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Prerequisites & Bibliography

• Chapters I, II and III (ie pp. 1–50) of [AM69] (basic
definitions of commutative algebra).

• Appendix A (ie pp. 417–432) of [Wei94] (basic definitions
of category theory).

• Section 1, 2 and 3 of Chapter I (ie pp. 1–15) of [Wei94]
(basic definitions of homological algebra).

• The first section of Chapter 3, par. 5 (ie pp. 438–443) of
[GH94] (the cohomological spectral sequence of a double
complex).

• The definition of a topological space.
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Cohomology

Let A be an abelian category. An object I of A is called
injective if the contravariant functor

HomA(•, I) : A → Ab

is exact.

Let A• be a cochain complex in A, which is bounded below. An
injective resolution of A• is a cochain complex in A

I• : . . .→I0 d0→ I1
d1→ . . .

consisting of injective objects and such that:

• I• is bounded below;
• there is a morphism of complex A• → I•, which is a

quasi-isomorphism.

If every cochain complex A• in A, which is bounded below, has
an injective resolution, we say that A has enough injectives.
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Let (B•, d•B) and (C•, d•C) be cochain complexes in A.

Let f•, g• : B• → C• be two morphisms of complexes.

A homotopy k• between f• and g• is a collection of morphisms

ki : Bi → Ci−1

(i ∈ Z) such that

f i − gi = di−1C ◦ ki + ki+1 ◦ di

for all i ∈ Z.
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Lemma

The homotopy relation is an equivalence relation on complexes.
If f• and g• as above are homotopic then Hk(f•) = Hk(g•) for
all k ∈ Z, ie f• and g• induce the same morphisms in
homology.

Lemma

Let φ : A→ B be a morphism of objects of A. Let I• (resp. J•)
be an injective resolution of A (resp. B). Then there is a
morphism of complexes I• → J•, which is compatible with the
morphisms A→ I0, B → J0 and φ. Any two such morphisms
are homotopic.
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Let B be another abelian category.

Let F : A → B be a covariant functor. We say that F is
additive if for all objects A,B of A, the map

Mor(A,B)→ Mor(F (A), F (B))

is a map of abelian groups.

We say that F is left exact if for any exact sequence

0→ A′ → A→ A′′ → 0

in A, the sequence

0→ F (A′)→ F (A)→ F (A′′)

is also exact.
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Suppose that A has enough injectives.

If F : A → B is a covariant left exact additive functor, we may
for all i ∈ Z define a functor RiF by the following recipe.

For A and object in A, let I• be a injective resolution of A.

We define
RiF (A) := Hi(F (I•))

By the above lemmata, Hi(F (I•)) is well-defined up to unique
isomorphism and RiF : A → B is an additive functor, called the
i-th right derived functor of F .
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Let A be an abelian category with enough injectives.

Let F : A → B be a left exact functor to another abelian
category.

Theorem

For any short exact sequence

0→ A′ → A→ A′′ → 0 (1)

there is a canonical ’long’ exact sequence

0→ R0F (A′)→ R0F (A)→ R0F (A′′)→ R1F (A′)→ R1F (A)→ . . .

which is naturally functorial in the short exact sequence (1).
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Sheaves

Let X be a topological space.

Denote the category of abelian groups by Ab.

Let Top(X) be the category whose objects are the open sets of
X and whose arrows are the inclusion maps.

Definition

A presheaf F (of abelian groups) on X is a contravariant
functor F : Top(X)→ Ab.

The presheaves on X naturally form a category, whose arrows
are the natural transformations of functors.
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If U → V is an inclusion of open subsets of X and s ∈ F (V ), we
write

s|U := F (U → V )(s).

A sheaf on X is a presheaf F on X, with the following
properties.

Let (Ui ∈ Top(X)) be a family of open subsets of X. Then

• if s ∈ F (
⋃
i Ui) and s|Ui = 0 for all indices i, then s = 0;

• if for all indices i we are given si ∈ F (Ui) and

si|Ui∩Uj = sj |Ui∩Uj

for all i, j then there is a unique element s ∈ F (
⋃
i Ui) such

that s|Ui = si for all i.

[EL1]
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Let F be a presheaf on a topological space X. Let x ∈ X.

Definition

The stalk of F at x is

Fx := lim−→U∈Top(X), x∈U F (U)

If x ∈ X and U ∈ Top(X) contains x then for any s ∈ F (U), we
write sx for the image of s in Fx.

If φ : F → G is a morphism of presheaves on X, there is a
unique map of abelian groups φx : Fx → Gx such that for any
s ∈ F (U) and U ∈ Top(X) containing x, we have
φx(sx) = (φ(s))x.
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Let F be a presheaf on a topological space X. There is sheaf
F+ on X and a natural transformation

F → F+

uniquely defined by the following property: if G is a sheaf on X
and F → G is a natural transformation, then there is a unique
natural transformation F+ → G such that the diagram

F+ // G

F

OO ==

commutes. The sheaf F+ is called the sheafification of F .
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If φ : F → G is a morphism of sheaves on a topological space X,
then we define the kernel ker(φ) of φ as the presheaf

U ∈ Top(X) 7→ ker(φ(U))

This presheaf is a sheaf (exercise).

We define the cokernel coker(φ) of φ as the sheafification of the
presheaf

U ∈ Top(X) 7→ coker(φ(U))
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Proposition-Definition

Let X be a topological space. The category Ab(X) of sheaves on
X is an abelian category. If φ : F → G is a morphism of
sheaves, then the categorical kernel (resp. cokernel) of φ is
canonically isomorphic to ker(φ) (resp. coker(φ)). A cochain
complex

· · · → F i−1 → F i → F i+1 → . . .

is exact in Ab(X) if and only for any x ∈ X, the corresponding
sequence of stalks

· · · → F i−1x → F ix → F i+1
x → . . .

is exact.
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Let f : X → Y be a continuous map of topological spaces.

For F a sheaf on X, we define the presheaf f∗(F ) by the formula

V ∈ Top(Y ) 7→ F (f−1(V ))

The presheaf f∗(F ) is a sheaf (easy). This gives rise to an
additive functor Ab(X)→ Ab(Y ).

For F a sheaf on Y , we define the sheaf f−1(F ) as the
sheafification of the presheaf on X given by the formula

U ∈ Top(X) 7→ lim−→V ∈Top(Y ),V⊇f(U)F (V )

Again, this leads to an additive functor Ab(Y )→ Ab(X).



Preamble Cohomology Sheaves Cohomology of sheaves Schemes Projective spaces

Proposition

The functor f−1 is left adjoint to the functor f∗.

The fact that f−1 and f∗ are adjoint to each other formally
implies that f∗ is left exact and that f−1 is right exact. See
Exercise.
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If (Fi) is a family of sheaves on a topological space X, we define
the presheaf

∏
i Fi by the formula

U ∈ Top(X) 7→
∏
i

Fi(U)

where
∏
i Fi(U) is the product of the abelian groups Fi(U) (ie

the cartesian product of the sets Fi(U), endowed with the
evident group structure). It can easily be verified that the
presheaf

∏
i Fi is a sheaf. By construction, if G is another sheaf

on X, we have an identification

Mor(G,
∏
i

Fi) '
∏
i

Mor(G,Fi)
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Theorem

Let X be a topological space. The category Ab(X) has enough
injectives.

Proof. We shall use the fact that Ab is a category with enough
injectives.

Let F be a sheaf on X.

We shall construct an injective sheaf I and a monomorphism
F → I.

For each x ∈ X, choose an injective abelian group Ix and an
injection ιx : Fx → Ix. Denote also by x the inclusion map
x→ X, where x is viewed as a topological space. Define

I :=
∏
x∈X

x∗(Ix)
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Note that by construction we have for all U ∈ Top(X) an
isomorphism

I(U) '
∏
x∈U

Ix

which is compatible with restrictions to smaller open sets.

In particular, we may define a morphism F → I by the formula

s ∈ F (U) 7→
∏
x∈U

ιx(sx)

This morphism is a monomorphism: if the image of s ∈ F (U)
vanishes, then sx = 0 for all x ∈ U ; hence s = 0 by the first
sheaf property.
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Now let
0→ F ′ → F → F ′′ → 0

be an exact sequence of sheaves on X. We wish to show that
the corresponding sequence

0→ Mor(F ′′, I)→ Mor(F, I)→ Mor(F ′, I)→ 0 (2)

is exact. Now we have natural isomorphisms

Mor(F, I) ' Mor(F,
∏
x∈X

x∗(Ix)) '
∏
x∈X

Mor(F, x∗(Ix))

'
∏
x∈X

Mor(x−1(F ), Ix) '
∏
x∈X

Mor(Fx, Ix).

Hence the sequence (2) is isomorphic to the product over all
x ∈ X of the sequences

0→ Mor(F ′′x , Ix)→ Mor(Fx, Ix)→ Mor(F ′x, Ix)→ 0

which are exact because the Ix are injective abelian groups.QED
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Cohomology of sheaves

The functor
Γ(X, •) : Ab(X)→ Ab

described by the formula

Γ(X,F ) := F (X)

is left exact.

More generally, let f : X → Y be a continuous map of
topological spaces. The functor

f∗ : Ab(X)→ Ab(Y )

is left exact.

We shall often write H i(X, •) for the i-th right derived functor
RiΓ(X, •) of Γ(X, •). [EL2]
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Let f : X → Y be a continuous map of topological spaces.

Let F be a sheaf on X.

The following proposition can be proven by using the
resolutions used when proving that Ab(X) has enough
injectives for any topological space X.

Proposition

Let V ∈ Top(Y ). Let U := f−1(V ) and let u : U → X,
v : V → Y be the inclusion maps. Let fV : U → V be the
natural map. For all i > 0, we have canonical isomorphisms

v−1(Rif∗(F )) ' RifV,∗(u−1(F )).

and these isomorphisms are natural in F .
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Cech cohomology. Let F be a sheaf on a topological space X.

Let I be a finite set and let (Ui∈I) be a covering of X by open
sets indexed by I.

We shall use the short-hand i0 . . . ip for (i0, . . . , ip) ∈ I{0,...,p}.
For i0, . . . ip ∈ I, we define

Ui0...ip := Ui0 ∩ Ui1 ∩ · · · ∩ Uip

and we let ji0...ip : Ui0...ip → X be the inclusion map.

