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Cohomology
Let A be an abelian category. An object I of A is called
injective if the contravariant functor
Hom(e,I): A — Ab
is exact.

Let A® be a cochain complex in A, which is bounded below. An
injective resolution of A® is a cochain complex in A

LSRN Ry
consisting of injective objects and such that:

e [* is bounded below;
e there is a morphism of complex A® — I°®, which is a
quasi-isomorphism.

If every cochain complex A® in A, which is bounded below, has
an injective resolution, we say that 4 has enough injectives.



Let (B®,dy) and (C*®,d%.) be cochain complexes in A.
Let f*,¢* : B* — C*® be two morphisms of complexes.

A homotopy k*®* between f® and ¢° is a collection of morphisms
kB — !
(1 € Z) such that
freg =di ok' + kK od

for all 7 € Z.



Lemma

The homotopy relation is an equivalence relation on complezes.
If f* and g* as above are homotopic then H*(f*) = H*(g®) for
all k € Z, ie f* and g* induce the same morphisms in
homology.

Lemma

Let ¢ : A — B be a morphism of objects of A. Let I® (resp. J*®)
be an injective resolution of A (resp. B). Then there is a
morphism of complexes 1* — J*, which is compatible with the
morphisms A — 19, B — J° and ¢. Any two such morphisms
are homotopic.



Let B be another abelian category.

Let F': A — B be a covariant functor. We say that F' is
additive if for all objects A, B of A, the map

Mor(A, B) — Mor(F(A), F(B))

is a map of abelian groups.

We say that F' is left exact if for any exact sequence
04 —>A—-A"=0
in A, the sequence
0— F(A) = F(A) — F(A")

is also exact.



Suppose that A has enough injectives.

If FF: A— Bis a covariant left exact additive functor, we may
for all i € Z define a functor R'F by the following recipe.

For A and object in A, let I® be a injective resolution of A.
We define ' '
R'F(A) :=H'(F(I*%))

By the above lemmata, H'(F(I*®)) is well-defined up to unique
isomorphism and R'F : A — B is an additive functor, called the
i-th right derived functor of F.



Let A be an abelian category with enough injectives.

Let F': A — B be a left exact functor to another abelian
category.

Theorem

For any short exact sequence
0—-A A= A"=0 (1)

there is a canonical ‘long’ exact sequence

0— RF(A") = R°F(A) — R°F(A") - R'F(A') — R'F(A) — ...

which is naturally functorial in the short exact sequence (1).



Sheaves

Let X be a topological space.
Denote the category of abelian groups by Ab.

Let Top(X) be the category whose objects are the open sets of
X and whose arrows are the inclusion maps.

Definition

A presheaf F' (of abelian groups) on X is a contravariant
functor F : Top(X) — Ab.

The presheaves on X naturally form a category, whose arrows
are the natural transformations of functors.



If U — V is an inclusion of open subsets of X and s € F(V), we
write

slp = F(U = V)(s).

A sheaf on X is a presheaf F' on X, with the following
properties.

Let (U; € Top(X)) be a family of open subsets of X. Then
e if s € F(|J,; U;) and s|y, = 0 for all indices ¢, then s = 0;

o if for all indices i we are given s; € F(U;) and
silu;nu; = sjluinu;

for all 4, j then there is a unique element s € F(|J; U;) such
that s|y, = s; for all 4.

[EL1]



Let F be a presheaf on a topological space X. Let z € X.

Definition

The stalk of F at x is

Fy = @UeTop(X), zeU F(U)

If x € X and U € Top(X) contains x then for any s € F(U), we
write s, for the image of s in Fj.

If ¢ : FF — G is a morphism of presheaves on X, there is a
unique map of abelian groups ¢, : F, — G, such that for any
s € F(U) and U € Top(X) containing z, we have

bz (52) = (¢(5))a-



Let F be a presheaf on a topological space X. There is sheaf
FT on X and a natural transformation

F > F*

uniquely defined by the following property: if G is a sheaf on X
and F' — @ is a natural transformation, then there is a unique
natural transformation F'™ — G such that the diagram

Ft——@G

e

F
commutes. The sheaf F'* is called the sheafification of F.



If ¢ : F — (G is a morphism of sheaves on a topological space X,
then we define the kernel ker(¢) of ¢ as the presheaf

U € Top(X) — ker(op(U))

This presheaf is a sheaf (exercise).

We define the cokernel coker(¢) of ¢ as the sheafification of the
presheaf
U € Top(X) — coker(¢p(U))



Proposition-Definition

Let X be a topological space. The category Ab(X) of sheaves on
X is an abelian category. If ¢ : ' — G is a morphism of
sheaves, then the categorical kernel (resp. cokernel) of ¢ is
canonically isomorphic to ker(¢) (resp. coker(¢)). A cochain
complex

P N =

is exact in Ab(X) if and only for any x € X, the corresponding
sequence of stalks

i—1 7 i+1
o= B F = FT

15 exact.



Let f: X — Y be a continuous map of topological spaces.

For F a sheaf on X, we define the presheaf f.(F') by the formula
V e Top(Y) — F(f7(V))

The presheaf f,(F') is a sheaf (easy). This gives rise to an
additive functor Ab(X) — Ab(Y).

For F a sheaf on Y, we define the sheaf f~!(F) as the
sheafification of the presheaf on X given by the formula

U € Top(X) = limyeropyy),vorw)F (V)

Again, this leads to an additive functor Ab(Y) — Ab(X).



Proposition
The functor f=1 is left adjoint to the functor f..

The fact that f~! and f, are adjoint to each other formally
implies that f, is left exact and that f~! is right exact. See
Exercise.



If (F;) is a family of sheaves on a topological space X, we define
the presheaf [ [, F; by the formula

U e Top(X) — [[F(U)

where [], F;(U) is the product of the abelian groups F;(U) (ie
the cartesian product of the sets F;(U), endowed with the
evident group structure). It can easily be verified that the
presheaf [[, F; is a sheaf. By construction, if G is another sheaf
on X, we have an identification

Mor(G, [[ F) = [ [Mor(a, )



Theorem

Let X be a topological space. The category Ab(X) has enough
mjectives.

Proof. We shall use the fact that Ab is a category with enough
injectives.

Let F be a sheaf on X.

We shall construct an injective sheaf I and a monomorphism
F—1

For each x € X, choose an injective abelian group I, and an
injection ¢, : F, — I,. Denote also by x the inclusion map
x — X, where z is viewed as a topological space. Define

I:= H . (1y)

zeX



Note that by construction we have for all U € Top(X) an

isomorphism
I(U) ~ H I,
xelU

which is compatible with restrictions to smaller open sets.
In particular, we may define a morphism F — I by the formula

se€ F(U) — H Lo (Sz)

zelU

This morphism is a monomorphism: if the image of s € F(U)
vanishes, then s, = 0 for all x € U; hence s = 0 by the first
sheaf property.



Now let
0> F - F—>F'>0

be an exact sequence of sheaves on X. We wish to show that
the corresponding sequence

0 — Mor(F",I) — Mor(F,I) — Mor(F',I) — 0 (2)
is exact. Now we have natural isomorphisms

MOI‘(F, I) >~ MOI’(F, H «T*(Ix)) = H MOI‘(F, x*(Il"))

zeX zeX
~ H Mor(z~H(F), I;) ~ H Mor (Fy, I).
zeX zeX

Hence the sequence (2) is isomorphic to the product over all
x € X of the sequences

0 — Mor(F), I,) — Mor(F,, I,) — Mor(F,, I,) — 0

which are exact because the I, are injective abelian groups.QED



Cohomology of sheaves

The functor
['(X,e): Ab(X) — Ab

described by the formula
I'X,F) :=F(X)

is left exact.
More generally, let f: X — Y be a continuous map of
topological spaces. The functor

f.: Ab(X) = Ab(Y)

is left exact.

We shall often write H'(X,e) for the i-th right derived functor
R'T(X,e) of I'(X,e).[EL2]



Let f : X — Y be a continuous map of topological spaces.
Let F be a sheaf on X.

The following proposition can be proven by using the
resolutions used when proving that Ab(X) has enough
injectives for any topological space X.

Proposition

Let V € Top(Y). Let U := f~Y(V) and let u: U — X,
v:V =Y be the inclusion maps. Let fiy : U — V be the
natural map. For all i > 0, we have canonical isomorphisms

VN R fL(F)) = R fy.(u ' (F)).

and these isomorphisms are natural in F.



Cech cohomology. Let F' be a sheaf on a topological space X.

Let I be a finite set and let (U;es) be a covering of X by open
sets indexed by I.

We shall use the short-hand g . . .1, for (ig,...,ip) € J{0p}
For ig, ..., € I, we define

Uip...ip, ' =Uix NU;; N---NU;

and we let ji,. i, : Uiy..i, — X be the inclusion map.

For all p > 0, let

CP(U:), F) = @D Jig..ipe iy s, (F))

i0.ip



Define
&’ : CP((U;), F) = CP*((Uy), F)

by
p+1
P R _1)k .
d (@ 0”0'"%) - Z( 1) @ QXig...ikonipr1Uigewipia NV
10...0p k=0 10...0p+1

where V' € Top(X) and

aio...ip € jio...ip,*(jigl (F))(V) = F(UiOWip n V)

dp

The hat symbol * signifies that the term under the hat is
omitted.



