ]. Recall that

Ωµν = (mηµxν −mηνxµ) ∂η.

Therefore

[Ωµν ,Ωρσ] = Ωµν (mηρxσ −mησxρ) ∂η − Ωρσ (mηµxν −mηνxµ) ∂η

= (mγµxν −mγνxµ)
(
mηρδσγ −mησδργ

)
∂η

− (mγρxσ −mγσxρ)
(
mηµδνγ −mηνδµγ

)
∂η

= mσµ (mηρxν −mηνxρ) ∂η −mρµ (mησxν −mηνxσ) ∂η

+ mρν (mησxµ −mηµxσ) ∂η −mσν (mηρxµ −mηµxρ) ∂η

= mσµΩρν −mρµΩσν + mρνΩσµ −mσνΩρµ.

This shows the result. �
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Lemma 41

For any 0 ≤ µ, ν ≤ n there hold

[�, ∂µ] = 0, [�,Ωµν ] = 0, [�, L0] = 2�

Consequently, for any multiple-index α there exist constants cαβ
such that

�Γα =
∑
|β|≤|α|

cαβΓβ�. (69)

Proof. Direct calculation. �
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5. Global Existence in higher dimensions

We consider in R1+n the global existence of the Cauchy problem

�u = F (∂u)

u|t=0 = εf , ∂tu|t=0 = εg ,
(70)

where n ≥ 4, ε ≥ 0 is a number, and F : R1+n → R is a given C∞

function which vanishes to the second order at the origin:

F (0) = 0, DF (0) = 0. (71)

The main result is as follows.
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Theorem 42

Let n ≥ 4 and let f , g ∈ C∞c (Rn). If F is a C∞ function satisfying
(71), then there exists ε0 > 0 such that (70) has a unique solution
u ∈ C∞([0,∞)× Rn) for any 0 < ε ≤ ε0.

Proof. Let

T∗ := sup{T > 0 : (70) has a solution u ∈ C∞([0,T ]× Rn)}.

Then T∗ > 0 by Theorem 33. We only need to show that T∗ =∞.
Assume that T∗ <∞, then Theorem 33 implies∑

|α|≤(n+6)/2

|∂αu(t, x)| 6∈ L∞([0,T∗)× Rn).
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We will derive a contradiction by showing that there is ε0 > 0 such
that for all 0 < ε ≤ ε0 there holds

sup
(t,x)∈[0,T∗)×Rn

∑
|α|≤(n+6)/2

|∂αu(t, x)| <∞. (72)

Step 1. We derive (72) by showing that there exist A > 0 and
ε0 > 0 such that

A(t) :=
∑
|α|≤n+4

‖∂Γαu(t, ·)‖L2 ≤ Aε, 0 ≤ t < T∗ (73)

for 0 < ε ≤ ε0, where the sum involves all invariant vector fields
∂µ, L0 and Ωµν .
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In fact, by Klainerman inequality in Theorem 39 we have for any
multi-index β that

|∂Γβu(t, x)| ≤ C (1 + t)−
n−1

2

∑
|α|≤(n+2)/2

‖Γα∂Γβu(t, ·)‖L2 .

Since [Γ, ∂] is either 0 or ±∂, see Lemma 40, using (73) we obtain
for |β| ≤ (n + 6)/2 that

|∂Γβu(t, x)| ≤ C (1 + t)−
n−1

2

∑
|α|≤n+4

‖∂Γαu(t, ·)‖L2

= C (1 + t)−
n−1

2 A(t)

≤ CAε(1 + t)−
n−1

2 . (74)
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To estimate |Γβu(t, x)|, we need further property of u. Since
f , g ∈ C∞0 (Rn), we can choose R > 0 such that

f (x) = g(x) = 0 for |x | ≥ R.

By the finite speed of propagation,

u(t, x) = 0, if 0 ≤ t < T∗ and |x | ≥ R + t.