For all p > 0, let

Cp((Ui), F ) :=
⊕
i0...ip

ji0...ip,∗(j
−1
i0...ip

(F ))
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Define
dp : Cp((Ui), F )→ Cp+1((Ui), F )

by

dp(
⊕
i0...ip

αi0...ip) =

p+1∑
k=0

(−1)k
⊕

i0...ip+1

αi0...îk...ip+1
|Ui0...ip+1

∩V

where V ∈ Top(X) and

αi0...ip ∈ ji0...ip,∗(j−1i0...ip(F ))(V ) = F (Ui0...ip ∩ V )

The hat symbol ·̂ signifies that the term under the hat is
omitted.
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Furthermore, we define a morphism

d : F → C0((Ui), F ) =
⊕
i

ji,∗j
−1
i (F )

by taking the direct sum of the natural morphisms

F → ji,∗j
−1
i (F )

Theorem

The sequence of sheaves

0→ F
d→ C0((Ui), F )

d0→ C1((Ui), F )
d1→ . . .

is an exact cochain complex.
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Glueing sheaves.

Suppose given (Ui) an open covering of topological space X. If
j : U → X is an open subset of X and F is a sheaf on X, we
shall often write F |U instead of j−1(F ).

Suppose given on Ui a sheaf Fi. Suppose given isomorphisms
φij : Fi|Ui∩Uj

∼→ Fj |Ui∩Uj for all indices i, j, satisfying the
properties (1), (2), (3) below.

(1) φii is the identity;

(2) φji = φ−1ij ;

(3) φik|Ui∩Uj∩Uk = φjk ◦ φij |Ui∩Uj∩Uk .

for all indices i, j, k.
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Proposition

Given sheaves Fi on Ui and isomorphisms

φij : Fi|Ui∩Uj
∼→ Fj |Ui∩Uj

satisfying (1), (2), (3) above, there up to unique isomorphism a
sheaf F on X with the following properties. There are
isomorphisms

ψi : F |Ui
∼→ Fi

such that the natural isomorphism

(ψ−1j |Ui∩Uj ) ◦ φij ◦ (ψi|Ui∩Uj )

is the isomorphism

(F |Ui)|Ui∩Uj ' (F |Uj )|Ui∩Uj .
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Flasque sheaves.

Let X be a topological space and let F be a sheaf on X.

The sheaf F is called flasque if for all U, V ∈ Top(X) such that
U ⊆ V , the natural map F (V )→ F (U) is surjective.

Lemma

If I is an injective sheaf on X, then I is flasque.

Proposition

If F is flasque then Hk(X,F ) = 0 for all k > 0.
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Ringed spaces

A ringed space is a topological space X together with a sheaf of
rings OX on X. The ringed space (X,OX) is said to be locally
ringed if the stalks OX,x are local rings for all x ∈ X. In that
case we will often write mx ⊆ OX,x for the maximal ideal and
κ(x) := OX,x/mx for the residue field of OX,x.

A morphism of ringed spaces (f, f#) : (X,OX)→ (Y,OY ) is a
continuous map f : X → Y together with a morphism of
sheaves of rings f# : OY → f∗OX . If (X,OX) and (Y,OY ) are
locally ringed, we say that (f, f#) is local or that it is a
morphism of locally ringed spaces if for all x ∈ X, the induced
map of stalks Of(x) → Ox is a local morphism of rings.

Recall that a morphism of local rings φ : R→ T is said to be
local if φ−1(mT ) = mR. Here mT (resp. mR) is maximal ideal of
T (resp. R).
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If (f, f#) : (X,OX)→ (Y,OY ) and (g, g#) : (Y,OY )→ (Z,OZ)
are morphisms of ringed spaces, the composition

(h, h#) = (g, g#) ◦ (f, f#) : (X,OX)→ (Z,OZ)

is defined in the following way. We let h := g ◦ f (as maps).
The morphism of sheaves h# : OZ → h∗(OX) is defined as the
unique morphism h# making the following diagram
commutative:

g∗(OY )
g∗(f#) // g∗(f∗(OX))

OZ

g#

OO

h# // (g ◦ f)∗(OX) = h∗(OX)

'

OO

[EL3]
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Affine schemes

Let R be a ring. We define Spec(R) as the set of prime ideals of
R. If a ⊆ R is an ideal, we define

V (a) := {p ∈ Spec(R) | p ⊇ a}

The symbol V (•) has the following properties:

• V (a) ∪ V (b) = V (a · b);

•
⋂
i∈I V (ai) = V (

∑
i ai);

• V (R) = ∅; V ((0)) = Spec(R).

As a consequence the sets V (a) (a an ideal of R) form the
closed sets of a topology on Spec(R). This topology is called
the Zariski topology. The closed points in Spec(R) are precisely
the maximal ideals of R.
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Lemma

Let f ∈ R. The set

Df (R) = Df = {p ∈ Spec(R) | f 6∈ p}

is open in Spec(R). The open sets of Spec(R) of the form Df

form a basis for the Zariski topology of Spec(R). The topology
of Spec(R) is quasi-compact.

The open sets of the form Df are often called basic open sets.

Recall that a set B of open sets of a topological space X is said
to be a basis for the topology of X if every open set of X can be
written as a union of open sets in B.
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We wish to make Spec(R) into a locally ringed space.

We define a sheaf of rings on Spec(R) as follows. For U open in
Spec(R), let

OSpec(R)(U) :=

{s : U →
∐

p∈Spec(R)

Rp | for all p ∈ U we have s(p) ∈ Rp

and for all p ∈ U there is a, r ∈ R and V ∈ Top(U)

such that Dr(R) ⊇ V , p ∈ V and s(q) =
a

r
for all q ∈ V }

This formula clearly defines a sheaf on rings on Spec(R).
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Proposition

• For all r ∈ R, we have a canonical isomorphism

OSpec(R)(Dr(R)) ' Rr.

• There is a natural isomorphism

OSpec(R),p ' Rp

for all p ∈ Spec(R).
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We have now associated with any ring R a locally ringed space

(Spec(R),OSpec(R))

and we have associated with any morphism φ : R→ T of rings a
morphism of ringed spaces

(Spec(φ), φ#),

which can easily be shown to be local using the previous
Proposition.

We have in fact defined a contravariant functor from the
category of rings to the category of locally ringed spaces.

Lemma

This functor is fully faithful.



Preamble Cohomology Sheaves Cohomology of sheaves Schemes Projective spaces

Proof. We start with a morphism of locally ringed spaces

(f, f#) : (Spec(T ),OSpec(T ))→ (Spec(R),OSpec(R)).

We are thus given a morphism of sheaves of rings

OSpec(R) → f∗(OSpec(T ))

and thus a morphism of rings

φ : R ' OSpec(R)(Spec(R))→ f∗(OSpec(T ))(Spec(R)) ' T

we shall be done if we can show that (f, f#) = (Spec(φ), φ#).
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We shall first show that f = Spec(φ).

We need to show that φ−1(p) = f(p) for all p ∈ Spec(T ).

Now we know that the morphism of rings

f#p : OSpec(R),f(p) → OSpec(T ),p

is local (because (f, f#) is a morphism of locally ringed spaces).
This morphism fits in a commutative diagram

R

lf(p)
��

φ // T

lp
��

OSpec(R),f(p)

f#p // OSpec(T ),p
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We compute

φ−1(p) = φ−1(l−1p (mOSpec(T ),p
)) = l−1f(p(f

#,−1
p (mOSpec(T ),p

))

= l−1f(p)(mOSpec(R),f(p)
) = f(p).

Here we have used the fact that f#p is local in the third equality.

The diagram also shows that f#p = φp.

Hence, we see that the morphisms of sheaves φ# and f#

coincide on the stalks.

This shows that there are equal. QED

[EL4]
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A locally ringed space isomorphic to a space (Spec(R),OSpec(R))
is called an affine scheme.

We shall write Aff for the category of affine schemes and
CRings for the category of unital commutative rings.

A scheme is a locally ringed space X such that every point x in
X has an open neighbourhood U , which is isomorphic to an
affine scheme as a locally ringed space.

A morphism of schemes is a morphism of locally ringed spaces.

We shall write Schemes for the category of schemes.
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A scheme X is called locally noetherian it is has an open
covering (Ui) such that each Ui is isomorphic to an affine scheme

(Spec(Ri),OSpec(Ri)),

where Ri is a noetherian ring.

Recall that a ring is noetherian, if every ideal of R is finitely
generated as an R-module.

Proposition

A scheme X is locally noetherian if and only if for any open
subset U of X, which is isomorphic to an affine scheme
(Spec(R),OSpec(R)) as a locally ringed space, the ring R is
noetherian.

A scheme X is called noetherian if it is quasi-compact as a
topological space and locally noetherian.
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A scheme X is reduced if for all U ∈ Top(X), the ring OX(U)
has no nilpotent elements.

A scheme X is integral, if for all U ∈ Top(X), the ring OX(U)
is a domain (also called an integral ring).

An open affine covering (Ui∈I) of X is a family of open subsets
Ui of X such that

•
⋃
i Ui = X;

• if Ui is endowed with the structure of locally ringed space
coming from X, then Ui is an affine scheme.
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Properties of morphisms of schemes.

Let (f, f#) : X → Y be a morphism of schemes.

• (f, f#) is quasi-compact if there is an open affine covering
(Vi) of Y such that f−1(Vi) is quasi-compact for all i.

• (f, f#) is locally of finite type if f there is a an open affine
covering (Vi) of Y and for each i an open affine covering
(Uij) of f−1(Vi) such that OX(Uij) is a finitely generated
OY (Vi)-algebra via the morphism (f, f#).

• (f, f#) is of finite type of it is quasi-compact and locally of
finite type.
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• (f, f#) is a closed immersion if the image of f is closed, f
is a homeomorphism of X onto f(X) and the morphism of
sheaves

f# : OY → f∗OX
is surjective.

We then say that X is a closed subscheme of Y via (f, f#)
or simply that f(X) is a closed subscheme of Y .

• (f, f#) is an open immersion if f(X) is open, f is a
homeomorphism onto its image and the mapping of stalks

f#y : Oy → (f∗OX)y

is an isomorphism for all y ∈ f(X).

