Solutions for Exercise sheet 4*

(for the last class, at the beginning of Trinity Term)

Exercise 1.1. Let $\phi : A \to B$ be a morphism of integral rings. Suppose that $\text{Spec}(\phi) : \text{Spec}(B) \to \text{Spec}(A)$ has dense image. Show that ϕ is injective.

Suppose that ϕ is not injective. Let *I* be the kernel of ϕ . Since *B* is a domain and since A/I is isomorphic to a subring of *B* (by the first isomorphism theorem), we see that *I* is a prime ideal, in particular a radical ideal. Furthermore, since every ideal contains the 0 element, we see that for any prime ideal $\mathfrak{p} \in \text{Spec } B$ we have $I = \phi^{-1}(0_B) \subseteq \phi^{-1}(\mathfrak{p}) =: \text{Spec}(\phi)(\mathfrak{p})$. Thus the image of $\text{Spec}(\phi)$ is contained in the closed subset V(I). By assumption $I \neq (0_A)$ and (0_A) is a radical ideal, since *A* is a domain. Thus by Lemma 2.3 and Lemma 2.1, $V(I) \neq \text{Spec } A$. The closure of $\text{Spec}(\phi)$ is contained in V(I), which we have shown to be a proper closed subset of Spec A. Thus the image of $\text{Spec}(\phi)$ is not dense in Spec A.

Exercise 1.2. Let X be a noetherian scheme and let L, M be line bundles on X.

(a) Suppose that L is ample. Show that for sufficiently large $n \ge 0$, the line bundle $L^{\otimes n} \otimes M$ is ample.

(b) Suppose that L and M are ample. Show that the line bundle $L \otimes M$ is ample.

(a) Let *F* be a coherent sheaf on *X*. Choose $n \ge 0$ so that the sheaf $L^{\otimes (n-1)} \otimes M$ is generated by the sections a_1, \ldots, a_{i_1} . By the definition of ampleness, this is possible for all sufficiently large $n \ge 0$.

We shall show that there is a $k_0 \ge 0$ such that when $k \ge k_0$, the sheaf

$$(L^{\otimes n} \otimes M)^{\otimes k} \otimes H$$

is generated by some of its sections. By definition of ampleness, this will prove what we want. Note that there are natural isomorphism

$$(L^{\otimes n} \otimes M)^{\otimes k} \otimes F \simeq (L^{\otimes (n-1)} \otimes M)^{\otimes k} \otimes (L^{\otimes k} \otimes F).$$

Choose k_0 so that $L^{\otimes k} \otimes F$ is generated by global sections for all $k \ge k_0$. Fix such a $k \ge k_0$ and let b_1, \ldots, b_{j_1} be generating sections of $L^{\otimes k} \otimes F$. For $1 \le i \le i_1$ and $1 \le j \le j_1$, the sections $a_i^{\otimes k} \otimes b_j$ are then generating sections for $(L^{\otimes (n-1)} \otimes M)^{\otimes k} \otimes (L^{\otimes k} \otimes F)$.

(b) Notice first that if *F* is generated by the global sections a_1, \ldots, a_{i_1} and *G* is generated by the global sections b_1, \ldots, b_{j_1} then $F \otimes G$ is generated by the global sections $a_i \otimes b_j$ (where $1 \le i \le i_1$ and $1 \le j \le j_1$). Now let *F* be a coherent sheaf *F* on *X*. We have to show that for all sufficiently large *n*, the sheaf

$$(L \otimes M)^{\otimes n} \otimes F$$

^{*}For the course C2.6 Introduction to Schemes, Oxford, Hilary Term 2019

is generated by global sections. Note that we have a natural isomorphism

$$(L \otimes M)^{\otimes n} \otimes F \simeq L^{\otimes n} \otimes (M^{\otimes n} \otimes F)$$

for any $n \ge 0$. Now if we choose n sufficiently large, the sheaves $L^{\otimes n}$ and $M^{\otimes n} \otimes F$ will be globally generated (since L is ample) and thus by the above remark, so will be $L^{\otimes n} \otimes (M^{\otimes n} \otimes F)$.