Furthermore, we define a morphism

d: F—>CO @-71*72

by taking the direct sum of the natural morphisms

F = jixj; ' (F)

Theorem

The sequence of sheaves

0= F4 o), P S (), F) S .

18 an exact cochain complex.



Glueing sheaves.

Suppose given (U;) an open covering of topological space X. If
7 : U — X is an open subset of X and F' is a sheaf on X, we
shall often write F'|; instead of j~!(F).

Suppose given on U; a sheaf F;. Suppose given isomorphisms
bij : Filu,nu, = Fj|u,nu; for all indices i, j, satisfying the
properties (1), (2), (3) below.
(1) ¢i; is the identity;

-1
(2) bji = ij
(3) birlvnu;nuy, = Pk © Pijluinu,nuy -

for all indices 1, j, k.



Proposition

Given sheaves F; on U; and isomorphisms
bij : Filunu; = Filuinu;

satisfying (1), (2), (3) above, there up to unique isomorphism a
sheaf F on X with the following properties. There are
isomorphisms

Vi Fly, > F,

such that the natural isomorphism

(W5 How;) © dij © (Yilvnw;)

s the isomorphism

(F|Ui)’UimUj = (F|Uj)‘UimUj‘



Flasque sheaves.
Let X be a topological space and let F' be a sheaf on X.

The sheaf F' is called flasque if for all U,V € Top(X) such that
U C V, the natural map F (V) — F(U) is surjective.

Lemma

If I is an injective sheaf on X, then I is flasque.

Proposition

If ' is flasque then H*(X, F) =0 for all k > 0.



Ringed spaces

A ringed space is a topological space X together with a sheaf of
rings Ox on X. The ringed space (X, Ox) is said to be locally
ringed if the stalks Ox , are local rings for all x € X. In that
case we will often write m; C Ox , for the maximal ideal and
k(x) == Ox z/m, for the residue field of Ox ;.

A morphism of ringed spaces (f, f7): (X,0x) — (Y,0y) is a
continuous map f : X — Y together with a morphism of
sheaves of rings f# : Oy — f.Ox. If (X,Ox) and (Y, Oy) are
locally ringed, we say that (f, f#) is local or that it is a
morphism of locally ringed spaces if for all x € X, the induced
map of stalks O,y — O is a local morphism of rings.

Recall that a morphism of local rings ¢ : R — T is said to be
local if ¢~ 1(mr) = mp. Here my (resp. mp) is maximal ideal of
T (resp. R).



It (fv f#) : (X7 OX) — (Y7 OY) and (979#) : (Yv OY) - (Z> OZ)
are morphisms of ringed spaces, the composition

(h,h*) = (9,9%) o (f, f7) : (X,0x) = (Z,07)

is defined in the following way. We let h := g o f (as maps).
The morphism of sheaves h?* : Oz — h.(Ox) is defined as the
unique morphism A making the following diagram
commutative:

0:(0y) ——2Y o (1(0x)

4 :

Oz (g0 )«(Ox) = h(Ox)

[EL3]



Affine schemes

Let R be a ring. We define Spec(R) as the set of prime ideals of
R. If a C R is an ideal, we define

V(a) := {p € Spec(R) [p 2 a}
The symbol V (e) has the following properties:
e V(a)uV(b)=V(a-b);
* Mier Vim) =V(3, a);
e V(R)=10; V((0)) = Spec(R).

As a consequence the sets V(a) (a an ideal of R) form the
closed sets of a topology on Spec(R). This topology is called
the Zariski topology. The closed points in Spec(R) are precisely
the maximal ideals of R.



Lemma
Let f € R. The set

Dy(R) = Dy = {p € Spec(R) | f € p}

is open in Spec(R). The open sets of Spec(R) of the form Dy
form a basis for the Zariski topology of Spec(R). The topology
of Spec(R) is quasi-compact.

The open sets of the form Dy are often called basic open sets.

Recall that a set B of open sets of a topological space X is said
to be a basis for the topology of X if every open set of X can be
written as a union of open sets in B.



We wish to make Spec(R) into a locally ringed space.
We define a sheaf of rings on Spec(R) as follows. For U open in
Spec(R), let

OSpec(R)(U) =

{s:U— ][] RplforallpcU wehave s(p) € R,
peSpec(R)
and for all p € U there is a,r € R and V € Top(U)

such that D,(R) DV, p € V and s(q) = < for all q € V}
T

This formula clearly defines a sheaf on rings on Spec(R).



Proposition

e For all r € R, we have a canonical isomorphism
OSpec(R) (DT(R)) ~ R,.

o There is a natural isomorphism

Ospec(r)p =~ By

for all p € Spec(R).



We have now associated with any ring R a locally ringed space

(SpeC(R) ) OSpec(R) )

and we have associated with any morphism ¢ : R — T of rings a
morphism of ringed spaces

(Spec(e), ¢7),
which can easily be shown to be local using the previous
Proposition.

We have in fact defined a contravariant functor from the
category of rings to the category of locally ringed spaces.

Lemma

This functor is fully faithful.



Proof. We start with a morphism of locally ringed spaces
(£, F%) : (Spec(T), Ospec(r)) = (Spec(R), Ospecr))-
We are thus given a morphism of sheaves of rings
Ospec(r) = f+(Ospec(r))
and thus a morphism of rings
¢+ R~ Ogpec(r) (Spec(R)) = fe(Ospec(r))(Spec(R)) =T

we shall be done if we can show that (f, f#) = (Spec(¢), ¢7).



We shall first show that f = Spec(¢).
We need to show that ¢~1(p) = f(p) for all p € Spec(T).
Now we know that the morphism of rings
# .
Fi  Ospec(r).£(p) = Ospec(T) p

is local (because (f, f) is a morphism of locally ringed spaces).
This morphism fits in a commutative diagram

R ¢ T

llf(p) llp
7

Ospec(R),£(p) — Ospec(T).p




We compute

¢_1(P) = ¢ 1( (mOSpec(T)p)):l;(L(fp ’_l(mOSpedT),p))
l

(}3)( Ospecry i) = (P)-

Here we have used the fact that f;éé is local in the third equality.

The diagram also shows that fp# = ¢p.

Hence, we see that the morphisms of sheaves ¢# and f#
coincide on the stalks.

This shows that there are equal. QED

[ELA]



A locally ringed space isomorphic to a space (Spec(R), Ogpec(r))
is called an affine scheme.

We shall write Aff for the category of affine schemes and
CRings for the category of unital commutative rings.

A scheme is a locally ringed space X such that every point x in
X has an open neighbourhood U, which is isomorphic to an
affine scheme as a locally ringed space.

A morphism of schemes is a morphism of locally ringed spaces.

We shall write Schemes for the category of schemes.



A scheme X is called locally noetherian it is has an open
covering (U;) such that each U; is isomorphic to an affine scheme

(Spec(Ri), Ospec(r,));

where R; is a noetherian ring.

Recall that a ring is noetherian, if every ideal of R is finitely
generated as an R-module.

Proposition

A scheme X is locally noetherian if and only if for any open
subset U of X, which is isomorphic to an affine scheme
(Spec(R), Ogpec(ry) as a locally ringed space, the ring R is
noetherian.

A scheme X is called noetherian if it is quasi-compact as a
topological space and locally noetherian.



A scheme X is reduced if for all U € Top(X), the ring Ox (U)
has no nilpotent elements.

A scheme X is integral, if for all U € Top(X), the ring Ox (U)
is a domain (also called an integral ring).

An open affine covering (Uier) of X is a family of open subsets
U; of X such that
® Uz Ui = X;

e if U; is endowed with the structure of locally ringed space
coming from X, then U; is an affine scheme.



Properties of morphisms of schemes.

Let (f, f#): X — Y be a morphism of schemes.

o (f, ) is quasi-compact if there is an open affine covering
(Vi) of Y such that f=1(V;) is quasi-compact for all .

o (f, f) is locally of finite type if f there is a an open affine
covering (V;) of Y and for each i an open affine covering
(Uij) of f~1(Vi) such that Ox (Uj;) is a finitely generated
Oy (V;)-algebra via the morphism (f, f#).

o (f, f7)is of finite type of it is quasi-compact and locally of
finite type.



o (f, f7)is a closed immersion if the image of f is closed, f
is a homeomorphism of X onto f(X) and the morphism of
sheaves

f*:0y = f.Ox

is surjective.

We then say that X is a closed subscheme of Y via (f, f7)
or simply that f(X) is a closed subscheme of Y.

o (f, f)is an open immersion if f(X) is open, f is a
homeomorphism onto its image and the mapping of stalks

ff 1 Oy = (f:O0x)y

is an isomorphism for all y € f(X).

We then say that X is an open subscheme of Y via (f, f7)
or simply that f(X) is an open subscheme of X.



Glueing schemes. Suppose given (U;) a family of schemes and
for each pair of indices ij an open subscheme U;; — Uj;

Suppose given isomorphisms ¢;; : U;; SU ;i for all indices 1, j,
satisfying the properties (1), (2), (3) below.