We then say that X is an open subscheme of Y via (f, f#)
or simply that f(X) is an open subscheme of X.
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Glueing schemes. Suppose given (Ui) a family of schemes and
for each pair of indices ij an open subscheme Uij → Ui

Suppose given isomorphisms φij : Uij
∼→ Uji for all indices i, j,

satisfying the properties (1), (2), (3) below.

(1) Uii = Ui;

(2) φij(Uij ∩ Uik) ⊆ Ujk;
(3) φik|Uij∩Uik = φjk ◦ φij |Uij∩Uik as morphisms Uij ∩ Uik → Uk.

for all indices i, j, k.

Proposition

There is up to unique isomorphism a scheme X with the
following properties. There are open immersions ψi : Ui → X
such that

⋃
i ψi(Ui) = X and such that ψj ◦ φij = ψi|Uij .
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Products.

Let C be a category. Let (Ci) (i = 1, . . . , n) be a finite family of
objects in C.
Recall that the product

C1 × · · · × Cn =
∏
i

Ci

of the Ci (it it exists) is an object P of C together with arrows

πi : P → Ci

characterised by the following property. If P ′ is another object
together with arrows π′i : P ′ → Ci then there is a unique arrow
u : P ′ → P such that πi ◦ u = π′i for all i.
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If C is an object of C, we shall write C/C for the following
category.

The objects of C/C are morphisms D → C in C.
A morphism from φ : D → C to λ : E → C is a morphism
µ : D → E such that λ ◦ µ = φ.

The morphism µ, viewed as a morphism in C, is often called a
C-morphism.

The category C/C is called the category of C-objects (associated
with C and C).

One often writes D×C E for the product of D → C and E → C
in C/C (if it exists). It is sometimes called the fibre product of
D and E over C.
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Proposition

Let S be a scheme. Finite products exist in Schemes/S.

Notice that if R is a ring and A and B are two R-algebras, then
the tensor product

A⊗R B

is the coproduct of A and B in the category of R-algebras.
Hence

(Spec(A⊗R B),OSpec(A⊗B)

is the product of (Spec(A),OSpec(A)) and (Spec(B),OSpec(B)) in
the category Aff/Spec(R). The proof glues such objects
together into a scheme.

[EL5]
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Let X be a ringed space.

An OX-module or sheaf in OX-modules is an abelian sheaf F ,
together with a OX(U)-module structure on F (U) for every
open set U ⊆ X, subject to obvious compatibility properties
with respect to inclusions U → V of open sets in X.

A morphism of OX-modules F → G is a morphism of abelian
sheaves compatible with the OX -module structure in an obvious
sense.

The OX -modules form an additive category ModOX (X), which
is abelian.
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Let F and G be OX -modules on X.

The tensor product F ⊗OX G is the sheaf generated by the
presheaf on X given by the formula

U 7→ F (U)⊗OX(U) G(U)

This sheaf has a unique structure of OX -module, such that the
map

F (U)⊗OX(U) G(U)→ (F ⊗OX G)(U)

is a map of OX(U)-modules for every U ∈ Top(X).
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Suppose f : X ′ → X ′′ is a continuous map of topological spaces
and that X ′′ is ringed by the sheaf of rings OX′′ .
Let F be a sheaf in OX′′-modules on X ′′.

The abelian sheaf f−1(OX′′) is then endowed with a canonical
structure of sheaf of rings, as can be seen by looking at its
definition.

Furthermore, the abelian sheaf f−1(F ) inherits an obvious
f−1(OX′′)-module structure from the OX′′-module structure of
F on X ′′.
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Let f : Z → X be a morphism of ringed spaces.

Let F be a OX -module. We define

f∗(F ) := f−1(F )⊗f−1(OX) OZ .

Here OZ is viewed as a f−1(OX)-module through the canonical
map of sheaves of rings f−1(OX)→ OZ .

For each U ∈ Top(Z), the group

f−1(F )(U)⊗f−1(OX)(U) OZ(U)

has a OZ(U)-module structure, which comes from the action of
OZ(U) on the second factor.

There is a unique structure of OZ-module on f∗(F ) such that
for all U ∈ Top(Z), the map

f−1(F )(U)⊗f−1(OX)(U)OZ(U)→ (f−1(F )⊗f−1(OX)(U)OZ)(U) = f∗(U)

is a map of OZ(U)-modules.
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Let now F be a OZ-module.

The abelian sheaf f∗(F ) is naturally a sheaf in f∗(OZ)-modules.

Via the morphism of sheaves of rings OX → f∗(OZ), we may
thus view f∗(F ) as a OX -module.

Lemma

The functor f∗ : ModOX (X)→ ModOZ (Z) is left-adjoint to the
functor

f∗ : ModOZ (Z)→ ModOX (X).

See Exercises.



Preamble Cohomology Sheaves Cohomology of sheaves Schemes Projective spaces

Quasi-coherent sheaves.

Let R be a ring and let M be an R-module. We define a sheaf
M̃ on Spec(R) by the recipe

M̃(U) := {s : U →
∐

p∈Spec(R)

Mp | for all p ∈ U we have s(p) ∈Mp

and for all p ∈ U there is a ∈M , r ∈ R and V ∈ Top(U)

such that Dr(R) ⊇ V ⊇ {p} and s(q) =
a

r
for all q ∈ V }

Notice that OSpec(R) = R̃.
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The sheaf M̃ carries an obvious OSpec(R)-module structure.

Also, if M → N is a morphism of R-modules, there is an
obvious associated morphism of OSpec(R)-modules M̃ → Ñ .

We have thus defined a functor from the category of R-modules
to the category of OSpec(R)-modules.

(a) For all r ∈ R, we have a canonical isomorphism

M̃(Dr(R)) 'Mr.
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(b) If t ∈ R and t ∈ (r) then there is a commutative diagram

M̃(Dr(R)) //

'
��

M̃(Dt(R))

'
��

Mr
//Mt

where the vertical isomorphisms come from (a).

(c) There is a natural isomorphism M̃p 'Mp for all
p ∈ Spec(R). This isomorphism fits in a commutative
diagram

M̃p
' //Mp

M̃(Spec(R))

OO

' //M

OO

Here the vertical morphisms are the natural ones and the
lower horizontal one comes from (b).



Preamble Cohomology Sheaves Cohomology of sheaves Schemes Projective spaces

Corollary

The functor •̃ from the category of R-modules to the category of
OSpec(R)-modules is fully faithful and exact.

Let now X be a scheme.

Definition

Let F be a sheaf on OX-modules. The sheaf F is said to be
quasi-coherent (resp. coherent) if there is an open affine

covering (Ui) of X, such that F |Ui ' F̃ (Ui) (resp. F |Ui ' F̃ (Ui)
and F (Ui) is a finitely generated OX(Ui)-module).

The full subcategory of Mod(X), which are quasi-coherent, will
be denoted Qcoh(X).
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Lemma

Let φ : R→ T be a morphism of rings. Let M be a T -module.

Then there is a natural isomorphism of OSpec(R)-modules

Spec(φ)∗(M̃) ' M̃0,

where M0 is M viewed as an R-module via φ.

Proof. Notice that for all r ∈ R, there a natural isomorphisms
of Rr-modules

Spec(φ)∗(M̃)(Dr(R)) = M̃(Spec(φ)−1(Dr(R))

= M̃(Dφ(r)(T )) 'Mφ(r) 'M0,r

which are compatible with restrictions Dr(R) ⊇ Dr′(R) for
r′ ∈ (r). Now the lemma follows from the fact that the sets
Dr(R) form a basis for the topology of Spec(R) and the fact

that Spec(φ)∗(M̃) and M̃0 are both sheaves. QED
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Proposition

The definition of a quasi-coherent (resp. coherent) sheaf is
independent of the open affine covering appearing in its
definition.

Proof. After simple logical reductions, we are reduced to the
following problem.

Suppose X = Spec(R) is an affine scheme and let F be an
OX -module on X. Let (Vj = Spec(Rfj )) be a covering of X by

basic open sets. Suppose F |Vj ' M̃j , where Mj is an

Rfj -module. Then F ' M̃ for some R-module M .

Notice that we may suppose that the family (Vj) is finite, since
X is quasi-compact. Notice also that Vj1 ∩ Vj2 = Spec(Rfj1fj2 ).
In particular Vj1 ∩ Vj2 is also affine. Now look at the two first
terms of the Cech complex associated with (Vj). These terms
are in the essential image of the functor •̃ by the preceding
lemma. Since the functor •̃ is exact, we are done. QED

[EL6]
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Lemma (Deligne)

Let R be a noetherian ring and let M be an R-module. Let a be
an ideal of R. There is an isomorphism

lim−→nHomR(an,M) ' M̃(Spec(R)\V (a)),

which is natural in M .

The morphism arises from the isomorphism

an|Spec(R)\V (a) ' OSpec(R)\V (a).

Corollary

Let I be an injective module over R. Then Ĩ is a flasque sheaf.
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Sheaves of ideals. Let X be a scheme. A subsheaf of OX is
called a sheaf of ideals on X.

Lemma

Let J be a quasi-coherent sheaf of ideals on X. There exists a
closed immersion (z, z#) : Z → X such that J = ker(z#). This
immersion is unique up to unique isomorphism over X.

The proof is by glueing. See Exercises.

Lemma

Let C0 ⊆ X be a closed subset. Then there is a unique
quasi-coherent ideal IC0 in X, such that the image of the closed
immersion C → X associated with IC0 is C0 and such that C is
reduced.

The proof follows from the fact that the formation of the nil
radical commutes with localisation. See exercises.
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Permanence properties of quasi-coherent sheaves.

Let X be a ringed space and let (Fi) be a family of OX -modules
on X. We write

⊕
i Fi for the sheaf generated by the presheaf

in OX -modules on X sending U ∈ Top(X) to
⊕

i Fi(U).

Lemma

Let I be an index set. For any object (Fi) of Mod(X)I and any
object G in Mod(X), there is a canonical isomorphism

Mor(
⊕
i

Fi, G) '
∏
i

Mor(Fi, G)

which is natural in (Fi) and G.