Exercise 1.3. Let L be a line bundle on $\mathbb{P}^1_{\mathbb{C}}$. Let $\sigma \in \Gamma(\mathbb{P}^1_{\mathbb{C}}, L)$ and suppose that $\sigma \neq 0$. Let $Z(\sigma) \hookrightarrow \mathbb{P}^1_{\mathbb{C}}$ be the zero scheme associated with σ . Let $V_{\sigma} := \Gamma(Z(\sigma), \mathcal{O}_{Z(\sigma)})$ where V_{σ} is viewed as a \mathbb{C} -vector space. Prove that $\dim_{\mathbb{C}}(V_{\sigma})$ is independent of σ . It is called the **degree** of L.

Write $X = \mathbb{P}^1_{\mathbb{C}}$. Let $\iota : Z(\sigma) \hookrightarrow X$ be the given closed immersion. We have by definition an exact sequence of coherent sheaves

$$0 \to L^{\vee} \to \mathcal{O}_X \to \iota_*(\mathcal{O}_{Z(\sigma)}) \to 0$$

and taking into account that $H^1(X, \mathcal{O}_X) = 0$ (Prop. 3.18), we obtain from Th. 1.3 the exact sequence

$$0 \to H^0(X, L^{\vee}) \to H^0(X, \mathcal{O}_X) \to H^0(X, \iota_*(\mathcal{O}_{Z(\sigma)})) = H^0(Z(\sigma), \mathcal{O}_{Z(\sigma)}) = V_{\sigma} \to H^1(X, L^{\vee}) \to 0$$

and thus since $\dim_{\mathbb{C}}(H^0(X, \mathcal{O}_X)) = 1$, we see that

$$\dim_{\mathbb{C}}(V_{\sigma}) = 1 - \dim_{\mathbb{C}}(H^0(X, L^{\vee})) + \dim_{\mathbb{C}}(H^1(X, L^{\vee}))$$

which shows that $\dim_{\mathbb{C}}(V_{\sigma})$ is independent of σ .

Exercise 1.4. Let L, M be line bundles on $\mathbb{P}^1_{\mathbb{C}}$. Suppose that $\Gamma(\mathbb{P}^1_{\mathbb{C}}, L) \neq 0$ and that $\Gamma(\mathbb{P}^1_{\mathbb{C}}, M) \neq 0$. Suppose that L and M have the same degree. Prove that L is isomorphic to M as an $\mathcal{O}_{\mathbb{P}^1_{\mathbb{C}}}$ -module.

Let *J* be a line bundle on $X = \mathbb{P}^1_{\mathbb{C}}$. We shall consider the Cech complex associated with *J*. Let

$$U_0 = \operatorname{Spec} \mathbb{C}[X/Y], U_1 = \operatorname{Spec} \mathbb{C}[Y/X]$$

be the standard covering of X by affine open subschemes. Recall (see proof of Th. 3.4) that U_0 and U_1 are glued along the affine open subscheme $\operatorname{Spec} \mathbb{C}[X/Y]_{X/Y} = U_0 \cap U_1$, which is an open subscheme of U_0 (resp. U_1) via the natural inclusion of rings $\mathbb{C}[X/Y] \to \mathbb{C}[X/Y]_{X/Y}$ (resp. $\mathbb{C}[Y/X] \to \mathbb{C}[X/Y]_{X/Y}$). Since $\mathbb{C}[X/Y]$ and $\mathbb{C}[Y/X]$ are PIDs, the structure theorem for finitely generated modules over PIDs shows that the restrictions of J to U_0 and U_1 are trivial line bundles. Choose identifications $J|_{U_0} \simeq \mathcal{O}_{U_0}$ and $J|_{U_1} \simeq \mathcal{O}_{U_1}$. The structure of line bundle of J on X is now entirely given by the glueing map $(J|_{U_1})|_{U_0\cap U_1} \to (J|_{U_0})|_{U_0\cap U_1}$ which under the above conventions corresponds to a unit R in $\mathbb{C}[X/Y]_{X/Y}$. Note that multiplying R by a non zero complex number $\mu \in \mathbb{C}$ gives an isomorphic line bundle, because if we replace the identification $J|_{U_1} \simeq \mathcal{O}_{U_1}$ by the the same identification multiplied by μ then this will lead to the unit $\mu \cdot R$.