(1) Ui = Ui

(2) ¢ij(Usj NUs) € Ujns

(3) birlu,;nvs, = @ik © dijlu,nus, as morphisms Uiy N Uy — Uy
for all indices 1, j, k.

Proposition

There is up to unique isomorphism a scheme X with the
following properties. There are open immersions ¥; : Uy — X

such that | J; 1i(U;) = X and such that 1 o ¢ij = ¥ilu,; -



Products.

Let C be a category. Let (C;) (i =1,...,n) be a finite family of
objects in C.

Recall that the product

C1X"~XCn:HCZ’

of the C; (it it exists) is an object P of C together with arrows
m P — Cj

characterised by the following property. If P’ is another object
together with arrows 7} : P’ — C; then there is a unique arrow
u: P' — P such that m; ou = ] for all i.



If C is an object of C, we shall write C/C for the following
category.

The objects of C/C are morphisms D — C'in C.

A morphism from ¢ : D — C to A : E — C'is a morphism
u: D — FE such that Aoy = ¢.

The morphism p, viewed as a morphism in C, is often called a
C-morphism.

The category C/C' is called the category of C-objects (associated
with C and C).

One often writes D x¢ F for the product of D — C and E — C
in C/C (if it exists). It is sometimes called the fibre product of
D and F over C.



Proposition
Let S be a scheme. Finite products exist in Schemes/S.

Notice that if R is a ring and A and B are two R-algebras, then

the tensor product
AR R B

is the coproduct of A and B in the category of R-algebras.
Hence
(SpeC(A ®R B)7 OSpeC(A(X)B)

is the product of (Spec(A), Ogpec(a)) and (Spec(B), Ogpec(p)) in
the category Aff/Spec(R). The proof glues such objects
together into a scheme.

[EL5]



Let X be a ringed space.

An Ox-module or sheaf in Ox-modules is an abelian sheaf F,
together with a Ox (U)-module structure on F(U) for every
open set U C X, subject to obvious compatibility properties
with respect to inclusions U — V of open sets in X.

A morphism of Ox-modules F — G is a morphism of abelian
sheaves compatible with the Ox-module structure in an obvious
sense.

The Ox-modules form an additive category Modp, (X), which
is abelian.



Let F' and G be Ox-modules on X.

The tensor product F' ®p, G is the sheaf generated by the
presheaf on X given by the formula

U F(U) @0 @) GU)

This sheaf has a unique structure of Ox-module, such that the
map
F(U) ®@oyw) GU) = (F®oy G)(U)

is a map of Ox (U)-modules for every U € Top(X).



Suppose f: X’ — X" is a continuous map of topological spaces
and that X" is ringed by the sheaf of rings Ox.

Let F be a sheaf in Ox»-modules on X”.

The abelian sheaf f~'(Ox) is then endowed with a canonical
structure of sheaf of rings, as can be seen by looking at its
definition.

Furthermore, the abelian sheaf f~!(F) inherits an obvious
f~H(Oxn)-module structure from the Oxr-module structure of
Fon X".



Let f: Z — X be a morphism of ringed spaces.
Let F' be a Ox-module. We define

FHF) = fTY(F) ®-1(05) Oz.

Here Oy is viewed as a f~!(Ox)-module through the canonical
map of sheaves of rings f~1(Ox) — Oz.

For each U € Top(Z), the group
FTHE)NU) @104y Oz(U)

has a Oz(U)-module structure, which comes from the action of
Oz(U) on the second factor.

There is a unique structure of Oz-module on f*(F') such that
for all U € Top(Z), the map

FHEY U@ p-104)1)O02(U) = (FHF)@ 1104 )0)O2)(U) = f*(U)

is a map of Oz (U)-modules.



Let now F be a Oz-module.

The abelian sheaf f,(F') is naturally a sheaf in f,(Oz)-modules.
Via the morphism of sheaves of rings Ox — f.(Oz), we may
thus view fi(F') as a Ox-module.

Lemma

The functor f*: Modp, (X) — Modop, (Z) is left-adjoint to the
functor
f« : Modop,(Z) — Modop, (X).

See Exercises.



Quasi-coherent sheaves.

Let R be a ring and let M be an R-module. We define a sheaf
M on Spec(R) by the recipe

M(U) ={s:U — H M, | for all p € U we have s(p) € M,
peSpec(R)
and for all p € U thereisa € M, r € R and V € Top(U)

such that D, (R) 2V D {p} and s(q) = % for all q € V'}

Notice that Ogpec(r) = R.



The sheaf M carries an obvious Ogpec(r)-module structure.

Also, if M — N is a morphism of R-modules, there is an
obvious associated morphism of Ogpec(r)-modules M — N.

We have thus defined a functor from the category of R-modules
to the category of Ogpec(r)-modules.

(a) For all r € R, we have a canonical isomorphism



(b) If t € R and t € (r) then there is a commutative diagram
M(D,(R)) —= M(Dy(R))
M, M;
where the vertical isomorphisms come from (a).

(¢) There is a natural isomorphism ]\/\4/p ~ M, for all
p € Spec(R). This isomorphism fits in a commutative
diagram

M,

|

M (Spec(R)) —= M
Here the vertical morphisms are the natural ones and the
lower horizontal one comes from (b).

M,



Corollary

The functor e from the category of R-modules to the category of
Ospec(r)-modules is fully faithful and ezact.

Let now X be a scheme.

Definition

Let F be a sheaf on Ox-modules. The sheaf F is said to be
quasi-coherent (resp. coherent) if there is an open affine

covering (U;) of X, such that F|y, ~ F(U;) (resp. F|y, ~ F(U;)
and F(U;) is a finitely generated Ox (U;)-module).

The full subcategory of Mod(X), which are quasi-coherent, will
be denoted Qcoh(X).



Lemma
Let ¢ : R — T be a morphism of rings. Let M be a T-module.

Then there is a natural isomorphism of Ogpec(r)-modules
Spec(¢) (M) = My,

where My is M viewed as an R-module via ¢.

Proof. Notice that for all » € R, there a natural isomorphisms
of R,-modules

Spec(¢)+(M)(Dy(R)) = M(Spec(¢) "' (Dr(R))

= M(D¢(T) (T)) ~ M¢(T) >~ MO,’!’

which are compatible with restrictions D,(R) 2 D, (R) for
" € (r). Now the lemma follows from the fact that the sets
D, (R) form a basis for the topology of Spec(R) and the fact
that Spec(gb)*(ﬂ) and M are both sheaves. QED



Proposition

The definition of a quasi-coherent (resp. coherent) sheaf is
independent of the open affine covering appearing in its
definition.

Proof. After simple logical reductions, we are reduced to the
following problem.

Suppose X = Spec(R) is an affine scheme and let F' be an
Ox-module on X. Let (V; = Spec(Ry,)) be a covering of X by

basic open sets. Suppose F'|y; ~ M;, where M; is an
R fj—module. Then F ~ M for some R-module M.

Notice that we may suppose that the family (V}) is finite, since
X is quasi-compact. Notice also that V; NV}, = Spec(Rfjlsz).
In particular Vj, NV}, is also affine. Now look at the two first
terms of the Cech complex associated with (V). These terms
are in the essential image of the functor e by the preceding
lemma. Since the functor e is exact, we are done, QED



Lemma (Deligne)

Let R be a noetherian ring and let M be an R-module. Let a be
an ideal of R. There is an isomorphism

lim, Homp(a", M) =~ M (Spec(R)\V (a)),
which is natural in M.

The morphism arises from the isomorphism

0" [Spec(R)\V(a) = OSpec(R)\V (a)-

Corollary

Let I be an injective module over R. Then Tisa flasque sheaf.



Sheaves of ideals. Let X be a scheme. A subsheaf of Oy is
called a sheaf of ideals on X.

Lemma

Let J be a quasi-coherent sheaf of ideals on X. There exists a
closed immersion (z,27) : Z — X such that J = ker(z%). This
immersion is unique up to unique isomorphism over X.

The proof is by glueing. See Exercises.

Lemma

Let Cy € X be a closed subset. Then there is a unique
quasi-coherent ideal Ic, in X, such that the image of the closed
immersion C' — X associated with Ic, is Cy and such that C' is
reduced.

The proof follows from the fact that the formation of the nil
radical commutes with localisation. See exercises.



Permanence properties of quasi-coherent sheaves.

Let X be a ringed space and let (F;) be a family of Ox-modules
on X. We write @, F; for the sheaf generated by the presheaf
in Ox-modules on X sending U € Top(X) to @, Fi(U).

Lemma

Let I be an index set. For any object (F;) of Mod(X)! and any
object G in Mod(X), there is a canonical isomorphism

Mor(@ F;, G) ~ [ [Mor(F;, G)

which is natural in (F;) and G.

In categorical terms, Lemma 11 says that the direct sum is a
categorical coproduct in the category Mod(X).



Lemma

Let X be a scheme and let (F;) be a family of quasi-coherent
sheaves on X. Then @, F; is quasi-coherent.