In categorical terms, Lemma 11 says that the direct sum is a
categorical coproduct in the category Mod(X).
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Lemma

Let X be a scheme and let (Fi) be a family of quasi-coherent
sheaves on X. Then

⊕
i Fi is quasi-coherent.

Proof. Let R be a ring and (Mi) be a family of R-modules. If
r ∈ R, there is a functorial isomorphism (

⊕
iMi)r '

⊕
iMi,r.

The Lemma follows from this. QED

A formal consequence of the last two lemmata is the following
fact. Let R be a ring and let (Mi) be a family of R-modules.
Then there is a functorial isomorphism of OSpec(R)-modules

˜
(
⊕
i

Mi) '
⊕
i

M̃i
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Proposition

Let φ : R→ T be a morphism of rings and let M be an
R-module. Then Spec(φ)∗(M̃) is a quasi-coherent sheaf.

Proof. First notice the following fact.

Let (X,OX) := (Spec(R),OSpec(R)). Let G be a OX -module.

Then G is quasi-coherent if and only if there exist index sets I
and J and exact sequence of OX -modules⊕

i∈I
OX →

⊕
j∈J
OX → G→ 0 (3)

Indeed if G has a presentation (3) then by the above, we
conclude that G is quasi-coherent.

On the other hand, if G = M̃ for some R-module then we may
choose a surjection u :

⊕
j∈J R→M and a surjection⊕

i∈I R→ ker(u).

Applying the functor •̃, we then obtain a presentation (3).
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Let (Y,OY ) := (Spec(T ),OSpec(T )).

In view of the above fact and the fact that Spec(φ)∗ is right
exact, we see that we are reduced to prove that there is an
isomorphism

f∗(
⊕
i

OX) '
⊕
i

OY (4)

To show this, first notice that there is an isomorphism
f∗(OX) ' OY . For this notice that we have canonical
isomorphisms for any OY -module G

MorMod(Y )(f
∗(OX), G) ' MorMod(X)(OX , f∗(G))

' f∗(G)(X) ' G(Y ) ' MorMod(Y )(OY , G)

and thus f∗(OX) and OY represent the same covariant functor.
We conclude by appealing to Yoneda’s lemma.
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To prove that there is an isomorphism (4), we notice that there
are functorial isomorphisms

MorMod(Y )(f
∗(
⊕
i

OX), G) ' MorMod(X)(
⊕
i

OX , f∗(G))

'
∏
i

MorMod(X)(OX , f∗(G)) =
∏
i

f∗(G)(X) =
∏
i

G(Y )

Thus, we have functorial isomorphisms

MorMod(Y )(
⊕
i

f∗(OX), G) ' MorMod(Y )(
⊕
i

OY , G) =
∏
i

G(Y )

and thus again
⊕

iOY and f∗(
⊕

iOX) represent the same
covariant functor and must thus be isomorphic. QED
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Corollary

There is a functorial isomorphism

Spec(φ)∗(M̃) ' M̃ ⊗R T .

Proof. Follows from the uniqueness of adjoint functors and
from the fact that there is a functorial isomorphism

MorR(N,M) ' MorT (N ⊗R T,M)

for any R-module N and T -module M . QED

Corollary

Let f : X → Y be a morphism of schemes. Let F be
quasi-coherent sheaf on Y . Then f∗(F ) is also quasi-coherent.

[EL7]
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Proposition

Let f : X → Y be a morphism of schemes. Suppose that X is
noetherian. Let F be a quasi-coherent OX-module. Then f∗(F )
is also quasi-coherent.

Proof. We may assume wrog that Y is affine.

Let (Ui) be a finite open affine cover of X and for all i, j let
Uijk be a finite open affine cover of Ui ∩ Uj indexed by k.
Looking at the beginning of the Cech complex and using the
fact that f∗ is left exact as a functor from ModOX (X) to
ModOY (Y ), we see that there is an exact sequence

0→ f∗(F )→
⊕
i

f∗(F |Ui)→
⊕
i,j,k

f∗(F |Uijk)

Thus we see that is sufficient to prove the proposition under the
assumption that X is also affine, where it was already proven.
QED
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Proposition

Let f : X → Y be a morphism of schemes. Suppose that X is
noetherian. Let F be a quasi-coherent sheaf on X.

Then the OY -module Rkf∗(F ) is also quasi-coherent.

Proof. (sketch) F has a resolution by quasi-coherent flasque
sheaves and thus the proposition follows from the previous
proposition. QED
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The cohomology of affine schemes.

Proposition

Let X be a noetherian affine scheme and let F be a
quasi-coherent sheaf on X.

Then Hk(X,F ) = 0 for all k > 0.

Proof. Suppose X = Spec(R). If I is an injective R-module,
then Ĩ is flasque. Thus the proposition follows from the fact
that Γ(X, •) is an exact functor from Qcoh(X) to the category
of R-modules. QED
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The following theorem is a converse.

Theorem (Serre)

Let X be a noetherian scheme and suppose that for all coherent
sheaves F on X, we have H1(X,F ) = 0.

Then X is an affine scheme.
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The proof of Serre’s theorem uses the following lemmata.

Lemma

Let X be a noetherian scheme and let f ∈ Γ(X,OX). Then
there is a natural isomorphism Γ(X,OX)f

∼→ Γ(Xf ,OXf ).

Corollary

Let X be a noetherian scheme and let f1, . . . , fn ∈ Γ(X,OX) be
such that (f1, . . . , fn) = Γ(X,OX).

If the open subschemes Xfi are all affine, then X is affine.

Proof. (of the corollary). The canonical morphism

X → Spec(Γ(X,OX))

is an isomorphism. QED
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Proof of Serre’s theorem.

Let P be a closed point in X.

This exists because X is quasi-compact.

Let U be an open affine neighbourhood of P and let Y be the
complement of U in X.

We view P , Y and P ∪ Y as reduced closed subschemes of X.
Let IP , IY and IP∪Y be the corresponding quasi-coherent
sheaves of ideals.

Note that we have canonically OP (P ) ' κ(P ) and that this
isomorphism describes the sheaf OP entirely.
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By construction, we have an exact sequence

0→ IY ∪P → IY → κ(P )→ 0

where κ(P ) denotes the direct image of OP by the closed
immersion P → X. The long cohomology sequence gives

Γ(X, IY )→ Γ(X,κ(P ))→ H1(X, IY ∪P )

and since by assumption H1(X, IY ∪P ) = 0, we get a surjection

Γ(X, IY )→ Γ(X,κ(P )).

Let f ∈ Γ(X, IY ) be such that the image of f in
Γ(X,κ(P )) ' κ(P ) is 1. We view f as an element of Γ(X,OX)
via the natural inclusion

Γ(X, IY )→ Γ(X,OX).
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By construction, we have that P ∈ Xf and also that Xf ⊆ U .

In particular, Xf is affine, because it corresponds to a basic
open set in U .

If X 6= Xf , we now repeat this reasoning for a closed point P2

in X\Xf and we obtain f2 ∈ Γ(X,OX) such that P2 ∈ Xf2 and
Xf2 is affine and we repeat it for P3 ∈ X\Xf ∪Xf2 etc.

The sequence of the Xfi must stop after a finite number of
steps, and thus cover X, because X is a noetherian topological
space.
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We can thus exhibit a finite sequence f1, . . . , fn ∈ Γ(X,OX)
such that Xfi is affine for all i and such that the Xfi cover X.

By the Corollary above, we shall be able to conclude if we can
show that the fi generate Γ(X,OX). To see this, consider the
morphism of sheaves

n⊕
i=1

OX → OX

sending local sections (s1, . . . , sn) to
∑

i fi · si.
This morphism is surjective, because the Xfi cover X. Using
the assumptions we obtain a surjection

n⊕
i=1

Γ(X,OX)→ Γ(X,OX).

In other words, the fi generate Γ(X,OX). QED

[EL8]
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Affine spaces

Let r > 0. Consider the functor Ar from Schemes to Sets,
which associates with a scheme S the set of morphisms of
sheaves

φ :

r⊕
k=1

OS → OS

Lemma

Let X be a scheme. The restriction of the functor Ar to Top(X)
is a sheaf of sets.

See Exercises.
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Lemma

Let X,S be schemes. Let hS : Schemes→ Sets be the functor
Mor(•, S). Then the restriction of hS to Top(X) is a sheaf of
sets.

Proof: Glue! QED

Proposition-Definition

Ar is representable by the scheme

Ar := Spec(Z[X1, . . . , Xr])

called the affine space of relative dimension r.

Proof. In view of the two last Lemmata, it is sufficient to
construct an isomorphism between the restriction of the functor
hAr to Aff and the restriction of the functor Ar to Aff .
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• The restriction hAr |Aff of hAr to Aff in the language of rings
is the functor

R 7→ MorCRings(Z[X1, . . . , Xr], R)

• The restriction Ar|Aff of the functor Ar to Aff in the
language of rings is the functor

R 7→ MorSets({1, . . . , r}, R)

Now there is a natural transformation between hAr |Aff and
Ar|Aff , which for every ring R maps
MorCRings(Z[X1, . . . , Xr], R) to MorSets({1, . . . , r}, R), by
sending

φ ∈ MorCRings(Z[X1, . . . , Xr], R)

to
φ(X•).

This map is an isomorphism by the definition of polynomials.
QED
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Let R be a ring and let X → Spec(R) be a scheme over R.

From the definitions, we see that to say that X is locally of
finite type over R is the same as to say that there exists

• an open covering (Ui) of X by affine open subschemes;

• for each i, an r(i) ∈ N and a commutative diagram

Ui //

))

Ar(i)R := Ar(i) ×Spec(Z) Spec(R)

��
Spec(R)

where the vertical morphism is the natural one and the
horizontal morphism is a closed immersion.

These closed immersions are in general not related to each other
and one may wonder what kind of compatibilities could be
required.

Projective spaces propose an answer to this question.
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Projective spaces.

Let r > 0. Consider the functor Pr : Schemes→ Sets, such
that

P(S) := {iso. classes of surjective morphisms φ :

r⊕
k=0

OS → L}

where L is locally free of rank 1. Here a surjective morphism

φ :

r⊕
k=0

OS → L

is said to be isomorphic to a surjective morphism

ψ :

r⊕
k=0

OS →M

if there is an isomorphism ι : L 'M such that ι ◦ φ = ψ.

