Exercise 1

Exercise 1. Use the method of characteristics to solve the problem

$$u_y + (2x + u)u_x - (x + 2u) = 0, \quad u(x, 0) = 1 - x.$$

Exercise 2. Use the method of characteristics to find all possible solutions of the problem

$$u_x^2 + u_y^2 = 1,$$
 $u = 0 \text{ on } x^2 + y^2 = 1.$

Exercise 3. Consider the Burgers equation

$$u_t + (u^2/2)_x = 0$$
 in $\mathbb{R} \times (0, \infty)$.

- (i) If u is a C^1 solution defined for all t > 0, show that for each fixed t > 0, the function $x \to u(x, t)$ is monotonically increasing.
- (ii) If $u(x,0) = u_0(x)$ is not nondecreasing, then the Burgers equation can not have a C^1 solution defined for all t > 0.

Exercise 4. Consider the equation of conservation laws

(0.1)
$$u_t + f(u)_x = 0$$

where f is a C^2 function.

- (i) Show that if u is a C^1 solution of (0.1), then v := f'(u) is a C^1 solution of the Burgers equation $v_t + (v^2/2)_x = 0$.
- (ii) Can the discontinuous solution of (0.1) be always mapped into a weak solution of the Burgers equation? Why?

Exercise 5. Consider the conservation law with viscous term

$$u_t + f(u)_x = \varepsilon u_{xx}$$

where $f \in C^2(\mathbb{R})$ and $\varepsilon > 0$ is a small number. Assume that there is a traveling wave solution of the form $u(x,t) = w(\frac{x-st}{\varepsilon})$ for some number s and some C^2 function $w : \mathbb{R} \to \mathbb{R}$. Assume also that $w(-\infty) = u_l$ and $w(+\infty) = u_r$ with $u_l \neq u_r$. Show that

$$s = \frac{f(u_l) - f(u_r)}{u_l - u_r}$$
 and $f'(u_l) \ge s \ge f'(u_r)$.

(These resemble the Rankine-Hugoniot condition and the Lax entropy condition)

Exercise 6. Let $\varphi \in C_0^{\infty}(\mathbb{R}^n)$ be such that

$$\varphi \ge 0, \quad \int_{\mathbb{R}^n} \varphi(x) dx = 1, \quad \operatorname{supp}(\varphi) \subset \{ x \in \mathbb{R}^n : \|x\| \le 1 \}.$$

For any $\varepsilon > 0$ set $\varphi_{\varepsilon}(x) = \varepsilon^{-n} \varphi(x/\varepsilon)$. For any locally integrable function f on \mathbb{R}^n we define its convolution with φ_{ε} as

$$(f * \varphi_{\varepsilon})(x) := \int_{\mathbb{R}^n} f(y)\varphi_{\varepsilon}(x-y)dy, \quad x \in \mathbb{R}^n$$

Show that

- (i) $f * \varphi_{\varepsilon} \in C^{\infty}(\mathbb{R}^n)$ for any $\varepsilon > 0$;
- (ii) If $f \in C(\mathbb{R}^n)$, then $f * \varphi_{\varepsilon}$ uniformly converges to f on any compact subset of \mathbb{R}^n as $\varepsilon \to 0$;
- (iii) If $f \in L^p(\mathbb{R}^n)$ for some $1 \leq p < \infty$, then $||f * \varphi_{\varepsilon}||_{L^p(\mathbb{R}^n)} \leq ||f||_{L^p(\mathbb{R}^n)}$ and $||f * \varphi_{\varepsilon} f||_{L^p(\mathbb{R}^n)} \to 0$ as $\varepsilon \to 0$. (Hint: You may use the fact that $C_0^{\infty}(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n)$ for $1 \leq p < \infty$.)