Proof. Let R be a ring and (M;) be a family of R-modules. If
r € R, there is a functorial isomorphism (6, M;), ~ €D, M.
The Lemma follows from this. QED

A formal consequence of the last two lemmata is the following
fact. Let R be a ring and let (M;) be a family of R-modules.
Then there is a functorial isomorphism of Ogpec(r)-modules

@)~




Proposition

Let ¢ : R — T be a morphism of rings and let M be an
R-module. Then Spec(¢)*(M) is a quasi-coherent sheaf.

Proof. First notice the following fact.
Let (X, Ox) := (Spec(R), Ospec(r))- Let G be a Ox-module.

Then G is quasi-coherent if and only if there exist index sets I
and J and exact sequence of Ox-modules

Pox-Pox -6 —-0 (3)
iel jel

Indeed if G has a presentation (3) then by the above, we
conclude that G is quasi-coherent.

On the other hand, if G = M for some R-module then we may
choose a surjection w : @jeJ R — M and a surjection

@D,cr R — ker(u).
Applying the functor e, we then obtain a presentation (3);



Let (K OY) = (SpeC(T)v OSpec(T))'

In view of the above fact and the fact that Spec(¢)* is right
exact, we see that we are reduced to prove that there is an

isomorphism
FrEPpox)~Poy (4)

To show this, first notice that there is an isomorphism
f*(Ox) ~ Oy. For this notice that we have canonical
isomorphisms for any Oy-module G

Moryioqv) (f*(Ox), G) = Moryeq(x)(Ox, f+(G))
f(G)(X) = G(Y) ~ MorMod(Y)(OYy G)

1

and thus f*(Ox) and Oy represent the same covariant functor.
We conclude by appealing to Yoneda’s lemma.



To prove that there is an isomorphism (4), we notice that there
are functorial isomorphisms

MorMod(Y)(f*(@ Ox),G) =~ MorMod(X)(@ Ox, f+(G))
HMOFMOd(X (Ox, f+(G Hf* x)=[[c

Thus, we have functorial isomorphisms

Morygoq(v) (D £*(Ox), G) ~ Moryeawy (D Oy, G) = [[ G(Y)

and thus again @, Oy and f*(@, Ox) represent the same
covariant functor and must thus be isomorphic. QED



Corollary

There is a functorial isomorphism

Spec(¢)* (M) ~ M @rT.

Proof. Follows from the uniqueness of adjoint functors and
from the fact that there is a functorial isomorphism

MOI‘R(N, M) ~ MOTT(N RprT, M)
for any R-module N and T-module M. QED
Corollary

Let f : X — Y be a morphism of schemes. Let F be
quasi-coherent sheaf on'Y . Then f*(F) is also quasi-coherent.

[EL7]



Proposition

Let f: X —Y be a morphism of schemes. Suppose that X is
noetherian. Let F' be a quasi-coherent Ox-module. Then f.(F)
s also quasi-coherent.

Proof. We may assume wrog that Y is affine.

Let (U;) be a finite open affine cover of X and for all 7, j let
Uijr be a finite open affine cover of U; N U; indexed by k.
Looking at the beginning of the Cech complex and using the
fact that f, is left exact as a functor from Modp, (X) to
Modo, (Y'), we see that there is an exact sequence

0— fu(F) — @f* Fly,) = P £(Flu,,)

.5,k

Thus we see that is sufficient to prove the proposition under the
assumption that X is also affine, where it was already proven.
QED



Proposition

Let f : X =Y be a morphism of schemes. Suppose that X is
noetherian. Let F' be a quasi-coherent sheaf on X.

Then the Oy -module R f.(F) is also quasi-coherent.

Proof. (sketch) F' has a resolution by quasi-coherent flasque
sheaves and thus the proposition follows from the previous
proposition. QED



The cohomology of affine schemes.
Proposition

Let X be a noetherian affine scheme and let F' be a
quasi-coherent sheaf on X.

Then H¥(X,F) =0 for all k > 0.

Proof. Suppose X = Spec(R). If I is an injective R-module,
then I is flasque. Thus the proposition follows from the fact
that I'(X, @) is an exact functor from Qcoh(X) to the category
of R-modules. QED



The following theorem is a converse.
Theorem (Serre)

Let X be a noetherian scheme and suppose that for all coherent
sheaves F' on X, we have H*(X, F) = 0.

Then X is an affine scheme.



The proof of Serre’s theorem uses the following lemmata.

Lemma

Let X be a noetherian scheme and let f € I'(X,Ox). Then
there is a natural isomorphism T'(X, Ox); = I'(Xy, Ox,).

Corollary

Let X be a noetherian scheme and let f1,..., fn, € T'(X,Ox) be
such that (f1,..., fn) =T(X,0x).

If the open subschemes Xy, are all affine, then X is affine.

Proof. (of the corollary). The canonical morphism
X — Spec(I'(X, Ox))

is an isomorphism. QED



Proof of Serre’s theorem.
Let P be a closed point in X.
This exists because X is quasi-compact.

Let U be an open affine neighbourhood of P and let Y be the
complement of U in X.

We view P, Y and PUY as reduced closed subschemes of X.
Let Ip, Iy and Ipyy be the corresponding quasi-coherent
sheaves of ideals.

Note that we have canonically Op(P) ~ x(P) and that this
isomorphism describes the sheaf Op entirely.



By construction, we have an exact sequence
0= Iyup = Iy - k(P)—0

where x(P) denotes the direct image of Op by the closed
immersion P — X. The long cohomology sequence gives

I(X,Iy) = T(X,k(P)) = H' (X, Iyup)
and since by assumption H'(X, Iyp) = 0, we get a surjection
X, Iy) - I'(X,k(P)).

Let f € I'(X, Iy) be such that the image of f in
I'(X,k(P)) ~ k(P) is 1. We view f as an element of I'(X, Ox)

via the natural inclusion

F(X,Iy) — F(X, Ox)



By construction, we have that P € X; and also that Xy C U.

In particular, X is affine, because it corresponds to a basic
open set in U.

If X # X, we now repeat this reasoning for a closed point P
in X\ Xy and we obtain fo € I'(X, Ox) such that P, € Xy, and
Xy, is affine and we repeat it for P3 € X\ Xy U Xy, etc.

The sequence of the Xy, must stop after a finite number of
steps, and thus cover X, because X is a noetherian topological
space.



We can thus exhibit a finite sequence f1,..., f, € T'(X, Ox)
such that Xy, is affine for all ¢ and such that the Xy, cover X.

By the Corollary above, we shall be able to conclude if we can
show that the f; generate I'(X, Ox). To see this, consider the
morphism of sheaves

@OX —)OX

i=1
sending local sections (s1,...,s,) to > . fi - s;.

This morphism is surjective, because the Xy, cover X. Using
the assumptions we obtain a surjection

rx,ox) - (X, 0x).
i=1
In other words, the f; generate I'( X, Ox). QED

[ELS]



Affine spaces

Let r > 0. Consider the functor A" from Schemes to Sets,
which associates with a scheme S the set of morphisms of
sheaves

gb:@@s—)@s

k=1

Lemma

Let X be a scheme. The restriction of the functor A" to Top(X)
s a sheaf of sets.

See Exercises.



Lemma

Let X, S be schemes. Let hg : Schemes — Sets be the functor
Mor(e, S). Then the restriction of hg to Top(X) is a sheaf of
sets.

Proof: Glue! QED
Proposition-Definition
A" is representable by the scheme
A" := Spec(Z[X1,...,X;])
called the affine space of relative dimension r.

Proof. In view of the two last Lemmata, it is sufficient to
construct an isomorphism between the restriction of the functor
har to Aff and the restriction of the functor A" to Aff.



e The restriction hpr|ag of har to Aff in the language of rings
is the functor

R — MOYCRings(Z[Xla - ,XT], R)

e The restriction A"|ag of the functor A™ to Aff in the
language of rings is the functor

R — Morgets({1,...,7}, R)

Now there is a natural transformation between har|ag and
A"| A, which for every ring R maps
MorCRings (Z[Xl, . ,XT] R) to MorSets({ T'} R)
sending

¢ S MOTCRings(Z[le R ,XT], R)

to
¢(Xe).

This map is an isomorphism by the definition of polynomials.
QED



Let R be a ring and let X — Spec(R) be a scheme over R.

From the definitions, we see that to say that X is locally of
finite type over R is the same as to say that there exists

e an open covering (U;) of X by affine open subschemes;

e for each ¢, an (i) € N and a commutative diagram

Uy — AR i= A7) xg 7 Spec(R)

|

Spec(R)

where the vertical morphism is the natural one and the
horizontal morphism is a closed immersion.

These closed immersions are in general not related to each other
and one may wonder what kind of compatibilities could be
required.

Projective spaces propose an answer to this question.



Projective spaces.

Let » > 0. Consider the functor P" : Schemes — Sets, such
that

T
P(S) := {iso. classes of surjective morphisms ¢ : EB Os — L}
k=0

where L is locally free of rank 1. Here a surjective morphism

qb:é@s—)ﬁ

k=0

is said to be isomorphic to a surjective morphism

w:éOS%M

k=0
if there is an isomorphism ¢ : £ ~ M such that ¢ o ¢ = .