A sheaf, which is locally free of rank one, is often called a line
bundle.
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Theorem

The functor Pr is representable by a scheme Pr, which is
integral and of finite type over Spec(Z).

In particular Pr is noetherian.

The scheme Pr is called projective space of relative dimension r.
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Proof. Let K be the fraction field of the ring Z[X0, . . . , Xr].

Let i, j, k ∈ {0, . . . , r}. Define

Ri := Z[
X0

Xi
, . . . ,

Xr

Xi
] ⊆ K

and
Rij := R

i,
Xj
Xi

⊆ K.

Notice also that we have morphisms of Ri-algebras

Rij ⊗Ri Rik ' Ri,Xj
Xi
·Xk
Xi

⊆→ K.
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Furthermore, it is easy to verify that we have the following
set-theoretic relations between subsets of K:

Ri = Rii, Rij = Rji, Ri ⊆ Rij , Rjk ⊆ R
i,
Xj
Xi
·Xk
Xi

In view of these identities and the fact that any diagram of
inclusions of subrings of K commutes, we see that the schemes

Ui = Spec(Ri)

and
Uij = Spec(Rij)

together with the open immersions Uij → Ui and the
isomorphisms Uij ' Uji coming from the corresponding
inclusions of rings, define glueing data for schemes.

We thus obtain a scheme Pr, which is integral and of finite type
over Z by construction.
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The scheme Pr carries a canonical line bundle O(1).

Declare O(1)|Ui = OUi and let φij ∈ Γ(Uij ,OUij )∗ = R∗ij be
given by Xi/Xj . We verify that

φii = 1

φij = φ−1ji

and

Xj

Xk
· Xi

Xj
=
Xi

Xk

in R
i,
Xj
Xi
·Xk
Xi

, so that the φij satisfy the glueing conditions for

sheaves.

We thus obtain an abelian sheaf on Pr.
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By construction, O(1) is a quasi-coherent locally free sheaf of
rank one.

For each l = 0, . . . , r, there is a canonical element
Xl ∈ Γ(Pr,O(1)), such that

Xl|Ui = Xl/Xi

via the identification O(1)|Ui = OUi . This defines an element of
Γ(Pr,O(1)), because

φij((Xl|Ui)|Uj ) = (Xl/Xi) · (Xi/Xj) = Xl/Xj = (Xl|Uj )|Ui .

so that the local sections Xl|Ui glue to a global section of O(1).

Since Xl|Ul is a trivialisation of O(1)|Ul , we see that the
collection of the Xl defines a surjection

r⊕
k=0

OPr → O(1).

[EL9]



Preamble Cohomology Sheaves Cohomology of sheaves Schemes Projective spaces

We shall now show that Pr represents Pr.

Let S be a scheme.

If we are given a morphism φ : S → Pr, we obtain by pull-back
a surjection

r⊕
k=0

OS → φ∗(O(1)).

This construction provides a map Pr(S)→ Pr(S).
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We wish to construct an inverse map Pr(S)→ Pr(S).

So let S be a scheme and let

φ :

r⊕
k=0

OS → L

be a surjection of sheaves, where L is locally free of rank 1.

We shall call σ0, . . . , σr the corresponding elements of Γ(S,L).
Let

Sσi := {s ∈ S |σi 6∈ ms · Ls}

The set Sσi is open because L is locally free.

By Nakayama’s lemma, the section σi|Sσi induces an
isomorphism OSσi ' L|Sσi .
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Identifying L|Sσi with OSσi via this isomorphism, we obtain by
restriction a morphism

φSσi :

r⊕
k=0

OSσi → OSσi

whose l-th component is given σl/σi, where it is understood
that σl/σi is a function on Sσi such that

(σl/σi) · σi|Sσi = σl|Sσi .

By Proposition 6.1, φSσi induces a morphism fi : Sσi → Ui, such
that

(Xl/Xi) ◦ fi = σl/σi.
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Now note that by construction, we have

f−1i (Uij) = Sσi ∩ Sσj
and similarly

f−1j (Uji) = Sσi ∩ Sσj .

Let ψij : Uij
∼→ Uji be the canonical isomorphism (which is the

identity in the above presentation).

We compare ψij ◦ fi|Sσi∩Sσj and fj |Sσi∩Sσj . We compute

fj |∗Sσi∩Sσj (Xl/Xj) = σl/σj

and

ψij ◦ fi|∗Sσi∩Sσj (Xl/Xj) = ψij ◦ fi|∗Sσi∩Sσj ((Xl/Xi) · (Xj/Xi)
−1)

= (σl/σi) · (σj/σi)−1 = σl/σj

so that ψij ◦ fi|Sσi∩Sσj = fj |Sσi∩Sσj .

Thus the family (fi) of morphisms glue to a morphism S → Pr
and we have produced an inverse map Pr(S)→ Pr(S). QED
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Ample line bundles.

Let S be a noetherian scheme.

A coherent F on S is said to be generated by its global sections
or globally generated if there is a surjection

r0⊕
k=1

OS → F

for some r0 ∈ N.

The corresponding r0 sections of F are then called generating
sections.

Let now L be a line bundle on S.

Definition

The line bundle L is ample if for any coherent sheaf F on S,
there is n0 ∈ N such that F ⊗ L⊗n is generated by its global
sections for all n > n0.
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Proposition

The line bundle L is ample if and only if there is n ∈ N and
σ1, . . . , σk ∈ Γ(S,L⊗n) such that

• the schemes Sσi are affine;

• the schemes Sσi cover S.
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For the proof, we shall need the following

Lemma

Let T0 be a noetherian scheme and let M0 be a coherent sheaf
on T0. Let L0 be a line bundle on T0. Let f ∈ Γ(T0, L0) and let
s ∈ Γ(T0,f ,M0). Then

(a) there is n(s) ∈ N such that s⊗ f⊗n(s) ∈ Γ(T0,f ,M0 ⊗ Ln(s)0 )

extends to Γ(T0,M0 ⊗ Ln(s)0 );

(b) if s ∈ Γ(T0,M0) restricts to 0 in Γ(T0,f ,M0) then there is

n(s) ∈ N such that s⊗ f⊗n(s) ∈ Γ(T0,M0 ⊗ Ln(s)0 ) vanishes.

See Exercises.
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Proof (of the last Proposition).

”⇐”.

So suppose that there is n ∈ N and σ1, . . . , σk ∈ Γ(S,L⊗n) such
that (Sσi) is an open affine covering of S.

Let F be a coherent sheaf on S.

For each i, let (τij ∈ Γ(Sσi , F |Sσi ) be a finite family of
generating sections of F |Sσi . Such sections exist because Sσi is
affine.

By the last Lemma, there is n ∈ N such that for all i, the
sections τij ⊗ σ⊗ni |Sσi extend to sections λij ∈ Γ(S, F ⊗ L⊗n).

Now notice that the sections τij ⊗ σ⊗ni |Sσi are also generating
sections of F ⊗ L⊗n|Sσi because L|Sσi is by construction trivial.

Hence the sections λij (for all i, j) are generating sections of
Γ(S, F ⊗ L⊗n), since the Sσi cover S.
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”⇒”:

Let x ∈ S. It is sufficient to show that there is n(x) ∈ N and
σx ∈ Γ(S,L⊗n(x)) such that Sσx is affine and x ∈ Sσx .

Let U be an affine neighbourhood of x such that L|U ' OU and
let I be the ideal sheaf associated with S\U .

Let ι : (S\U)red → S be the canonical closed immersion.

Let n(x) ∈ N be such that there is σ̄x ∈ Γ(S, I ⊗ L⊗n(x)) with
σ̄x 6= 0.
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Now consider the sequence of OS-modules

0→ I → OS → ι∗(O(S\U)red)→ 0 (5)

and the sequence

0→ I ⊗ L⊗n(x) → L⊗n(x) → ι∗(O(S\U)red)⊗ L⊗n(x) → 0 (6)

obtained by tensoring (5) by L⊗n(x).

Applying Γ(S, •) to (6) we obtain a map

Γ(S, I ⊗ L⊗n(x))→ Γ(S,L⊗n(x)).

Let σx be the image of σ̄x by this map.

The section σx ∈ Γ(S,L⊗n(x) vanishes on S\U by construction.
Hence Sσx ⊆ U .

Furthermore, since by assumption we have LU ' OU , the set
Sσx ⊆ U is a basic open subset of the affine scheme U is thus
also affine. QED

[EL10]
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Corollary

The line bundle O(1) on Pr is ample.

Proof. Let Xi be the usual canonical section of O(1). The
schemes PrXi are by construction the affine scheme Ui in the
standard open affine covering of Pr. QED
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Proposition

Let f : S → Spec(R) be a morphism of finite type to the
spectrum of a noetherian ring R.

Let L be an ample line bundle on S.

There is n ∈ N and σ0, . . . , σr ∈ Γ(S,L⊗n) generating L⊗n and
such that the corresponding morphism

S → PrR

is a closed immersion into an open subset of PrR.
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Proof. We may wrog replace L by L⊗n for some n > 1.

By the above Proposition, we may thus assume that there is a
finite family (σi ∈ Γ(S,L)) such that Sσi is affine and such that
the Sσi cover S.

For each i, let σij ∈ Γ(Sσi , L) be a family of sections, such that
the functions σij/σi|Sσi generate Γ(Sσi ,OSσi ) as an R-algebra.

For some n > 0, which can be taken independent of i, the

sections σ
⊗(n−1)
i |Sσi ⊗ σij ∈ Γ(Sσi , L

⊗n) extend to sections τij of
L⊗n over S by Lemma 16.
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Now consider the disjoint union Σ of all the σi and all the τij
and choose an arbitrary identification φ : {0, . . . , r} ' Σ.

Since the σi already generate L, the set of sections Σ generates
L⊗n and via φ we obtain a Spec(R)-morphism ι : S → PrR.

This morphism is obtained by glueing together the morphisms

ιi : Sσi → Spec(R[
X0

Xφ−1(σi)
, . . .

Xr

Xφ−1(σi)
])

such that

ι∗i (
Xk

Xφ−1(σi)
) =

φ(k)|Sσi
σi|Sσi

.

Since by construction the functions
φ(k)|Sσi
σi|Sσi

generate

Γ(Sσi ,OSσi ) as an R-algebra, and since Sσi is affine, we see that
ιi is a closed immersion.