To show (72), it suffices to show that

sup
0≤t<T∗,|x |≤R+t

|Γαu(t, x)| <∞, ∀|α| ≤ (n + 6)/2.
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For any (t, x) satisfying 0 ≤ t < T∗ and |x | < R + t, write
x = |x |ω with |ω| = 1. Then

Γαu(t, x) = Γαu(t, |x |ω)− Γαu(t, (R + t)ω)

=

∫ 1

0
∂jΓ

αu(t, (s|x |+ (1− s)(R + t))ω)ds (|x | − R − t)ωj .

In view of (74), we obtain for all |α| ≤ (n + 6)/2 that

|Γαu(t, x)| ≤ CAε(1 + t)−
n−1

2 (R + t − |x |)

≤ CAε(1 + t)−
n−3

2 .
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Step 2. We prove (73).

Since u ∈ C∞([0,T∗)× Rn) and u(t, x) = 0 for |x | ≥ R + t,
we have A(t) ∈ C ([0,T∗)).

Using initial data we can find a large number A such that

A(0) ≤ 1

4
Aε. (75)

By the continuity of A(t), there is 0 < T < T∗ such that
A(t) ≤ Aε for 0 ≤ t ≤ T .

Let

T0 = sup{T ∈ [0,T∗) : A(t) ≤ Aε,∀0 ≤ t ≤ T}.

Then T0 > 0. It suffices to show T0 = T∗.
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We show T0 = T∗ be a contradiction argument. If T0 < T∗, then
A(t) ≤ Aε for 0 ≤ t ≤ T0. We will prove that for small ε > 0 there
holds

A(t) ≤ 1

2
Aε for 0 ≤ t ≤ T0.

By the continuity of A(t), there is δ > 0 such that

A(t) ≤ Aε for 0 ≤ t ≤ T0 + δ

which contradicts the definition of T0.

Step 3. It remains only to prove that there is ε0 > 0 such that

A(t) ≤ Aε for 0 ≤ t ≤ T0 =⇒ A(t) ≤ 1

2
Aε for 0 ≤ t ≤ T0

for 0 < ε ≤ ε0.
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By Klainerman inequality and A(t) ≤ Aε for 0 ≤ t ≤ T0, we have
for |β| ≤ (n + 6)/2 that

|∂Γβu(t, x)| ≤ CAε(1 + t)−
n−1

2 , ∀(t, x) ∈ [0,T0]× Rn. (76)

To estimate ‖∂Γαu(t, ·)‖L2 for |α| ≤ n + 4, we use the energy
estimate to obtain

‖∂Γαu(t, ·)‖L2 ≤ ‖∂Γαu(0, ·)‖L2 + C

∫ t

0
‖�Γαu(τ, ·)‖L2dτ. (77)

We write
�Γαu = [�, Γα]u + Γα(F (∂u))

and estimate ‖Γα(F (∂u))(τ, ·)‖L2 and ‖[�, Γα]u(τ, ·)‖L2 .

211/219



Since F (0) = DF (0) = 0, we can write

F (∂u) =
n∑

j ,k=1

Fjk(∂u)∂ju∂ku,

where Fjk are smooth functions. Using this it is easy to see that
Γα(F (∂u)) is a linear combination of following terms

Fα1···αm(∂u) · Γα1∂u · Γα2∂u · · · · · Γαm∂u

where m ≥ 2, Fα1···αm are smooth functions and |α1|+ · · ·+ |αm|
= |α| with at most one αi satisfying |αi | > |α|/2 and at least one
αi satisfying |αi | ≤ |α|/2.

In view of (76), by taking ε0 such that Aε0 ≤ 1, we obtain
‖Fα1···αm(∂u)‖L∞ ≤ C for 0 < ε ≤ ε0 with a constant C
independent of A and ε.
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Since |α|/2 ≤ (n + 4)/2, using (76) all terms Γαj∂u, except
the one with largest |αj |, can be estimated as

