Exercise 3

Exercise 1. For $\left(x_{0}, t_{0}\right) \in \mathbb{R}^{n} \times(0, \infty)$, let

$$
\mathcal{C}_{x_{0}, t_{0}}:=\left\{(x, t): 0 \leq t \leq t_{0} \text { and }\left|x-x_{0}\right| \leq t_{0}-t\right\}
$$

be the backward light cone with vertex $\left(x_{0}, t_{0}\right)$. Let $u \in C^{2}\left(\mathcal{C}_{x_{0}, t_{0}}\right)$ satisfy

$$
u_{t t}-\Delta u=F(u, \partial u) \quad \text { in } \mathcal{C}_{x_{0}, t_{0}},
$$

where $F \in C^{1}(\mathbb{R})$ with $F(0,0)=0$. If $u(x, 0)=u_{t}(x, 0)=0$ for $\left|x-x_{0}\right| \leq t_{0}$, then $u \equiv 0$ in $\mathcal{C}_{x_{0}, t_{0}}$.
(Hint: consider $\left.E(t)=\int_{B_{t_{0}-t}\left(x_{0}\right)}\left(u(x, t)^{2}+u_{t}(x, t)^{2}+|\nabla u(x, t)|^{2}\right) d x\right)$
Exercise 2. (i) Let \mathbb{S}^{2} be the unit sphere in \mathbb{R}^{3}. For a fixed $\omega \in \mathbb{S}^{2}$ and $0<\epsilon<2$, let

$$
\Gamma_{\epsilon}:=\left\{y \in \mathbb{S}^{2}: y \cdot \omega \geq 1-\epsilon\right\} .
$$

Show that the area of Γ_{ϵ} is $2 \pi \epsilon$.
(ii) Let $f, g \in C^{\infty}\left(\mathbb{R}^{3}\right)$ satisfy $f(x)=g(x)=0$ for $|x|>R$, and let $u(t, x)$ be the solution of the Cauchy problem

$$
\left\{\begin{array}{l}
u_{t t}-\triangle u=0 \quad \text { in } \mathbb{R}^{3} \times[0, \infty), \\
u(x, 0)=g(x), \quad u_{t}(x, 0)=h(x), \quad x \in \mathbb{R}^{3} .
\end{array}\right.
$$

Show that $u(x, t)=0$ if $|t-|x||>R$ and satisfies the decay estimate

$$
|u(t, x)| \leq C(1+t)^{-1}, \quad \forall(x, t) \in \mathbb{R}^{3} \times[0, \infty)
$$

with a constant C depending only on $R,\|g\|_{L^{\infty}},\|\nabla g\|_{L^{\infty}}$ and $\|h\|_{L^{\infty}}$. (Hint: use Huygens' principle and Kirchoff formula)
Exercise 3. (i) Let $u \in C^{2}\left(\mathbb{R}^{n} \times[0, T]\right)$ be a classical solution of the Cauchy problem of wave equation

$$
\left\{\begin{array}{l}
\square u:=u_{t t}-\triangle u=f(x, t) \quad \text { in } \mathbb{R}^{n} \times(0, T], \tag{0.1}\\
u(x, 0)=g(x), \quad u_{t}(x, 0)=h(x), \quad x \in \mathbb{R}^{n},
\end{array}\right.
$$

Show that for any $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n} \times[0, T)\right)$ there holds

$$
\begin{align*}
\int_{0}^{T} \int_{\mathbb{R}^{n}} f \varphi d x d t= & \int_{0}^{T} \int_{\mathbb{R}^{n}} u \square \varphi d x d t+\int_{\mathbb{R}^{n}} g(x) \varphi_{t}(x, 0) d x \\
& -\int_{\mathbb{R}^{n}} h(x) \varphi(x, 0) d x \tag{0.2}
\end{align*}
$$

(ii) Let $g, h \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$ and $f \in L_{l o c}^{1}\left(\mathbb{R}^{n} \times[0, T]\right)$. A function $u \in L_{l o c}^{1}\left(\mathbb{R}^{n} \times[0, T]\right)$ is called a weak solution of (0.1) if (0.2) holds for all $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n} \times[0, T)\right)$. Show that, for given $g \in C^{2}\left(\mathbb{R}^{n}\right)$, $h \in C^{1}\left(\mathbb{R}^{n}\right)$ and $f \in C\left(\mathbb{R}^{n} \times[0, T]\right)$, if $u \in C^{2}\left(\mathbb{R}^{n} \times[0, T]\right)$ is a weak solution, then u is also a classical solution.
Exercise 4. Let $g, h \in L_{l o c}^{1}(\mathbb{R})$ and define

$$
u(x, t)=\frac{1}{2}[g(x+t)+g(x-t)]+\frac{1}{2} \int_{x-t}^{x+t} h(y) d y
$$

Show that u is a weak solution of the Cauchy problem

$$
\left\{\begin{array}{l}
\square u:=u_{t t}-u_{x x}=0 \quad \text { in } \mathbb{R} \times(0, \infty), \\
u(x, 0)=g(x), \quad u_{t}(x, 0)=h(x), \quad x \in \mathbb{R}
\end{array}\right.
$$

(Hint: consider the transformation $\xi=x+t, \eta=x-t$)

Exercise 5. (i) In the Minkowski space $\left(\mathbb{R}^{1+n}, \mathbf{m}\right)$, let $\square=\mathbf{m}^{\alpha \beta} \partial_{\alpha} \partial_{\beta}, L_{0}=x^{\rho} \partial_{\rho}$ and $\Omega_{\mu \nu}=\left(\mathbf{m}^{\rho \mu} x^{\nu}-\mathbf{m}^{\rho \nu} x^{\mu}\right) \partial_{\rho}$. Show that

$$
\left[\Omega_{\mu \nu}, L_{0}\right]=0, \quad\left[\partial_{\mu}, L_{0}\right]=\partial_{\mu}, \quad\left[\square, \Omega_{\mu \nu}\right]=0, \quad\left[\square, L_{0}\right]=2 \square
$$

where, for any two operators A and $B,[A, B]:=A B-B A$ denotes their commutator.
(ii) In the Minkowski space $\left(\mathbb{R}^{1+3}, \mathbf{m}\right)$, consider the vector field

$$
X=\left(1+t^{2}+|x|^{2}\right) \partial_{t}+2 t x^{i} \partial_{i}
$$

Show by direct calculation that X is a conformal Killing vector field with ${ }^{(X)} \pi=$ $4 t \mathbf{m}$.