A sheaf, which is locally free of rank one, is often called a line
bundle.



Theorem

The functor P" is representable by a scheme P", which is
integral and of finite type over Spec(Z).

In particular P" is noetherian.

The scheme P" is called projective space of relative dimension r.



Proof. Let K be the fraction field of the ring Z[ X, ..

Let 4,5,k € {0,...,r}. Define

and

LX)



Furthermore, it is easy to verify that we have the following
set-theoretic relations between subsets of K:

Ri = Rii) Rzg - ij R - szy R CR x

i X0 Xk
TXy X

In view of these identities and the fact that any diagram of
inclusions of subrings of K commutes, we see that the schemes

U; = Spec(R;)
and
Uij = SpeC(Ri]‘)

together with the open immersions U;; — U; and the
isomorphisms U;; ~ Uj; coming from the corresponding
inclusions of rings, define glueing data for schemes.

We thus obtain a scheme P", which is integral and of finite type
over Z by construction.



The scheme P" carries a canonical line bundle O(1).

Declare O(1)|y, = Oy, and let ¢;; € I'(Ui;, Op,;)* = Rj; be
given by X;/X;. We verify that

Gii =1
-1
d)z'j = Qsji
and
X; Xi X
X X;  Xi
in Ri x; x,, 50 that the ¢;; satisfy the glueing conditions for
XXy
sheaves.

We thus obtain an abelian sheaf on P".



By construction, O(1) is a quasi-coherent locally free sheaf of
rank one.

For each [ = 0,...,r, there is a canonical element
X; e I(P",0(1)), such that
Xilo, = Xi/ X;

via the identification O(1)|y, = Op,. This defines an element of
I'(P",O(1)), because

Gi (Xilo)|oy) = (Xi/ Xa) - (Xi/ X) = Xi/ X5 = (Xilv,)|v;-
so that the local sections X;|y, glue to a global section of O(1).

Since Xj|y, is a trivialisation of O(1)|y,, we see that the
collection of the X; defines a surjection

P oe — 0(1).
k=0

[EL9)



We shall now show that P" represents P".
Let S be a scheme.

If we are given a morphism ¢ : .S — P", we obtain by pull-back
a surjection

P 0s - " (0).
k=0

This construction provides a map P"(S) — P"(5).



We wish to construct an inverse map P"(S) — P"(95).

So let S be a scheme and let

¢:é}@s—>£
k=0

be a surjection of sheaves, where L is locally free of rank 1.

We shall call oy, ..., o, the corresponding elements of T'(S, £).
Let
Se; ={se€S|oygmy- L}

The set S,, is open because L is locally free.

By Nakayama’s lemma, the section o;|g, induces an
isomorphism Og, =~ L], .



Identifying L|s, with Og, via this isomorphism, we obtain by
restriction a morphism

.
¢S%‘ : @OS% - OS%‘
k=0
whose [-th component is given o;/0;, where it is understood
that o;/0; is a function on S, such that

(01/0i) - oils,, = o1ls,,-

By Proposition 6.1, ¢g,. induces a morphism f; : S5, — U, such
that
(Xi/Xi) o fi = 0a1/0i.



Now note that by construction, we have
f‘_l(Uij) = Sai N Soj

7

and similarly
f7NUji) = 55,0 S,

Let ;5 : Uj; 5 Uj; be the canonical isomorphism (which is the
identity in the above presentation).

We compare ;5 o fj So;NSa, and fj] So;NS0; - We compute
Filssns,, (Xi/Xj) = a1/ 0;
and
Vi o fil’s,.ns, (X1/X5) = wij o fil’s, s, (X0/X3) - (X;/ X))
= (01/0i) - (05/00) " = 01/ 0
so that ¢y © fils,.ns,, = filss,ns,,-

Thus the family (f;) of morphisms glue to a morphism S — P”
and we have produced an inverse map P"(S) — P"(S). QED



Ample line bundles.
Let S be a noetherian scheme.

A coherent F on S is said to be generated by its global sections
or globally generated if there is a surjection

o
@ OS — F
k=1

for some 79 € N.

The corresponding r( sections of F' are then called generating
sections.

Let now L be a line bundle on S.
Definition

The line bundle L is ample if for any coherent sheaf F' on S,
there is ng € N such that F @ L®" is generated by its global
sections for all n = ng.



Proposition

The line bundle L is ample if and only if there is n € N and
01,...,0% € D(S, L®") such that

o the schemes Sy, are affine;

e the schemes Sy, cover S.



For the proof, we shall need the following

Lemma

Let Ty be a noetherian scheme and let My be a coherent sheaf
on Ty. Let Lo be a line bundle on Ty. Let f € T'(Ty, Lo) and let
s € I'(To,f, Mo). Then

(a) there is n(s) € N such that s @ &%) € T(Tp 5, My ® LS(S))
extends to T'(Ty, My ® Lg(s));

(b) if s € I'(Ty, Mo) restricts to 0 in I'(Ty ¢, Mo) then there is
n(s) € N such that s @ f&() € T(Ty, My @ Lg(s)) vanishes.

See Exercises.



Proof (of the last Proposition).

T

So suppose that there is n € N and o4, ...,0; € ['(S, L®") such
that (So,) is an open affine covering of S.

Let F' be a coherent sheaf on S.

For each 4, let (7;; € I'(So,, F|s,,) be a finite family of
generating sections of F'[g, . Such sections exist because S, is
affine.

By the last Lemma, there is n € N such that for all ¢, the
sections 7;; ® U?"\sai extend to sections \;; € I'(S, F ® L®").

Now notice that the sections 7;; ® 0?”\50, are also generating
sections of F'® L®"[g, because L|s,. is by construction trivial.

Hence the sections A;; (for all 4, j) are generating sections of
['(S, F ® L®"), since the S,, cover S.



2 :77 .
Let x € S. Tt is sufficient to show that there is n(z) € N and
0, € (S, L®"®) such that S,, is affine and = € S,,.

Let U be an affine neighbourhood of = such that L|y ~ Oy and
let I be the ideal sheaf associated with S\U.

Let ¢ : (S\U)reqa — S be the canonical closed immersion.

Let n(z) € N be such that there is 5, € I'(S, I @ L®®)) with
gz # 0.



Now consider the sequence of Og-modules
0—=1— O0s = tu(O\),0q) — 0 (5)
and the sequence

0= I@LE"@ — L% 5 (Os\1),) @ L@ =0 (6)

rcd)
obtained by tensoring (5) by L&),
Applying T'(S, e) to (6) we obtain a map

[(S,1® L) - (8, L&),

Let o, be the image of G, by this map.

The section o, € T'(S, L®"*®) vanishes on S\U by construction.
Hence S,, C U.

Furthermore, since by assumption we have Ly ~ Oy, the set
Se, C U is a basic open subset of the affine scheme U is thus
also affine. QED

EL10]



Corollary
The line bundle O(1) on P" is ample.

Proof. Let X; be the usual canonical section of O(1). The
schemes P’y are by construction the affine scheme U; in the
standard open affine covering of P". QED



Proposition

Let f : S — Spec(R) be a morphism of finite type to the
spectrum of a noetherian ring R.

Let L be an ample line bundle on S.

There is n € N and oy, ...,0, € I'(S, L®") generating L®"™ and
such that the corresponding morphism

S — Pp

is a closed immersion into an open subset of P'y.



Proof. We may wrog replace L by L®" for some n > 1.

By the above Proposition, we may thus assume that there is a
finite family (o; € I'(S, L)) such that S,, is affine and such that
the Sy, cover S.

For each i, let 0;; € I'(S,,, L) be a family of sections, such that
the functions 0y;/0ils,. generate I'(Sy,, Og,.) as an R-algebra.

For some n > 0, which can be taken independent of i, the
sections J?(n_l)bni ® 045 € T(Sy,, L®™) extend to sections 7;; of

L®" over S by Lemma 16.



Now consider the disjoint union ¥ of all the o; and all the 7;;
and choose an arbitrary identification ¢ : {0,...,r} ~ X.

Since the o; already generate L, the set of sections ¥ generates
L®" and via ¢ we obtain a Spec(R)-morphism ¢ : S — P.

This morphism is obtained by glueing together the morphisms
Xo X,
Xo-1o) Xot(on)

ti + So, — Spec(R|

such that
PR o(k)|s,,
! X¢71(gi) O-i’Sai '
é(k)l sy,

Since by construction the functions generate

oilse,
I'(S,,, (’)Soi) as an R-algebra, and since Sy, is affine, we see that
t; 1s a closed immersion.

Thus ¢ is a closed immersion of S into the union in P, of all the

open affine subschemes Spec(R[+ XIO( X XIT( )]) (for all 7).
o~ (o ¢+ (o4
OERD




The cohomology of projective space.

If O(1) = Opr(1) is the canonical bundle on P" and n > 0, we
shall write O(n) for O(1)®".

For n < 0, we also write
O(n) := Hom(O(—n), Opr) =: (O(—n))"
In general, if F' is a locally free sheaf on a scheme X, we write

FY := Hom(F,Ox)



Suppose that L is a locally free sheaf of rank 1 on an integral
scheme X.

