Exercise 3

Exercise 1. For $(x_0, t_0) \in \mathbb{R}^n \times (0, \infty)$, let

 $\mathcal{C}_{x_0,t_0} := \{ (x,t) : 0 \le t \le t_0 \text{ and } |x - x_0| \le t_0 - t \}$

be the backward light cone with vertex (x_0, t_0) . Let $u \in C^2(\mathcal{C}_{x_0, t_0})$ satisfy

 $u_{tt} - \triangle u = F(u, \partial u) \quad \text{in } \mathcal{C}_{x_0, t_0},$

where $F \in C^1(\mathbb{R})$ with F(0,0) = 0. If $u(x,0) = u_t(x,0) = 0$ for $|x - x_0| \le t_0$, then $u \equiv 0$ in \mathcal{C}_{x_0,t_0} . (Hint: consider $E(t) = \int_{B_{t_0-t}(x_0)} (u(x,t)^2 + u_t(x,t)^2 + |\nabla u(x,t)|^2) dx$)

Exercise 2. (i) Let \mathbb{S}^2 be the unit sphere in \mathbb{R}^3 . For a fixed $\omega \in \mathbb{S}^2$ and $0 < \epsilon < 2$, let

$$\Gamma_{\epsilon} := \{ y \in \mathbb{S}^2 : y \cdot \omega \ge 1 - \epsilon \}$$

Show that the area of Γ_{ϵ} is $2\pi\epsilon$.

(ii) Let $f, g \in C^{\infty}(\mathbb{R}^3)$ satisfy f(x) = g(x) = 0 for |x| > R, and let u(t, x) be the solution of the Cauchy problem

$$\begin{cases} u_{tt} - \triangle u = 0 & \text{in } \mathbb{R}^3 \times [0, \infty), \\ u(x, 0) = g(x), & u_t(x, 0) = h(x), & x \in \mathbb{R}^3. \end{cases}$$

Show that u(x,t) = 0 if |t - |x|| > R and satisfies the decay estimate

 $|u(t,x)| \le C(1+t)^{-1}, \quad \forall (x,t) \in \mathbb{R}^3 \times [0,\infty)$

with a constant C depending only on R, $\|g\|_{L^{\infty}}$, $\|\nabla g\|_{L^{\infty}}$ and $\|h\|_{L^{\infty}}$. (Hint: use Huygens' principle and Kirchoff formula)

Exercise 3. (i) Let $u \in C^2(\mathbb{R}^n \times [0,T])$ be a classical solution of the Cauchy problem of wave equation

(0.1)
$$\begin{cases} \Box u := u_{tt} - \Delta u = f(x,t) & \text{in } \mathbb{R}^n \times (0,T], \\ u(x,0) = g(x), & u_t(x,0) = h(x), & x \in \mathbb{R}^n, \end{cases}$$

Show that for any $\varphi \in C_0^{\infty}(\mathbb{R}^n \times [0,T))$ there holds

(0.2)
$$\int_0^T \int_{\mathbb{R}^n} f\varphi dx dt = \int_0^T \int_{\mathbb{R}^n} u \Box \varphi dx dt + \int_{\mathbb{R}^n} g(x)\varphi_t(x,0) dx - \int_{\mathbb{R}^n} h(x)\varphi(x,0) dx.$$

(ii) Let $g, h \in L^1_{loc}(\mathbb{R}^n)$ and $f \in L^1_{loc}(\mathbb{R}^n \times [0,T])$. A function $u \in L^1_{loc}(\mathbb{R}^n \times [0,T])$ is called a weak solution of (0.1) if (0.2) holds for all $\varphi \in C^\infty_0(\mathbb{R}^n \times [0,T])$. Show that, for given $g \in C^2(\mathbb{R}^n)$, $h \in C^1(\mathbb{R}^n)$ and $f \in C(\mathbb{R}^n \times [0,T])$, if $u \in C^2(\mathbb{R}^n \times [0,T])$ is a weak solution, then u is also a classical solution.

Exercise 4. Let $g, h \in L^1_{loc}(\mathbb{R})$ and define

$$u(x,t) = \frac{1}{2} \left[g(x+t) + g(x-t) \right] + \frac{1}{2} \int_{x-t}^{x+t} h(y) dy.$$

Show that u is a weak solution of the Cauchy problem

$$\begin{cases} \Box u := u_{tt} - u_{xx} = 0 \quad \text{in } \mathbb{R} \times (0, \infty), \\ u(x, 0) = g(x), \quad u_t(x, 0) = h(x), \quad x \in \mathbb{R}. \end{cases}$$

(Hint: consider the transformation $\xi = x + t, \ \eta = x - t$)

Exercise 5. (i) In the Minkowski space $(\mathbb{R}^{1+n}, \mathbf{m})$, let $\Box = \mathbf{m}^{\alpha\beta}\partial_{\alpha}\partial_{\beta}$, $L_0 = x^{\rho}\partial_{\rho}$ and $\Omega_{\mu\nu} = (\mathbf{m}^{\rho\mu}x^{\nu} - \mathbf{m}^{\rho\nu}x^{\mu})\partial_{\rho}$. Show that

 $[\Omega_{\mu\nu}, L_0] = 0, \quad [\partial_\mu, L_0] = \partial_\mu, \quad [\Box, \Omega_{\mu\nu}] = 0, \quad [\Box, L_0] = 2\Box$

where, for any two operators A and B, [A, B] := AB - BA denotes their commutator.

(ii) In the Minkowski space $(\mathbb{R}^{1+3}, \mathbf{m})$, consider the vector field

$$X = (1 + t^2 + |x|^2)\partial_t + 2tx^i\partial_i.$$

Show by direct calculation that X is a conformal Killing vector field with ${}^{(X)}\pi = 4t\mathbf{m}$.