Thus ι is a closed immersion of S into the union in PrR of all the
open affine subschemes Spec(R[ X0

Xφ−1(σi)
, . . . Xr

Xφ−1(σi)
]) (for all i).

QED
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The cohomology of projective space.

If O(1) = OPr(1) is the canonical bundle on Pr and n > 0, we
shall write O(n) for O(1)⊗n.

For n < 0, we also write

O(n) := Hom(O(−n),OPr) =: (O(−n))∨

In general, if F is a locally free sheaf on a scheme X, we write

F∨ := Hom(F,OX)
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Suppose that L is a locally free sheaf of rank 1 on an integral
scheme X.

If σ ∈ L(X) and σ 6= 0, then σ induces a morphism of sheaves

σ∨ : L∨ → OX

whose image is a quasi-coherent sheaf of ideals I.

Since X is integral, the morphism σ∨ is a monomorphism and
hence identifies I with L∨.

If we let ι : Z(σ)→ X be the closed subscheme associated with
I, we thus have an exact sequence

0→ L∨ → OX → ι∗(OZ(σ))→ 0
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Note the following simple fact.

If f : X0 → X is a morphism of schemes, then there is a
morphism g : X0 → Z(σ) such that f = ι ◦ g iff f∗(σ∨) = 0.

Furthermore, the morphism g, if it exists, is then unique.

From this we deduce Z(σ) represents the functor
Schemes 7→ Sets

S 7→ {f ∈ X(S) | f∗(σ∨) = 0}

The closed subscheme Z(σ) is called the zero-scheme associated
with σ.
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Lemma

Let f : X → Y be an affine morphism of schemes.

Suppose that X is noetherian.

Then for all quasi-coherent sheaves F on X, we have
Rkf∗(F ) = 0 for all k > 0.

Proof. We may suppose that Y (and thus X) is affine. Now
the lemma follows from the fact that f∗ : Qcoh(X)→ Qcoh(Y )
is an exact functor and from the fact that that injective
OX(X)-modules are flasque. QED

Lemma

Let ι : X → Y be a closed immersion. Then ι is an affine
morphism.

Proof. We may suppose that Y is affine. Then X is given by
Spec(Γ(Y,OY )/J)) for some ideal of Γ(Y,OY ). QED
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Cech cohomology on noetherian schemes.

Let X be a noetherian scheme and suppose that X a finite open
covering (Ui) such that any finite intersection of the Ui is affine.

Let F be a quasi-coherent sheaf on X.

Then we have canonically

Hk(Γ(X,C•((Ui), F ))) ' Hk(X,F )

This follows from the existence of the Leray spectral sequence
and from the above Lemma.
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Proposition

Let A be a noetherian ring.

Then for all n, k ∈ Z, Hk(PrA,O(n)) is a finitely generated
A-module.

Furthermore, we have

H0(PrA,O) ' A

and
Hk(PrA,O(n)) = 0

for all k > 1 and all n > 0.
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Sketch of proof.

First note that for any of the canonical sections

Xi = Xi ⊗A 1 ∈ Γ(PrA,O(1))

the zero scheme Z(Xi) is canonically isomorphic to Pr−1A .

Indeed, for any scheme over Spec(A) we have

PrA(S) = {iso. cl. of surj. mor. φ :

r⊕
k=0

OS → L}

and the Z(Xi) thus represents the functor
Schemes/Spec(A) 7→ Sets

S 7→ {iso. cl. of surj. mor. φ = ⊕kφk :

r⊕
k=0

OS → L such that φi = 0}

which is isomorphic to the functor Pr−1A (•).
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Thus we have an exact sequence

0→ O(−1)→ OPr → ι∗(OPr−1)→ 0

and tensoring this sequence with O(k) (k ∈ Z), we obtain a
sequence

0→ O(k − 1)→ O(k)→ ι∗(OPr−1(k))→ 0

Note that ι∗(OPr−1(k)) ' ι∗(OPr−1)⊗O(k).

[EL11]
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Now consider the associated long exact sequence:

0 → H0(PrA,O(k − 1))→ H0(PrA,O(k))→ H0(Pr−1A , ι∗(O(k)))

→ H1(PrA,O(k − 1))→ H1(PrA,O(k))→ H1(Pr−1A , ι∗(O(k)))→ . . .

Now remember that closed immersions are affine by the above
Lemma and thus

H i(PrA, ι∗(O(k))) ' H i(Pr−1A ,O(k)))

Thus by a double induction on r and k, we see that it is
sufficient to prove that H0(PrA,O) = A and Hk(PrA,O) = 0 for
all k > 0.

This is proven in the notes using Cech cohomology. QED
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Corollary

The scheme Pr is not affine.

Proof. If Pr were affine, then we would have Pr ' Spec(Z),
according to the theorem. QED
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Cohomological properties of strongly projective
morphisms

A morphism of schemes f : X → S is called strongly projective
if there is a factorisation f = p ◦ ι, where ι : X → PrS is a closed
immersion and p : PrS → S is the natural projection morphism.

Theorem

Let f : X → S be a strongly projective morphism.

Suppose that S is a noetherian scheme.

Let F be a coherent sheaf on X.

Then for all k > 0, the sheaf Rkf∗(F ) is coherent.
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Proof. We may assume that S = Spec(R), where R is a
noetherian ring.

We first show the statement in the case where f is a closed
immersion.

In that case, since f is affine, we may also assume that
X = Spec(T ) is affine.

We then have Rkf∗(F ) = 0 for all k > 0 by the above Lemma
and thus we only have to show that f∗(F ) is coherent.

We know that f∗(F ) is quasi-coherent by Proposition 5.12 and
thus we only have to show that f∗(F )(S) is a finitely generated
R-module. This is clear.
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By the existence of the Leray spectral sequence, we may thus
suppose that X = PrS and that f is the natural projection.

Let n0 be such that F ⊗O(n0) := F (n0) is globally generated.

Noticing that
O(n0)⊗O(−n0) ' OPrS ,

we obtain a surjection
⊕f

k=0O(−n0)→ F for some f .

Denoting by K the kernel of this morphism, we get an exact
sequence

0→ K →
f⊕
k=0

O(−n0)→ F → 0 (7)
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Note that K is also a coherent sheaf, because PrS is a noetherian
scheme.

Notice also that we may compute to cohomology of F using the
Cech complex with ordering associated with the standard open
covering of PrS .

The terms of this complex vanish in degrees > r. Thus we know
that Rkf∗(F ) = 0 for all k > r.

Now looking at the long exact cohomology for f∗ of (7) we
obtain a surjection

Rrf∗(

f⊕
k=0

O(−n0))→ Rrf∗(F )
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Thus we see that Rrf∗(F ) is coherent, since we know that

Rrf∗(⊕fk=0O(−n0)) is coherent.

Since F was arbitrary, we deduce that Rrf∗(K) is also coherent.

The long exact cohomology sequence again now shows that we
have an exact sequence

Rr−1f∗(

f⊕
k=0

O(−n0))→ Rr−1f∗(F )→ Rrf∗(K)

and thus Rr−1f∗(F ) is also coherent. Thus Rr−1f∗(K) is also
coherent and we may continue this way to show that Rkf∗(F ) is
coherent for all k. QED
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Theorem (Serre)

Let f : X → Spec(A) be a strongly projective morphism, where
A is a noetherian ring.

Let L be an ample line bundle.

Let F be a coherent sheaf on X.

Then there is n0 > 0 such that Rkf∗(F ⊗ L⊗n) = 0 for all
n > n0 and all k > 0.
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Proof. As before, we may thus suppose that X = PrA for some
r > 0.

Since PrA has a finite covering by r + 1 open affine subschemes
whose intersections are affine, we have Hk(PrA, Q) = 0 for all
k > r and any quasi-coherent sheaf Q on PrA.

Let n0 be sufficiently large so that F ⊗ L⊗n0 is generated by its
global sections. In other words, we have an exact sequence

0→ K →
r0⊕
i=1

O → F (n0)→ 0 (8)

Looking at the long exact cohomology sequence of (120), we get
a surjection

Hr(PrA,
r0⊕
i=1

O)→ Hr(PrA, F (n0)).

and thus Hr(PrA, F (n0)) = 0.
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Now take n1 so that K(n1) is also globally generated. Then we
also have Hr(PrA,K(n1)) = 0. Looking at the long exact
cohomology sequence of the sequence

0→ K(n1)→
r0⊕
i=1

O(n1)→ F (n0 + n1)→ 0

we get a surjection

Hr−1(PrA,
r0⊕
i=1

O(n1))→ Hr−1(PrA, F (n0 + n1))

and again we see that Hr−1(PrA, F (n0 + n1)) = 0, unless
r − 1 = 0.

Continuing this way, we conclude that F (n) has no cohomology
in positive degrees for n sufficiently large.
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Cohomological characterisation of ample line bundles.

Theorem

Let X be a noetherian scheme.

Let L be a line bundle on X.

Suppose that for all coherent sheaves F on X, there is n0 > 0
such that Hk(X,F ⊗ L⊗n) = 0 for all n > n0 and all k > 0.

Then L is ample.

The proof is similar to the proof of Serre’s theorem
characterising affine schemes. See for the notes for details.

[EL12]
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Flat morphisms

Let f : X → Y be a morphism of schemes.

Definition

Let F be a OX-module. We say that F is flat over Y at x ∈ X
if the stalk Fx is flat as a OY,f(x)-module via the natural
morphism of rings OY,f(x) → OX,x. We say that F is flat over
Y if F is flat at every x ∈ X.

Recall that a module M over a ring R is flat if the functor
• ⊗M from R-modules to R-modules sending an R-module N
to N ⊗M is an exact functor.

• Let Spec(B)→ Spec(A) be a morphism schemes and F a
quasi-coherent sheaf on Spec(B). Let M be the B-module
associated with F . Then F is flat over Spec(A) if and only if M
is flat as an A-module: see Exercises.

• Any base-change of a flat morphism is flat. See Exercises.
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We also recall without proof the following basic result:

Theorem

Let A be a local ring and let M be a finite A-module. Then the
following conditions on M are equivalent.

• M is flat over A;

• M is free over A.

Proof.