If o € L(X) and o # 0, then o induces a morphism of sheaves
o/ LY — Ox

whose image is a quasi-coherent sheaf of ideals 7.

Since X is integral, the morphism oV is a monomorphism and
hence identifies Z with LV.

If we let ¢ : Z(0) — X be the closed subscheme associated with
T, we thus have an exact sequence

0= LY = Ox = 1:(Og(y)) = 0



Note the following simple fact.

If f: X9 — X is a morphism of schemes, then there is a
morphism g : Xg — Z(0) such that f =c0g iff f*(c¥)=0.

Furthermore, the morphism g, if it exists, is then unique.

From this we deduce Z(o) represents the functor
Schemes — Sets

S {feX(8)|f(c") =0}

The closed subscheme Z(o) is called the zero-scheme associated
with o.



Lemma

Let f: X — Y be an affine morphism of schemes.
Suppose that X is noetherian.

Then for all quasi-coherent sheaves F' on X, we have
RFf.(F) =0 for all k > 0.

Proof. We may suppose that Y (and thus X) is affine. Now
the lemma follows from the fact that f, : Qcoh(X) — Qcoh(Y)
is an exact functor and from the fact that that injective

Ox (X)-modules are flasque. QED

Lemma

Let 1 : X =Y be a closed immersion. Then ¢ is an affine
morphism.

Proof. We may suppose that Y is affine. Then X is given by
Spec(I'(Y, Oy)/J)) for some ideal of I'(Y, Oy ). QED



Cech cohomology on noetherian schemes.

Let X be a noetherian scheme and suppose that X a finite open
covering (U;) such that any finite intersection of the U; is affine.

Let F be a quasi-coherent sheaf on X.

Then we have canonically
HND(X, C*(Ui), F))) ~ HY(X, F)

This follows from the existence of the Leray spectral sequence
and from the above Lemma.



Proposition

Let A be a noetherian ring.

Then for all n,k € Z, HE(P",,0(n)) is a finitely generated
A-module.

Furthermore, we have
HP,0)~ A

and
H* (P}, 0(n)) =0

forall k > 1 and all n > 0.



Sketch of proof.
First note that for any of the canonical sections
Xi=X;®a1el(Py,0(1))

the zero scheme Z(X;) is canonically isomorphic to P’ ".

Indeed, for any scheme over Spec(A) we have
P’ (S) = {iso. cl. of surj. mor. ¢ : @(95 — L}
k=0
and the Z(X;) thus represents the functor
Schemes/Spec(A) — Sets
S+ {iso. cl. of surj. mor. ¢ = Gy : @) Og — L such that ¢; = 0}
k=0

which is isomorphic to the functor IP’TAfl(o).



Thus we have an exact sequence
0— 0(—1) — Opr — L*(Oprfl) —0

and tensoring this sequence with O(k) (k € Z), we obtain a
sequence

0—0(k—-1)— O(k) = t+(Opr-1(k)) — 0
Note that t4x(Opr-1(k)) =~ 1:(Opr-1) @ O(k).

[EL11]



Now consider the associated long exact sequence:

0 — HYP,, Ok —1)) — H (P, 0(k) — H (P, 1.(O(k)))
,O(k — 1)) — HY (P, 0(k)) — H (P, 1.(O(K))) — ..

Now remember that closed immersions are affine by the above
Lemma and thus

H' (P, 1.(O(k))) =~ H (P, O(k)))

Thus by a double induction on r and k, we see that it is
sufficient to prove that H(P", 0) = A and H*(P";,0) = 0 for
all k > 0.

This is proven in the notes using Cech cohomology. QED



Corollary
The scheme P" is not affine.

Proof. If P" were affine, then we would have P" ~ Spec(Z),
according to the theorem. QED



Cohomological properties of strongly projective
morphisms

A morphism of schemes f: X — S is called strongly projective
if there is a factorisation f = p o, where ¢+ : X — P is a closed
immersion and p : Py — S is the natural projection morphism.

Theorem

Let f: X — S be a strongly projective morphism.
Suppose that S is a noetherian scheme.
Let F be a coherent sheaf on X.

Then for all k > 0, the sheaf R* f.(F) is coherent.



Proof. We may assume that S = Spec(R), where R is a
noetherian ring.

We first show the statement in the case where f is a closed
immersion.

In that case, since f is affine, we may also assume that

X = Spec(T) is affine.

We then have RFf,(F) = 0 for all £ > 0 by the above Lemma
and thus we only have to show that f.(F) is coherent.

We know that f.(F') is quasi-coherent by Proposition 5.12 and
thus we only have to show that f.(F)(S) is a finitely generated
R-module. This is clear.



By the existence of the Leray spectral sequence, we may thus
suppose that X = P and that f is the natural projection.

Let ng be such that F'® O(ng) := F(ng) is globally generated.

Noticing that
O(ng) ® O(—ng) ~ Oﬂmg,

we obtain a surjection @£:0 O(—ng) — F for some f.

Denoting by K the kernel of this morphism, we get an exact

sequence
f

O—>K—>@O(—no)—>F—>O (7)
k=0



Note that K is also a coherent sheaf, because IPg is a noetherian
scheme.

Notice also that we may compute to cohomology of F' using the
Cech complex with ordering associated with the standard open
covering of IP.

The terms of this complex vanish in degrees > r. Thus we know
that R¥ f.(F) =0 for all k > r.

Now looking at the long exact cohomology for f, of (7) we
obtain a surjection

f
k:()



Thus we see that R" f.(F') is coherent, since we know that
er*(@k 0O(—ng)) is coherent.

Since F' was arbitrary, we deduce that R" f,(K) is also coherent.

The long exact cohomology sequence again now shows that we
have an exact sequence

!
R (D O(=n0)) = R fu(F) = R fo(K)
k=0

and thus R"~1f,(F) is also coherent. Thus R" ! f,(K) is also
coherent and we may continue this way to show that RF f,(F) is
coherent for all k. QED



Theorem (Serre)

Let f : X — Spec(A) be a strongly projective morphism, where
A is a noetherian ring.

Let L be an ample line bundle.
Let F be a coherent sheaf on X.

Then there is ng = 0 such that ka* (F ® L®") =0 for all
n = ng and all k > 0.



Proof. As before, we may thus suppose that X = P"; for some
r > 0.

Since P"; has a finite covering by r + 1 open affine subschemes
whose intersections are affine, we have H*(P7,, Q) = 0 for all
k > r and any quasi-coherent sheaf ) on P’,.

Let ng be sufficiently large so that F' ® L&™ is generated by its
global sections. In other words, we have an exact sequence

70
0—>K—>@O—>F(no)—>0 (8)
i=1

Looking at the long exact cohomology sequence of (120), we get
a surjection

0
H' (P, @D 0) — H' (P, F(ny)).
=1

and thus H" (P, F(ng)) = 0.



Now take n; so that K(nq) is also globally generated. Then we
also have H"(P", K(n1)) = 0. Looking at the long exact
cohomology sequence of the sequence

ro
0— K(ny) — @O(nl) — F(ng+n1) =0
i=1
we get a surjection

70

H™ (B, @ O(n1)) - B (B, Fno + 1))
=1

and again we see that H"~1(P"), F(ng 4+ n1)) = 0, unless
r—1=0.

Continuing this way, we conclude that F'(n) has no cohomology
in positive degrees for n sufficiently large.



Cohomological characterisation of ample line bundles.

Theorem

Let X be a noetherian scheme.
Let L be a line bundle on X.

Suppose that for all coherent sheaves F' on X, there is ng = 0
such that H*(X,F @ L®") =0 for all n > ng and all k > 0.

Then L is ample.

The proof is similar to the proof of Serre’s theorem
characterising affine schemes. See for the notes for details.

[EL12]



Flat morphisms

Let f: X — Y be a morphism of schemes.

Definition

Let F be a Ox-module. We say that F is flat over Y at x € X
if the stalk Fy is flat as a Oy, ) -module via the natural
morphism of rings Oy, s,y = Ox . We say that F is flat over
Y if F is flat at every x € X.

Recall that a module M over a ring R is flat if the functor
e ® M from R-modules to R-modules sending an R-module N
to N ® M is an exact functor.

e Let Spec(B) — Spec(A) be a morphism schemes and F' a
quasi-coherent sheaf on Spec(B). Let M be the B-module
associated with F. Then F is flat over Spec(A) if and only if M
is flat as an A-module: see Exercises.

e Any base-change of a flat morphism is flat. See Exercises.



We also recall without proof the following basic result:

Theorem
Let A be a local ring and let M be a finite A-module. Then the
following conditions on M are equivalent.

o M 1is flat over A;

o M is free over A.

Proof.

See Theorem 7.10 in Commutative Ring Theory by H.
Matsumura. O

A consequence of this theorem is that a coherent sheaf F' on a
noetherian scheme X is flat over X if and only if it is locally
free.



Cohomology and flat base change
Let f: X — Y be a morphism of schemes.

Suppose that Y is noetherian and affine and suppose that X
has a finite open covering (U;) of X such that any finite
intersection of the U; is affine.

