Exercise 2

Exercise 1. Let f : [a,b] — R be a function defined on a finite interval [a,b]. The
total variation of f on [a,b] is defined by

TV (f;a,b) :=sup > _|f(x:) = f(wi1),

i=1
where the supremum is taken with respect to all possible partition a = x¢g < 1 <
- < Tpo1 < @y = b of [a,b]. I TV(f;a,b) is finite, we say f is of bounded
variation on [a, b].
(i) Show that the function
| zsin(w/x), x#0,
f(LL') - { 0’ xr=0
is not of bounded variation on [0, 1].
(ii) Show that the function
?sin(w/x), = #0,
J(@) = { 0, x=0
is of bounded variation on [0, 1].
(iii) If f : [a,b] — R is Lipschitz continuous on [a,b], then f is of bounded
variation on [a, b] with

b
TV(fiah) = [ I (@)ds.
a
(Hint: You may use the fact that if F' is nondecreasing on [a, b] then f: F'(t)dt <
F(b) — F(a).)

Exercise 2. For the Burgers equation u; + (u?/2), = 0 applied to each of the sets
of initial data u(z,0) = ug(z) in the following, determine the exact solution for all
t>0.

(i)

1 r < -1,
w(z)=49 0 —-l<z<l
-1 x>1;
(i)
-1 < -1,
ulz)=¢ 0 —-l<z<l
1 z>1

Exercise 3. Compute explicitly the unique entropy solution of
u + (u?/2), =0 in R x (0, 00),
u=g onRx{t=0}

for
2 ifx<-—1,
glx)y=49 0 if —1<a<1,
1 ifz>1.

Exercise 4. (i) Let f : R® — R be a C! function whose gradient is denoted by
V f. Then the following three statements are equivalent:

(a) f is convex;



(b) f(z1) > f(zo) + (Vf(mo),x1 — o) for all xg,z1 € R;
(c) (Vf(x1) =V f(z0), 21 —x0) > 0 for all zg,z; € R.
where, for any =,y € R", (z,y) denotes their inner product.
(i) Let f : R® — R is a C* convex function. Then f achieves its minimum at
xo € R™ if and only if V f(xo) = 0.
(iii) Let f : R™ — R be a convex function. We use f* to denote its Legendre-
Fenchel conjugate, i.e.

[ = sup {(¢,2) — f(x)}, Ee€R™

(a) For f(x) = |x|P/p for x € R with p > 1, calculate f* and use the result to
show the Young’s inequality

1 1
§o < —[zfP + —[¢]7
p q

for any x,€ € R and p,q > 1 with 1/p+1/¢g = 1.
(b) Let A be an nm x n symmetric positive definite matrix and let b € R™.
Consider the function f(z) := (x, Az) + (b, ). Determine f*.

Exercise 5. Consider the initial value problem of Burgers equation
ug + (u?/2), =0 in R x (0, 00),
U(HZ,O) ZUO(m)7 € 6R7

where ug € L°°(R). It is known that this problem may not have a unique weak
solution. One way to pick out the unique physically correct solution is to consider
the solutions of viscous Burgers equation

(0.1) up + (u?/2)y = gy in R x (0, 00),
' u(z,0) = up(x), r € R,
for small € > 0 and then investigate the limit as ¢ — 0.
(i) Let h(z) = foz uo(y)dy. If w is the unique smooth solution of the problem
0.2) Wy + w2 = eWgy in R x (0, 00),
’ w(z,0) = h(x), z €R,
then w := wy is the solution of the problem (0.1).
(ii) Let w be a smooth function satisfying wt—&—%wi = ewy,;. Find a nonconstant
function ¢ : R — R such that z := ¢(w) solves the heat equation z; = €2,,.
(iii) Recall that the solution of the initial value problem of heat equation

2t = EZps in R x (0, 00),
z =z on R x {t =0}
is given by

z(w,t) = \/4177515/0; zo(y) exp ((:54—;/)2> dy.

Let u® denote the solution of (0.1). Use the above formula and the infor-
mation from (i) and (ii) to find the explicit formula of u°.
(iv) Before discussing the limit of u® as e — 0, consider the limit
A T Joo Uy) exp(—r(y) /e)dy
=0 [7exp(—r(y)/e)dy




where £ : R — R are continuous functions. Assume that k is locally Lips-
chitz (i.e. Lipschitz on any compact subset of R), k(y) > coly|? — ¢; and
[4(y)| < ca + c3lylP with p > 0 for some positive constants cg, ¢1,co and
c3. Assume also that there exists a unique yo € R such that x(yg) =
minyer £(y). Then the limit A exists and A = £(yo).

Applying (iv) to show that

— t
lim u®(z,t) = AL y(@,?)
e—0 t

for those (z,t) € R x (0,00) such that
[ e—y)?
yeR { o Hhw)

has a unique minimizer, denoted by y(z,t). Compare it with the result in
Theorem 18 from lecture notes.