See Theorem 7.10 in Commutative Ring Theory by H.
Matsumura.

A consequence of this theorem is that a coherent sheaf F on a
noetherian scheme X is flat over X if and only if it is locally
free.
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Cohomology and flat base change

Let f : X → Y be a morphism of schemes.

Suppose that Y is noetherian and affine and suppose that X
has a finite open covering (Ui) of X such that any finite
intersection of the Ui is affine.

Let F be a quasi-coherent sheaf on X. Let

X ′
r //

f ′

��

X

f
��

Y ′
b // Y

be a cartesian diagram, where Y ′ is a noetherian and affine and
b is flat.

Theorem

There is a natural isomorphism b∗(Rlf∗(F )) ' Rlf ′∗(r∗(F )).
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Proof. Consider the complex

L• := f∗(C
•((Ui), F )).

By construction we have

Hl(b∗(L•)) ' Rlf ′∗(r∗(F )).

Now since b is flat, we see that Hl(b∗(L•)) ' b∗(Hl(L•)), in
other words we have

b∗(Rlf∗(F )) ' Rlf ′∗(r∗(F )).

QED
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The semicontinuity theorem

Let f : X → Y be a morphism of schemes.

Suppose that Y is noetherian and affine and suppose that X
has a finite open covering (Ui) of X such that any finite
intersection of the Ui is affine.

Let F be a quasi-coherent sheaf on X and suppose that

• the sheaf F is flat over Y ;

• for all l > 0, the quasi-coherent sheaf Rlf∗(F ) is coherent.
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Theorem (semicontinuity theorem)

There is a finite cochain complex of coherent locally free
modules (K•) on Y with the following property.

For any cartesian diagram

X ′
r //

f ′

��

X

f
��

Y ′
b // Y

where Y ′ is a noetherian and affine, there is a canonical
isomorphism of quasi-coherent sheaves

Hl(b∗(K•)) ' Rlf ′∗(r∗F ).

Note that the assumptions of the theorem will be verified if f is
a strongly projective morphism, F is flat over Y and Y is
noetherian and affine.
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Sketch of proof.

The proof is a consequence of the existence of the Cech complex
and of two basic results of homological algebra.

Step I. Homological algebra.

Let R be a noetherian ring. Let

0→ C0 → C1 → · · · → Cn → 0

be a finite cochain complex of R-modules.

Suppose that Hi(C•) is finitely generated for all i > 0.
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Lemma

There is a finite cochain complex of R-modules

0→ L0 → L1 → · · · → Ln → 0

such that

• L• is quasi-isomorphic to C•;

• Li is free for all i > 0;

• Li is finitely generated for all i > 0.

Furthermore, Ci is flat for all i > 0 then we may find a cochain
complex L• with the above properties such that L0 is flat.

For the proof, see the notes.
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Let φ : P •1 → P •2 be a quasi-isomorphism of cochain complexes
of R-modules, where both complexes are supposed bounded
above.

Let C• be another cochain complex of R-modules, which is
bounded above. Suppose that either

• Ck is a flat R-module for all k ∈ Z
• or P k1 and P k2 are flat R-modules for all k ∈ Z.

Lemma

The morphism

φ⊗ C• : P •1 ⊗ C• → P •2 ⊗ C•

is a quasi-isomorphism.
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Proof of the semicontinuity theorem.

Consider the complex

L• := f∗(C
•((Ui), F )).

Then Li are flat and quasi-coherent, L• is a finite complex and
by construction for any cartesian diagram as in the statement of
the theorem, we have

Hl(b∗(L•)) ' Rlf ′∗(r∗F ).

Hence, by the last lemma, we only have to show that there
exists a complex of coherent locally free modules K•, which is
quasi-isomorphic to L•.

The lemma before provides this complex. QED

[EL13]
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Consequences of the semicontinuity theorem.

If we apply Nakayama’s lemma to the complex provided by the
semi-continuity theorem, we can derive interesting statements
about the cohomology of flat families.

Lemma (Nakayama’s lemma)

Let R be a local ring with maximal ideal m.

Let M be a finite R-module.

Let b1, . . . , bk ∈M be pairwise distinct elements.

Then the set {b1, . . . , bk} is a set of generators of M of minimal
cardinality if and only if the image of {b1, . . . , bk} in M/mM is
a basis of M/mM as a R/m-vector space.

See Atiyah-MacDonald for the proof.
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If R is a ring and L• is a cochain complex of R-modules.

Let p ∈ Spec(R).

We denote by L•p the complex on Rp obtained by localisation
and we write L•(p) for the complex L•p ⊗Rp Rp/pRp, which is a
complex of κ(p) := Rp/pRp-vector spaces.

Lemma

Let R be a noetherian ring. Let M be a finitely generated
R-module.

Then the function dimκ(p)(M(p)) is upper semicontinuous on
Spec(R), ie for all n ∈ Z, the set

{p ∈ Spec(R) | dimκ(p)(M(p)) > n}

is closed.

If R is reduced and dimκ(p)(M(p)) is constant then M is locally
free.
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Proof of the first assertion. Let

Rt → Rs →M → 0

be an exact sequence. Let p ∈ Spec(R).

Let (φij)16i6s;16i6t be a s× t matrix representing the map
Rt → Rs in the standard bases.

For each l > 1, let f1l, . . . fkll be the set of all the minors of
order l of (φij) (these are polynomials in the φij). We then have

{p ∈ Spec(R) | dimκ(p)(M(p)) > n}
= {p ∈ Spec(R) | s− rk((φij(p))) > n}
= {p ∈ Spec(R) | rk((φij(p))) 6 s− n}
= {p ∈ Spec(R) | ∀l > s− n, r > 1 : flr ∈ p}
= ∩l>s−n ∩klr=1 V ((flr))

proving the first assertion in the lemma.



Preamble Cohomology Sheaves Cohomology of sheaves Schemes Projective spaces

Proof of the second assertion. Let p ∈ Spec(R) and let

γ1, . . . , γr be a basis of M(p). We have to show that M̃ is
locally free in a neighborhood of p.

Lift this basis to a set a1/b1, . . . , ar/br ∈Mp, where
b1, . . . br ∈ R\p. We may and do replace R by Rb1···br , since
Rb1···br corresponds to a basic open set of R.

Consider now the exact sequence of R-modules

0→ K → Rr
φ→M → C → 0 (9)

where φ((x1, . . . , xr)) =
∑

i xi ·
ai
bi

.

By construction C(p) = 0 and by Nakayama’s lemma, we
conclude that Cp = 0.
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Since C is a finitely generated R-module, this means that there
exists b ∈ R\p such that b ·C = 0 and thus replacing again R by
Rb, we obtain a sequence of R-modules

0→ K → Rr
φ→M → 0

Now K is a finitely generated R-module as well, since R is
noetherian and we choose a surjection Rt → K. This yields
another exact sequence of R-modules

Rt
λ→ Rr

φ→M → 0

Now since dimκ(q)(M(q)) = r for all q ∈ Spec(R), we see that
φ(q) is an isomorphism and λ(q) = 0 for all q ∈ Spec(R).

The map λ can be described by a matrix (ψij ∈ R) and we have
just shown that for all i, j and all q ∈ Spec(R), we have
ψij(q) = 0.

In other words, ψij ∈
√

(0) = 0 for all i, j and thus ψij = 0 and
λ = 0. Thus φ is an isomorphism and M is free. QED



Preamble Cohomology Sheaves Cohomology of sheaves Schemes Projective spaces

Lemma

Let R be a reduced noetherian ring. Let

0→ L0 d0→ L1 d1→ · · · → Ln → 0

be a finite cochain complex of finitely generated free R-modules.
Suppose that the function on Spec(R)

p 7→ dimκ(p)(H
i(L•(p)))

is constant. Then H i(L•) is free and there is a natural
isomorphism

H i(L•)(p) ' H i(L•(p))

for all p ∈ Spec(R).

See the notes for the proof, which relies on Nakayama’s lemma.
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Lemma

Let R be a noetherian ring. Let

0→ L0 → L1 → · · · → Ln → 0

be a finite cochain complex of finitely generated free R-modules.
Then the function on Spec(R)

p 7→
∑
i>0

(−1)i dimκ(p)(H
i(L•(p)))

is locally constant on R.

Proof. Notice that∑
i>0

(−1)i dimκ(p)(H
i(L•(p))) =

∑
i>0

(−1)i dimκ(p)(L
•(p)) =

∑
i>0

(−1)irk(L•)

We leave it as an exercise to check this (hint: lift bases). QED
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Corollary

Let f : X → Y be a strongly projective morphism. Suppose that
Y is noetherian.

Let F be a coherent sheaf on X and suppose that F is flat over
Y .

Then the function

y 7→
∑
i>0

(−1)i dimκ(y)(H
i(Xy, Fy))

is locally constant on Y .

Proof. Apply the last Lemma to the complex K• provided by
the semicontinuity theorem. QED
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Corollary

Let f : X → Y be a strongly projective morphism. Suppose that
Y is noetherian and reduced.

Let F be a coherent sheaf on X and suppose that F is flat over
Y .

Suppose that the function

y 7→ dimκ(y)(H
i(Xy, Fy))

is locally constant on Y .

Then Rif∗(F ) is locally free.

Proof. Apply the Lemma before last to the complex K•

provided by the semicontinuity theorem. QED
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Hilbert polynomials

Let r > 0 and let K be a field.

Let F be a coherent sheaf on PrK .

For all n ∈ Z, we write

χF (n) :=
∑
i>0

(−1)i dimK H
i(X,F ⊗O(n))

Proposition

The function χF (•) is a polynomial with rational coefficients.

The polynomial χF (•) is called the Hilbert polynomial of F.
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Example

We have

χOPr
K

(n) =

(
n+ r

n

)
= dimK K[X0, . . . , Xr]

[n]

For the proof of the proposition, see the notes.
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Note also the important

Lemma

0→ F ′ → F → F ′′ → 0

is an exact sequence of coherent sheaves on PrK , then we have

χF (n) = χF ′(n) + χF ′′(n)

for all n ∈ Z.

Proof (of the lemma). Look at the associated long exact
sequence of cohomology. QED
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Proposition

Let S be a connected locally noetherian scheme.

Let r > 0 and let ι : X → PrS be a closed subscheme of PrS.

