Lie Groups

Section C course Hilary 2018

dancer@maths.ox.ac.uk

Example sheet 2

1. The algebra of quaternions is defined as

$$
\mathbb{H} = \{a + bi + cj + dk \; : \; a, b, c, d \in \mathbb{R}\}
$$

where i, j, k satisfy the relations

$$
ij = k = -ji \; : \; i^2 = j^2 = k^2 = -1
$$

(i) Show that these relations imply $jk = i = -kj$ and $ki = j = -ik$.

(ii) Show that the algebra of quaternions may be identified with the algebra of matrices,

$$
\left\{ \left(\begin{array}{cc} z & w \\ -\bar{w} & \bar{z} \end{array} \right) : z, w \in \mathbb{C} \right\}.
$$

(iii) If $q = a + bi + cj + dk \in \mathbb{H}$, we define the *quaternionic conjugate* to be

$$
\bar{q} = a - bi - cj - dk
$$

and the *norm* of q to be the nonnegative real number $|q|$ such that $|q|^2 = q\overline{q}$.

Show that $q\bar{q}$ is indeed real and nonnegative, so |q| is well-defined. Deduce that $q \neq 0$ has a multiplicative inverse $q^{-1} = \frac{\bar{q}}{|q|}$ $\frac{q}{|q|^2}$.

Show also that

$$
|q_1q_2| = |q_1| \cdot |q_2|
$$
 : $|q^{-1}| = |q|^{-1}$.

Viewing $\mathbb H$ as a real 4-dimensional vector space, check that |q| is the usual norm on $\mathbb R^4$. (iv) We define the Lie group

$$
\operatorname{Sp}(n) = \{ A \in GL(n, \mathbb{H}) : A^*A = Id_n \}
$$

where A^* denotes the quaternionic conjugate transpose of A (ie the ij entry of A^* is the quaternionic conjugate of the ji entry of A).

Show that

$$
Sp(1) = SU(2)
$$

and hence that $Sp(1)$ is topologically the 3-sphere.

For $q \in \mathbb{H} \setminus \{0\}$ define

$$
\mathcal{A}_q : \mathbb{H} \to \mathbb{H}, \; : \; p \mapsto qpq^{-1}.
$$

Show that \mathcal{A}_q is an orthogonal map (viewing $\mathbb H$ as $\mathbb R^4$).

By considering the orthogonal complement of $\mathbb{R} = \mathbb{R} \cdot 1 \subset \mathbb{H}$, deduce that SU(2) ≅ $\text{Sp}(1) \subset \mathbb{H} \setminus \{0\}$ acts on \mathbb{R}^3 by rotations.

Explain briefly why this gives a homomorphism $Sp(1) \cong SU(2) \rightarrow SO(3)$ with kernel $\{\pm 1\}.$

2. Check these properties of $\exp: \text{Lie}(G) \to G$.

- (i) Image(exp) $\subset G_0$ = connected component of $1 \in G$;
- (ii) $\exp((t+s)v) = \exp(tv)\exp(sv)$ for all $t, s \in \mathbb{R}$;
- (iii) $(\exp v)^{-1} = \exp(-v);$

(iv) if $q = \exp(v)$ then it has an *n*-th root;

(v) the following map is not surjective

$$
\exp: \mathfrak{sl}(2,\mathbb{R}) \to SL(2,\mathbb{R})
$$

3. Prove directly that ad is a Lie algebra homomorphism by using the fact that $ad(X) \cdot Z = [X, Z].$

Show that

$$
v_1 = \left(\begin{array}{rrr} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right), v_2 = \left(\begin{array}{rrr} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{array}\right), v_3 = \left(\begin{array}{rrr} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{array}\right)
$$

is a basis for $\mathfrak{so}(3) \subset \text{Mat}_{3\times 3}(\mathbb{R})$.

By computing all brackets $[v_i, v_j]$, show that

 $\mathfrak{so}(3) \cong (\mathbb{R}^3, \text{cross product}), \; : \; v_i \mapsto \text{standard basis vector } e_i$

is a Lie algebra isomorphism.

Via this isomorphism we identify $\text{End}(\mathfrak{so}(3))$ with 3×3 matrices. Compute the matrices $ad(v_i)$.

By computing $\langle v_i, v_j \rangle$ show that the **Killing form**

$$
\langle v, w \rangle = \text{Trace}(\mathbf{ad}(v)\mathbf{ad}(w)) \in \mathbb{R}
$$

is a negative definite scalar product on $\mathfrak{so}(3)$.

4. Show that for a matrix group G, we have $\exp(gXg^{-1}) = g \exp(X)g^{-1}$ for all $g \in G$ and $X \in \mathfrak{a}$.

Consider the subgroup T of the unitary group $U(n)$ consisting of diagonal matrices. Show that T is a torus $T^n \cong (S^1)^n$ and that T lies in the image of the exponential map $\exp: \mathfrak{u}(n) \to U(n).$

Deduce that $\exp: \mathfrak{u}(n) \to U(n)$ is surjective.