Elliptic Curves. HT 2018/19. Sheet 2.

- **1.** Let K be a field with non-Archimedean valuation $| \cdot |$.
- (a). For any $x, y \in K$ show that, if $|x| \neq |y|$ then $|x \pm y| = \max(|x|, |y|)$.
- **(b).** If $x_1, \ldots, x_n \in K$ and if there exists ℓ such that $|x_\ell| > |x_i|$ for all $i \neq \ell$, then show that $|x_1 + \ldots + x_n| = |x_\ell|$.
- (c). Suppose that $s_n \to s$ in K, | |. Show that $|s_n| \to |s|$ in $\mathbb{R}, | |_{\infty}$. When $s \neq 0$, show that there exists N such that, for all n > N, $|s_n| = |s|$.
- **2(a).** Find: $|3/50|_5$, $|3/50|_3$, $|3/50|_7$, $d_5(2/3, 1/5)$, $d_7(2/3, 1/5)$, $d_{11}(2/3, 1/5)$.
- (b). Describe $|3/7|_p$ for all p. What is the product $\prod |3/7|_i$, taken over i = p, for all primes p, and $i = \infty$? Given any $x \in \mathbb{Q}$ $(x \neq 0)$, what is $\prod |x|_i$?
- **3.** Which of the following are convergent in \mathbb{Q}_5 ?

(a).
$$1/5^n$$
. (b). n . (c). $n!$ (d). $3+10^n$. (e). $\sum_{0}^{\infty} 10^n$. (f). $\sum_{0}^{\infty} 7^n$.

- **4.** For each p, m, r, either find an $x \in \mathbb{Z}$ such that $|x^2 r|_p \leq p^{-m}$ or show that no such x exists.
- (a). p = 5, r = -1, m = 4. (b). p = 3, r = 7/8, m = 7. (c). p = 5, r = 5/4, m = 4.
- **5.** Find the 7-adic expansion of each of: 200 and 3/14. Determine the member of \mathbb{Q} expressed by the 5-adic expansion $2, \overline{34}$.
- **6.** Let $x \in \mathbb{Q}$. Show that $x \in \mathbb{Z} \iff (x \in \mathbb{Z}_p \text{ for all } p)$.
- 7. Decide whether there exists $x \in \mathbb{Q}_p$ such that $x^2 = -28$ for each of: p = 2, 3, 5, 7, 11.
- **8.** Show that $(X^2-2)(X^2-17)(X^2-34)$ has a root in \mathbb{R} and in every \mathbb{Q}_p , but not in \mathbb{Q} .
- **9.** Is 4 a cube in \mathbb{Q}_3 ? Is 28 a cube in \mathbb{Q}_3 ? Is 13 a cube in \mathbb{Q}_7 ?