Suppose that X is flat over Spec(A).

Then the Hilbert polynomial of ικ(s) : Xκ(s) → Prκ(s) does not
depend on p ∈ S.

Here the immersion ικ(s) : Xκ(s) → Prκ(s) is obtained by
base-change from ι : X → PrS via the natural morphism
Spec(κ(s))→ S.

Proof. This is a special case of a corollary of the
semicontinuity theorem. QED
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Two more results on flatness. (without proof; not in the
notes)

Theorem (generic flatness theorem)

Let f : X → Y be a morphism of finite type.

Suppose that Y is noetherian and integral.

Let F be a coherent sheaf on X.

Then there is a non-empty open set U ⊆ Y such that the
restriction of F to f−1(U) is flat over U .

Theorem (numerical characterisation of flatness)

Let S be an integral noetherian scheme, let r > 0 and let
ι : X → PrS be a closed subscheme of PrS.

Suppose that the Hilbert polynomial of ικ(s) : Xκ(s) → Prκ(s) does
not depend on p ∈ S.

Then X is flat over S.

[EL14]
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Further results on the Zariski topology

Definition

Let T be a topological space. We say that T is irreducible if
every non empty open subset of T is dense in T .

Equivalently, T is irreducible iff there is no pair of disjoint non
empty open subsets in T .

Notice that every open subset of an irreducible topological
space is irreducible.

Lemma

If A is a noetherian ring then Spec(A) is irreducible if and only
if A/

√
(0) is an integral ring.

Corollary

Let A be a noetherian ring. Let I ⊆ A be an ideal.

Then V (I) is irreducible if and only if
√
I is a prime ideal.
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Lemma

Let T be a noetherian topological space.

There is a finite sequence C1, . . . Ck of closed irreducible subsets
of T such that

•
⋃
iCi = T ;

• for all indices i, we have Ci 6⊆ ∪j 6=iCj.

This sequence is unique up to permutation of the indices.

See Exercises.
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Application. Let A be a noetherian ring. There is a finite
sequence p1, . . . pk of prime ideals in A such that

•
⋂
i pi =

√
0;

• for all indices i, we have pi 6⊇ ∩j 6=ipj .

This sequence is unique up to permutation of the indices. The
ideals p1, . . . pk are called the minimal prime ideals of A.

In particular, if I ⊆ A is an ideal, there is a finite sequence
p1, . . . pk of prime ideals in A such that

•
⋂
i pi =

√
I;

• for all indices i, we have pi 6⊇ ∩j 6=ipj .

This sequence is unique up to permutation of the indices.
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The following lemma points out a specific property of
irreducible closed subsets of schemes.

Lemma (generic points)

Let S be a scheme. Let C ⊆ S be an irreducible closed subset.

There is a unique point η ∈ C such that the Zariski closure η̄ is
C.

The point η is called the generic point of C.

Idea of proof. Reduce to S = C and S the spectrum of an
integral ring A. Then the generic point is given by (0).
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Constructibility.

Definition

Let T be a noetherian topological space.

A subset E ⊆ T is called constructible if E is a finite union of
locally closed subsets.

The class of constructible sets is the smallest subclass of the
power set of T , which contains the open subsets of T and is
closed under finite unions and complementation.
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Noetherian induction.

Let T be a noetherian topological space.

Let P (•) be a property of closed subsets of T .

Suppose that P (∅) holds and that for all closed subsets C of T ,
the statement

if P (C ′) holds for all closed subsets C ′
6=
↪→ C then P (C) holds

is verified.

Then P (T ) holds.
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Lemma

Let T be a noetherian topological space.

Then E ⊆ T is constructible if and only if for any irreducible
closed subset C ⊆ T , either E ∩ C or C \ (E ∩ C) contains a
non empty open subset of C in the induced topology.

Proof of ”⇒”. By noetherian induction, we may assume that
T = C and thus that T is irreducible. So we have to show that
either E or T\E contains an open subset of T .

Let T1, . . . Tk be closed subsets of T and U1 ⊆ T1, . . . , Uk ⊆ Tk,
where for all indices i, the set Ui is an open subset of Ti in the
induced topology. Suppose that E =

⋃
i Ui.

If for some index i0, we have Ti0 = T , then E contains an open
subset of T . So we may suppose that Ti 6= T for all i. Now since
T is irreducible, we have T 6=

⋃
i Ti and thus

T\(
⋃
i

Ti) ⊆ T\E 6= ∅. QED
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Permanence properties of constructible sets.

Let f : X → Y be a morphism of noetherian schemes. Let
E ⊆ Y be constructible.

Then f−1(E) is clearly constructible.

What about direct images?

Theorem (Chevalley-Tarski)

Let f : X → Y be a morphism of finite type. Suppose that Y is
noetherian.

Let E ⊆ X be a constructible subset of X.

Then f(E) is a constructible subset of Y .

[EL15]
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Main steps of the proof of Chevalley-Tarski’s theorem.

Step I. Preliminary results in commutative algebra.

Theorem (Noether’s normalisation lemma)

Let K be a field and let A be a finitely generated K-algebra.
Then there is a natural number n ∈ N and a map of K-algebras

φ : K[T1, . . . Tn]→ A

such that φ is injective and finite.

By definition, φ is finite if A is a finitely generated
K[T1, . . . Tn]-module.

Theorem (going-up theorem)

Let φ : A→ B be a morphism of rings and suppose that φ is
injective and finite. Then Spec(φ) : Spec(B)→ Spec(A) is
surjective.
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Proof of the Going up theorem.

Lemma

Suppose that λ : k → B0 is an injective and finite map of
domains. Then B0 is a field if and only if k is a field.

Proof (of Lemma 31).

”⇒”. Suppose that k is a field.

By induction on the number of generators of B0 as a k-module,
we may suppose that B0 is generated by one element b0 ∈ B0

over k.

Let k[t]→ B0 be the k-algebra map sending t on b0.

The kernel of this map is a prime ideal, since B0 is integral.

Since prime ideals in k[t] are maximal, we conclude that B0 is a
field.
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”⇐”. Now suppose that B0 is a field. We want to show that k
is a field.

Let x ∈ k∗. We only have to show that the inverse x−1 ∈ B0 lies
in k.

Let ex : B0 → B0 be the map such that ex(z) = z/x for all
z ∈ B0.

There is a polynomial P (t) = tn + an−1 · tn−1 + · · ·+ a0 ∈ k[t]
such that P (ex) = 0 (generalised Cayley-Hamilton).

In particular, we have P (ex)(1) = P (1/x) = 0.

Thus we have xn−1 · P (1/x) = 0, ie

x−1 + an−1x+ · · ·+ a0 · xn−1 = 0

which implies that x−1 ∈ k. QED
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End of proof of the Going-up theorem.

Let p ∈ Spec(A). There is a commutative diagram

Spec(Bp) //

Spec(φp)

��

Spec(B)

Spec(φ)

��
Spec(Ap) // Spec(A)

Since p the image of the maximal ideal m of Ap under the map
Spec(Ap)→ Spec(A), it is sufficient to show that there is a
prime ideal q in Bp so that φ−1p (q) = m.

Let q be any maximal ideal of Bp.

We have an injective and finite map Ap/φ
−1
p (q)→ Bp/q.

By assumption, the ring Bp/q is a field and by Lemma 31, the
ring Ap/φ

−1
p (q) is also field, ie φ−1p (q) is a maximal ideal in Ap.

Since Ap is a local ring, we have p = φ−1p (q). QED
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Lemma (expanded normalisation lemma)

Let φ : A0 → B0 be an injective morphism of rings.

Suppose that A0 and B0 are integral rings and suppose that B0

is finitely generated as an A0-algebra.

Then there is n ∈ N, s ∈ A0 and a finite and injective
homomorphism of A0-algebras

A0,s[t1, . . . , tn]→ B0,s

See the notes for the proof.
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Proof. (of the theorem of Chevalley-Tarski).

Step I. If f(E) is Zariski dense in Y then f(E) contains a non
empty open subset of Y .

By noetherian induction, we may assume that Ē = X and
assume that the statement hold if Ē 6= X.

We may suppose that X and Y are reduced and irreducible
(easy).

We may wrog replace Y by one of its open affine subschemes V
and X by X ×Y V , so we may assume that Y is affine.

Let now U ⊆ X be a non empty open affine subscheme. Either
f(U ∩E) is Zariski dense in Y or f((X\U) ∩ E) is Zariski dense
in Y . In the latter case, the assertion follows from the
noetherian inductive hypothesis so we may assume that
f(U ∩ E) is Zariski dense in Y and thus replace X by U .
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E is a finite union of locally closed subsets and one of these
closed subsets, say E0, must be dense in X.

In particular, E0 contain an affine open subset U0 of X and as
before, we may replace X by U0 so that we now have E = X.

By Lemma 27, we may thus assume that X = Spec(B) and
Y = Spec(A), where A and B are integral rings. Let φ : A→ B
be the corresponding maps of rings. Since f(X) is dense in Y , φ
is injective.

So we are now reduced to show that that if φ : A→ B is an
injective map of rings, which makes B a finitely generated
A-algebra, then Spec(φ)(Spec(B)) ⊆ Spec(A) contains an open
subset of Spec(A).
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Now recall that there is n ∈ N, s ∈ A and a finite and injective
homomorphism of A0-algebras

As[t1, . . . , tn]→ Bs

We may replace A by As and B by Bs, since Spec(As) is a basic
open subset of Spec(A).

In this situation, the going-up theorem implies that Spec(φ) is
surjective and we have proven the statement and completed
Step I.
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Step II. End of proof of Chevalley-Tarski.

By noetherian induction, we may assume that the Zariski
closure of f(E) is Y and that the intersection of f(E) with any
proper closed subset of Y is constructible.

Let C be an irreducible closed subset of Y . By Lemma 30, it is
sufficient to show that C ∩ f(E) or C\(C ∩ f(E)) contains a
non empty open subset of C.

If C 6= Y then by the inductive hypothesis, we know that
C ∩ f(E) is constructible and in particular C ∩ f(E) or
C\(C ∩ f(E)) contains a non empty open subset of C.

So we may assume that C = Y . In that case, C contains a non
empty open subset by Step I. QED

[EL16]
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