Let F' be a quasi-coherent sheaf on X. Let
X —~Ls=X
T
vy sy

be a cartesian diagram, where Y’ is a noetherian and affine and
b is flat.

Theorem
There is a natural isomorphism b* (R f.(F)) ~ R\ fL(r*(F)).



Proof. Consider the complex
L®:= f.(C*((Us), F)).
By construction we have
H (V" (L*)) = R'fL(r* (F)).

Now since b is flat, we see that H!(b*(L®)) =~ b*(H!(L*)), in
other words we have

b*(R'f.(F)) = R fL(r*(F)).

QED



The semicontinuity theorem
Let f: X — Y be a morphism of schemes.

Suppose that Y is noetherian and affine and suppose that X
has a finite open covering (U;) of X such that any finite
intersection of the U; is affine.

Let F' be a quasi-coherent sheaf on X and suppose that

e the sheaf F' is flat over Y
e for all [ > 0, the quasi-coherent sheaf R'f,(F) is coherent.



Theorem (semicontinuity theorem)

There is a finite cochain complex of coherent locally free
modules (K*®) on'Y with the following property.

For any cartesian diagram
X s X
lf’ if
vy sy

where Y’ is a noetherian and affine, there is a canonical
isomorphism of quasi-coherent sheaves

H(b*(K*)) =~ R fL(r*F).
Note that the assumptions of the theorem will be verified if f is

a strongly projective morphism, F' is flat over Y and Y is
noetherian and affine.



Sketch of proof.

The proof is a consequence of the existence of the Cech complex
and of two basic results of homological algebra.

Step 1. Homological algebra.
Let R be a noetherian ring. Let

0-C"=sCt—=...5C" >0

be a finite cochain complex of R-modules.

Suppose that H(C*®) is finitely generated for all i > 0.



Lemma

There is a finite cochain complex of R-modules
0L =L —... 5 L"=0
such that
o L°® is quasi-isomorphic to C®;

e L' is free for alli > 0;
e L' is finitely generated for all i > 0.

Furthermore, C' is flat for all i > 0 then we may find a cochain
complex L* with the above properties such that L° is flat.

For the proof, see the notes.



Let ¢ : P} — P53 be a quasi-isomorphism of cochain complexes
of R-modules, where both complexes are supposed bounded
above.

Let C*® be another cochain complex of R-modules, which is
bounded above. Suppose that either

e OF is a flat R-module for all k € Z
e Or Plk and P2k are flat R-modules for all k£ € Z.

Lemma

The morphism
pRC*:PPC*— P;®C*

1S a quasi-isomorphism.



Proof of the semicontinuity theorem.

Consider the complex
L* = £.(C*((Us), F)).

Then L° are flat and quasi-coherent, L® is a finite complex and
by construction for any cartesian diagram as in the statement of
the theorem, we have

HL(B*(L*)) ~ R fL(r*F).

Hence, by the last lemma, we only have to show that there
exists a complex of coherent locally free modules K*®, which is
quasi-isomorphic to L°®.

The lemma before provides this complex. QED

[EL13]



Consequences of the semicontinuity theorem.

If we apply Nakayama’s lemma to the complex provided by the
semi-continuity theorem, we can derive interesting statements
about the cohomology of flat families.

Lemma (Nakayama’s lemma)

Let R be a local ring with mazimal ideal m.

Let M be a finite R-module.

Let by, ..., b € M be pairwise distinct elements.

Then the set {by,..., by} is a set of generators of M of minimal
cardinality if and only if the image of {b1,...,bg} in M/mM is
a basis of M/mM as a R/m-vector space.

See Atiyah-MacDonald for the proof.



If R is a ring and L*® is a cochain complex of R-modules.
Let p € Spec(R).

We denote by Ly the complex on R, obtained by localisation
and we write L®(p) for the complex Ly ®g, Ry/pRy, which is a
complex of k(p) := Ry /pRy-vector spaces.

Lemma

Let R be a noetherian ring. Let M be a finitely generated
R-module.

Then the function dim, (M (p)) is upper semicontinuous on
Spec(R), ie for all n € Z, the set

{p € Spec(R) | dim,)(M(p)) = n}
1s closed.

If R is reduced and dim, ) (M (p)) is constant then M is locally
free.



Proof of the first assertion. Let
R' R - M—0
be an exact sequence. Let p € Spec(R).

Let (¢ij)1<i<sii<i<t be a s x t matrix representing the map
R! — R® in the standard bases.

For each [ > 1, let fi;,... fi,1 be the set of all the minors of
order [ of (¢;;) (these are polynomials in the ¢;;). We then have

R) | dimy ) (M (p)) >
RHS—ﬂdwm@D)>n}
)

R)

{p € Spec(R) [rk((¢4;(p))) < s —n}
{pESpec IVI>s—mn, r>1: f, €p}

= Ni>s-n r 1 ((flr))

proving the first assertion in the lemma.

{p € Spec
= {p € Spec

/\/-\A/-\



Proof of the second assertion. Let p € Spec(R) and let

Y1, .-, be a basis of M(p). We have to show that M is
locally free in a neighborhood of p.

Lift this basis to a set a1/b1,...,a,/b, € M,, where
bi,...b, € R\p. We may and do replace R by Rp,...;,, since
Ry, ...y, corresponds to a basic open set of R.

Consider now the exact sequence of R-modules
0K SR 3MsC=0

where ¢((z1,...,2,)) =D ;@ - ZTZ

By construction C'(p) = 0 and by Nakayama’s lemma, we
conclude that C, = 0.



Since C' is a finitely generated R-module, this means that there
exists b € R\p such that b- C' = 0 and thus replacing again R by
Ry, we obtain a sequence of R-modules

0—>K—>RT3>M—>()

Now K is a finitely generated R-module as well, since R is
noetherian and we choose a surjection R! — K. This yields
another exact sequence of R-modules

RAR LM -0
Now since dim,q)(M(q)) = r for all q € Spec(R), we see that
¢(q) is an isomorphism and A(q) = 0 for all q € Spec(R).

The map A can be described by a matrix (¢;; € R) and we have
just shown that for all 4, j and all q € Spec(R), we have

Yij(q) = 0.

In other words, v;; € \/((T) = 0 for all 7, j and thus 1;; = 0 and
A = 0. Thus ¢ is an isomorphism and M is free. . QED



Lemma

Let R be a reduced noetherian ring. Let
0d r1d n
0—+L" =L =.---=L"—=0

be a finite cochain complex of finitely generated free R-modules.
Suppose that the function on Spec(R)

p — dim,) (H'(L*(p)))

is constant. Then H'(L®) is free and there is a natural
isomorphism 4 .
H'(L*)(p) = H'(L*(p))

for all p € Spec(R).

See the notes for the proof, which relies on Nakayama’s lemma.



Lemma

Let R be a noetherian ring. Let
0Lt —... 5 L" =0

be a finite cochain complex of finitely generated free R-modules.
Then the function on Spec(R)

prr S (1) dimgyg) (H (L (p)))

120
1s locally constant on R.

Proof. Notice that

> (= 1) dimygy (H'(L*(p))) = D (=1)" dimygy) (L*(p) = Y (—1)'rk(3

120 120 120

We leave it as an exercise to check this (hint: lift bases). QED



Corollary

Let f: X =Y be a strongly projective morphism. Suppose that
Y is noetherian.

Let F be a coherent sheaf on X and suppose that F is flat over
Y.

Then the function

y e Y (=1) dimy, (H (X, Fy))

720
1s locally constant on'Y .

Proof. Apply the last Lemma to the complex K*® provided by
the semicontinuity theorem. QED



Corollary

Let f: X =Y be a strongly projective morphism. Suppose that
Y is noetherian and reduced.

Let F be a coherent sheaf on X and suppose that F is flat over
Y.

Suppose that the function
Y= dlmn(y) (HZ(va Fy))
1s locally constant on'Y .

Then R f.(F) is locally free.

Proof. Apply the Lemma before last to the complex K*
provided by the semicontinuity theorem. QED



Hilbert polynomials
Let » > 0 and let K be a field.

Let F' be a coherent sheaf on P..

For all n € Z, we write

xe(n) =Y (=1)'dimg H (X, F ® O(n))
>0
Proposition
The function xr(e) is a polynomial with rational coefficients.

The polynomial yp(e) is called the Hilbert polynomial of F.



Example
We have

+ , .
X0 (n) = <” 7") = dimg K[Xo,..., X, "

n

For the proof of the proposition, see the notes.



Note also the important

Lemma

0> F - F—>F'—0

is an exact sequence of coherent sheaves on P, then we have
xr(n) = xp(n) + xpr(n)
for alln € Z.

Proof (of the lemma). Look at the associated long exact
sequence of cohomology. QED



Proposition

Let S be a connected locally noetherian scheme.

Letr > 0 and let v : X — P be a closed subscheme of P
Suppose that X is flat over Spec(A).

Then the Hilbert polynomial of v,y @ Xy(s) — ]P”I;(s) does not
depend onp € S.

Here the immersion ¢, (s : Xy5) = IP’;(S) is obtained by
base-change from ¢ : X — P via the natural morphism
Spec(k(s)) — S.