‖Γαj∂u(t, x)‖L∞([0,T0]×Rn) ≤ CAε(1 + t)−
n−1

2

Therefore

‖Γα(F (∂u))(t, ·)‖L2 ≤ CAε(1 + t)−
n−1

2

∑
|β|≤|α|

‖Γβ∂u(t, ·)‖L2

≤ CAε(1 + t)−
n−1

2 A(t). (78)

Recall that [�, Γ] is either 0 or 2�. Thus

|[�, Γα]u| .
∑
|β|≤|α|

|Γβ�u| .
∑
|β|≤|α|

|Γβ(F (∂u))|.
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Therefore

‖[�, Γα]u(t, ·)‖L2 ≤ C
∑
|β|≤|α|

‖Γβ(F (∂u))(t, ·)‖L2

≤ CAε(1 + t)−
n−1

2 A(t). (79)

Consequently, it follows from (77), (78) and (79) that

‖∂Γαu(t, ·)‖L2 ≤ ‖∂Γαu(0, ·)‖L2 + CAε

∫ t

0

A(τ)

(1 + τ)
n−1

2

dτ

Summing over all α with |α| ≤ n + 4 we obtain

A(t) ≤ A(0) + CAε

∫ t

0

A(τ)

(1 + τ)
n−1

2

dτ ≤ 1

4
Aε+ CAε

∫ t

0

A(τ)

(1 + τ)
n−1

2

dτ.
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By Gronwall inequality,

A(t) ≤ 1

4
Aε exp

(
CAε

∫ t

0

dτ

(1 + τ)(n−1)/2

)
, 0 ≤ t ≤ T0.

For n ≥ 4,
∫∞

0
dτ

(1+τ)(n−1)/2 = 2
n+2 <∞. (This is the reason we

need n ≥ 4 for global existence). We now choose ε0 > 0 so that

exp

(
2

n + 2
CAε0

)
≤ 2.

Thus A(t) ≤ Aε/2 for 0 ≤ t ≤ T0 and 0 < ε ≤ ε0. The proof is
complete. �
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Remark. The proof does not provide global existence result when
n ≤ 3 in general. However, the argument can guarantee existence
on some interval [0,Tε], where Tε can be estimated as

Tε ≥


ec/ε, n = 3,
c/ε2, n = 2,
c/ε, n = 1.

(80)

In fact, let A(t) be defined as before, the key point is to show that,
for any T < Tε,

A(t) ≤ Aε for 0 ≤ t ≤ T =⇒ A(t) ≤ 1

2
Aε for 0 ≤ t ≤ T
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The same argument as above gives

A(t) ≤ 1

4
Aε exp

(
CAε

∫ t

0

dτ

(1 + τ)(n−1)/2

)
, 0 ≤ t ≤ T .

Thus we can improve the estimate to A(t) ≤ 1
2 Aε for 0 ≤ t ≤ T if

Tε satisfies

exp

(
CAε

∫ Tε

0

dτ

(1 + τ)(n−1)/2

)
≤ 2

When n ≤ 3, the maximal Tε with this property satisfies (80).
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Remark. For n = 2 or n = 3, the above argument can guarantee
global existence when F satisfies stronger condition

F (0) = 0, DF (0) = 0, · · · , DkF (0) = 0, (81)

where k = 5− n. Indeed, this condition guarantees that F (∂u) is a
linear combination of the terms

Fj1···jk+1
(∂u)∂j1u · · · ∂jk+1

u.

Thus Γα(F (∂u)) is a linear combination of the terms

fi1···ir (∂u)Γαi1∂u · ... · Γαir ∂u,

where r ≥ k + 1, |α1|+ · · ·+ |αr | = |α| and fi1···ir are smooth
functions; there are at most one αi satisfying αi > |α|/2 and at
least k of αi satisfying |αi | ≤ |α|/2.
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We thus can obtain

‖Γα(F (∂u))(t, ·)‖L2 ≤ CAε(1 + t)−
(n−1)k

2 A(t),

‖[�, Γα]u(t, ·)‖L2 ≤ CAε(1 + t)−
(n−1)k

2 A(t).

Therefore

A(t) ≤ 1

4
Aε exp

(
CAε

∫ t

0

dτ

(1 + τ)((n−1)k)/2

)
.

Since k = 5− n,
∫∞

0
dτ

(1+τ)((n−1)k)/2 converges for n = 2 or n = 3.

The condition (81) is indeed too restrictive. In next lecture we
relax it to include quadratic terms when n = 3 using the so-called
null condition introduced by Klainerman.
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