
Exercise 2

Exercise 1. Let f : [a, b]→ R be a function defined on a finite interval [a, b]. The
total variation of f on [a, b] is defined by

TV (f ; a, b) := sup

n∑
i=1

|f(xi)− f(xi−1)|,

where the supremum is taken with respect to all possible partition a = x0 < x1 <
· · · < xn−1 < xn = b of [a, b]. If TV (f ; a, b) is finite, we say f is of bounded
variation on [a, b].

(i) Show that the function

f(x) =

{
x sin(π/x), x 6= 0,
0, x = 0

is not of bounded variation on [0, 1].
(ii) Show that the function

f(x) =

{
x2 sin(π/x), x 6= 0,
0, x = 0

is of bounded variation on [0, 1].
(iii) If f : [a, b] → R is Lipschitz continuous on [a, b], then f is of bounded

variation on [a, b] with

TV (f ; a, b) =

∫ b

a

|f ′(x)|dx.

(Hint: You may use the fact that if F is nondecreasing on [a, b] then
∫ b

a
F ′(t)dt ≤

F (b)− F (a).)

Exercise 2. For the Burgers equation ut + (u2/2)x = 0 applied to each of the sets
of initial data u(x, 0) = u0(x) in the following, determine the exact solution for all
t > 0.

(i)

u0(x) =

 1 x < −1,
0 −1 < x < 1
−1 x > 1;

(ii)

u0(x) =

 −1 x < −1,
0 −1 < x < 1
1 x > 1

Exercise 3. Compute explicitly the unique entropy solution of

ut + (u2/2)x = 0 in R× (0,∞),

u = g on R× {t = 0}
for

g(x) =

 2 if x < −1,
0 if − 1 < x < 1,
1 if x > 1.

Exercise 4. (i) Let f : Rn → R be a C1 function whose gradient is denoted by
∇f . Then the following three statements are equivalent:

(a) f is convex;
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(b) f(x1) ≥ f(x0) + 〈∇f(x0), x1 − x0〉 for all x0, x1 ∈ R;
(c) 〈∇f(x1)−∇f(x0), x1 − x0〉 ≥ 0 for all x0, x1 ∈ R.

where, for any x, y ∈ Rn, 〈x, y〉 denotes their inner product.
(ii) Let f : Rn → R is a C1 convex function. Then f achieves its minimum at

x0 ∈ Rn if and only if ∇f(x0) = 0.
(iii) Let f : Rn → R be a convex function. We use f∗ to denote its Legendre-

Fenchel conjugate, i.e.

f∗(ξ) = sup
x∈Rn

{〈ξ, x〉 − f(x)} , ξ ∈ Rn.

(a) For f(x) = |x|p/p for x ∈ R with p > 1, calculate f∗ and use the result to
show the Young’s inequality

ξx ≤ 1

p
|x|p +

1

q
|ξ|q

for any x, ξ ∈ R and p, q > 1 with 1/p+ 1/q = 1.
(b) Let A be an n × n symmetric positive definite matrix and let b ∈ Rn.

Consider the function f(x) := 〈x,Ax〉+ 〈b, x〉. Determine f∗.

Exercise 5. Consider the initial value problem of Burgers equation{
ut + (u2/2)x = 0 in R× (0,∞),
u(x, 0) = u0(x), x ∈ R,

where u0 ∈ L∞(R). It is known that this problem may not have a unique weak
solution. One way to pick out the unique physically correct solution is to consider
the solutions of viscous Burgers equation{

ut + (u2/2)x = εuxx in R× (0,∞),
u(x, 0) = u0(x), x ∈ R,(0.1)

for small ε > 0 and then investigate the limit as ε→ 0.

(i) Let h(x) =
∫ x

0
u0(y)dy. If w is the unique smooth solution of the problem{
wt + 1

2w
2
x = εwxx in R× (0,∞),

w(x, 0) = h(x), x ∈ R,(0.2)

then u := wx is the solution of the problem (0.1).
(ii) Let w be a smooth function satisfying wt+

1
2w

2
x = εwxx. Find a nonconstant

function ϕ : R→ R such that z := ϕ(w) solves the heat equation zt = εzxx.
(iii) Recall that the solution of the initial value problem of heat equation{

zt = εzxx in R× (0,∞),
z = z0 on R× {t = 0}

is given by

z(x, t) =
1√

4πεt

∫ ∞
−∞

z0(y) exp

(
− (x− y)2

4εt

)
dy.

Let uε denote the solution of (0.1). Use the above formula and the infor-
mation from (i) and (ii) to find the explicit formula of uε.

(iv) Before discussing the limit of uε as ε→ 0, consider the limit

A = lim
ε→0

∫∞
−∞ `(y) exp(−κ(y)/ε)dy∫∞
−∞ exp(−κ(y)/ε)dy

,
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where ` : R → R are continuous functions. Assume that κ is locally Lips-
chitz (i.e. Lipschitz on any compact subset of R), κ(y) ≥ c0|y|2 − c1 and
|`(y)| ≤ c2 + c3|y|p with p ≥ 0 for some positive constants c0, c1, c2 and
c3. Assume also that there exists a unique y0 ∈ R such that κ(y0) =
miny∈R κ(y). Then the limit A exists and A = `(y0).

(v) Applying (iv) to show that

lim
ε→0

uε(x, t) =
x− y(x, t)

t

for those (x, t) ∈ R× (0,∞) such that

min
y∈R

{
(x− y)2

2t
+ h(y)

}
has a unique minimizer, denoted by y(x, t). Compare it with the result in
Theorem 18 from lecture notes.