Proof. This is a special case of a corollary of the
semicontinuity theorem. QED



Two more results on flatness. (without proof; not in the
notes)

Theorem (generic flatness theorem)

Let f: X —'Y be a morphism of finite type.
Suppose that Y is noetherian and integral.
Let F be a coherent sheaf on X.

Then there is a non-empty open set U C'Y such that the
restriction of F' to f~1(U) is flat over U.

Theorem (numerical characterisation of flatness)

Let S be an integral noetherian scheme, let r > 0 and let
t: X — Pg be a closed subscheme of Pg.

Suppose that the Hilbert polynomial of v(s) + Xy(s) — IP’;(S) does
not depend on p € S.



Further results on the Zariski topology

Definition

Let T be a topological space. We say that T is irreducible if
every non empty open subset of T is dense in T .

Equivalently, T is irreducible iff there is no pair of disjoint non
empty open subsets in T'.

Notice that every open subset of an irreducible topological
space is irreducible.

Lemma

If A is a noetherian ring then Spec(A) is irreducible if and only
if A/+/(0) is an integral ring.

Corollary
Let A be a noetherian ring. Let I C A be an ideal.

Then V (I) is irreducible if and only if \/I is a prime ideal.



Lemma

Let T be a noetherian topological space.

There is a finite sequence C1,...Cy of closed irreducible subsets
of T such that

® Uz C;=1T;
e for all indices i, we have C; € U;j£;Cj.

This sequence is unique up to permutation of the indices.

See Exercises.



Application. Let A be a noetherian ring. There is a finite
sequence pi, ... px of prime ideals in A such that

o (;pi = V0;
e for all indices 4, we have p; 2 Njp;.

This sequence is unique up to permutation of the indices. The
ideals p1,...px are called the minimal prime ideals of A.

In particular, if I C A is an ideal, there is a finite sequence
P1,...Ppx of prime ideals in A such that

o [;pi :\/TS

e for all indices 4, we have p; 2 Njp;.

This sequence is unique up to permutation of the indices.



The following lemma points out a specific property of
irreducible closed subsets of schemes.

Lemma (generic points)

Let S be a scheme. Let C C S be an irreducible closed subset.
There is a unique point n € C' such that the Zariski closure 7 is

C.

The point 7 is called the generic point of C.

Idea of proof. Reduce to § = C and S the spectrum of an
integral ring A. Then the generic point is given by (0).



Constructibility.
Definition
Let T be a noetherian topological space.

A subset E C T is called constructible if E is a finite union of
locally closed subsets.

The class of constructible sets is the smallest subclass of the
power set of T', which contains the open subsets of T and is
closed under finite unions and complementation.



Noetherian induction.

Let T be a noetherian topological space.
Let P(e) be a property of closed subsets of T'.

Suppose that P(()) holds and that for all closed subsets C of T,
the statement

if P(C") holds for all closed subsets C' 2 C then P(C) holds

is verified.

Then P(T) holds.



Lemma

Let T be a noetherian topological space.

Then E C T is constructible if and only if for any irreducible
closed subset C C T, either ENC or C'\ (ENC) contains a
non empty open subset of C' in the induced topology.

Proof of ”=-". By noetherian induction, we may assume that
T = C and thus that T is irreducible. So we have to show that
either E or T\ E contains an open subset of T

Let T1,... Ty be closed subsets of T' and U; C T, ...,U C Ty,
where for all indices i, the set U; is an open subset of T} in the
induced topology. Suppose that E = J; U;.

If for some index 7y, we have T;, =T, then E contains an open
subset of T'. So we may suppose that T; = T for all ¢. Now since
T is irreducible, we have T # | J, T; and thus

T™\(JT:) CT\E#0. QED



Permanence properties of constructible sets.

Let f: X — Y be a morphism of noetherian schemes. Let
E CY be constructible.

Then f~1(E) is clearly constructible.
What about direct images?
Theorem (Chevalley-Tarski)

Let f : X =Y be a morphism of finite type. Suppose that'Y is
noetherian.

Let E C X be a constructible subset of X.

Then f(E) is a constructible subset of Y.

[EL15]



Main steps of the proof of Chevalley-Tarski’s theorem.

Step I. Preliminary results in commutative algebra.
Theorem (Noether’s normalisation lemma)

Let K be a field and let A be a finitely generated K -algebra.
Then there is a natural number n € N and a map of K-algebras

¢ K[Ty,... T, = A

such that ¢ is injective and finite.

By definition, ¢ is finite if A is a finitely generated
K|Th,...T,]-module.

Theorem (going-up theorem)

Let ¢ : A — B be a morphism of rings and suppose that ¢ is
injective and finite. Then Spec(¢) : Spec(B) — Spec(A) is
surjective.



Proof of the Going up theorem.

Lemma

Suppose that X : k — By is an injective and finite map of
domains. Then By is a field if and only if k is a field.

Proof (of Lemma 31).
"=". Suppose that k is a field.

By induction on the number of generators of By as a k-module,
we may suppose that By is generated by one element by € By
over k.

Let k[t] — By be the k-algebra map sending ¢ on by.
The kernel of this map is a prime ideal, since By is integral.

Since prime ideals in k[t] are maximal, we conclude that By is a
field.



7«<”. Now suppose that By is a field. We want to show that k
is a field.

Let = € k*. We only have to show that the inverse 2~ € By lies
in k.

Let e, : By — By be the map such that e;(z) = z/x for all
z € By.

There is a polynomial P(t) = t" + as—1 - "1 + - + ag € k[t]
such that P(e;) = 0 (generalised Cayley-Hamilton).

In particular, we have P(e;)(1) = P(1/x) = 0.
Thus we have 2”1 . P(1/x) = 0, ie

et ap1 o Fag- 2" =0

which implies that 2! € k. QED



End of proof of the Going-up theorem.
Let p € Spec(A). There is a commutative diagram

Spec(By) — Spec(B)
lSpeC(%) lspecw)
Spec(Ay) — Spec(A)

Since p the image of the maximal ideal m of A, under the map
Spec(Ap) — Spec(A), it is sufficient to show that there is a
prime ideal q in By so that qbp’l(q) =m.

Let q be any maximal ideal of By.
We have an injective and finite map Ap/qbgl(q) — By/q.

By assumption, the ring B, /q is a field and by Lemma 31, the
ring Ay /¢y L(q) is also field, ie bp '(q) is a maximal ideal in A,.

Since Ay is a local ring, we have p = ¢p_1(q). QED



Lemma (expanded normalisation lemma)
Let ¢ : Ay — By be an injective morphism of rings.

Suppose that Ag and By are integral rings and suppose that By
is finitely generated as an Ag-algebra.

Then there isn € N, s € Ag and a finite and injective
homomorphism of Ag-algebras

AO,s[th . ,tn] — BO,s

See the notes for the proof.



Proof. (of the theorem of Chevalley-Tarski).

Step L. If f(E) is Zariski dense in'Y then f(FE) contains a non
empty open subset of Y.

By noetherian induction, we may assume that £ = X and
assume that the statement hold if F # X.

We may suppose that X and Y are reduced and irreducible
(easy).

We may wrog replace Y by one of its open affine subschemes V'
and X by X xy V, so we may assume that Y is affine.

Let now U C X be a non empty open affine subscheme. Either
f(UNE) is Zariski dense in Y or f((X\U) N E) is Zariski dense
in Y. In the latter case, the assertion follows from the
noetherian inductive hypothesis so we may assume that
f(UNE) is Zariski dense in Y and thus replace X by U.



FE is a finite union of locally closed subsets and one of these
closed subsets, say FEjy, must be dense in X.

In particular, Fy contain an affine open subset Uy of X and as
before, we may replace X by Uy so that we now have F = X.

By Lemma 27, we may thus assume that X = Spec(B) and

Y = Spec(A), where A and B are integral rings. Let ¢ : A — B
be the corresponding maps of rings. Since f(X) is dense in Y, ¢
is injective.

So we are now reduced to show that that if ¢ : A — B is an
injective map of rings, which makes B a finitely generated
A-algebra, then Spec(¢)(Spec(B)) C Spec(A) contains an open
subset of Spec(A).



Now recall that there is n € N, s € A and a finite and injective
homomorphism of Ag-algebras

As[tl,.. . ,tn] — BS

We may replace A by As; and B by B, since Spec(A;) is a basic
open subset of Spec(A).

In this situation, the going-up theorem implies that Spec(¢) is
surjective and we have proven the statement and completed
Step 1.



Step 1I. End of proof of Chevalley-Tarski.

By noetherian induction, we may assume that the Zariski
closure of f(E) is Y and that the intersection of f(F) with any
proper closed subset of Y is constructible.

Let C be an irreducible closed subset of Y. By Lemma 30, it is
sufficient to show that C'N f(E) or C\(C N f(F)) contains a
non empty open subset of C.

If C'#Y then by the inductive hypothesis, we know that
C' N f(E) is constructible and in particular C'N f(E) or
C\(C'N f(E)) contains a non empty open subset of C.

So we may assume that C' =Y. In that case, C' contains a non
empty open subset by Step I. QED

[EL16]
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