If we now apply the global sections functor $H^0(X, \bullet)$ to the corresponding Cech complex we obtain a sequence of the form

$$\cdots \to 0 \to \mathbb{C}[X/Y] \oplus \mathbb{C}[Y/X] \xrightarrow{P \oplus Q \mapsto P - R \cdot Q} \mathbb{C}[X/Y]_{X/Y} \to 0 \to \dots$$

Writing z = X/Y for ease notation, this can be rewritten

$$\dots 0 \to 0 \to \mathbb{C}[z] \oplus \mathbb{C}[1/z] \xrightarrow{P \oplus Q \mapsto P - R \cdot Q} \mathbb{C}[z]_z \to 0 \to 0 \to \dots$$
(1)

with *R* a unit in $\mathbb{C}[z]_z$. As usual we adopt the convention that this complex is of index 0 at the term $\mathbb{C}[z] \oplus \mathbb{C}[1/z]$.

Note that $\mathbb{C}[z]_z$ is the subring of the fraction field of $\mathbb{C}[z]$ corresponding to the Laurent power series in z with finitely positive as well as negative elements (also called "Laurent polynomials").

We now record the

Lemma 1.1. The units in $\mathbb{C}[z]_z$ are the elements of the form $\lambda \cdot z^k$ where $k \in \mathbb{Z}$ and $\lambda \in \mathbb{C} \setminus \{0\}$.

Proof. (of the lemma). Let $A, B \in \mathbb{C}[z]_z$ be such that $A \cdot B = 1$. We may suppose without restriction of generality that A is monic. Let $i \ge 0$ be such that $z^i \cdot A \in \mathbb{C}[z]$ and $z^i \cdot A \in \mathbb{C}[z]$. Then we have $(z^i \cdot A) \cdot (z^i \cdot B) = z^{2i}$. By unique factorisation, $z^i \cdot A$ is thus a positive power of z and thus A is an integer power of z. QED

From the lemma, we deduce that $R = \lambda \cdot z^k$ for some $k \in \mathbb{Z}$ and $\lambda \in \mathbb{C} \setminus 0$. We now compute the homology of the complex (1).

The homology at the index 0 is the kernel of the map $P \oplus Q \mapsto P - R \cdot Q$. This by definition consists of the pairs $(P \in \mathbb{C}[z], Q \in \mathbb{C}[1/z])$, such that $P = \lambda \cdot z^k \cdot Q$, or in other words of the pairs $(P \in \mathbb{C}[z], \lambda^{-1}z^{-k}P)$ where $P \in \mathbb{C}[z]$ is such that $\lambda^{-1}z^{-k}P \in \mathbb{C}[1/z]$. By inspection, this corresponds to the polynomials $P \in \mathbb{C}[z]$ of degree $\leq k$ (with the convention that the 0 polynomial 0 has degree $-\infty$). This space has dimension k+1 if $k \geq 0$ and dimension 0 otherwise.

The homology at the index 1 is the quotient of $\mathbb{C}[z]_z$ by the image of the map $P \oplus Q \mapsto P - R \cdot Q$. Since the image of this map contains $\mathbb{C}[z]$, we may identify this quotient with the quotient of the vector space $\mathbb{C}[z]_{\leq 0}$ of Laurent polynomials with only negative terms by the vector space $R \cdot \mathbb{C}[z] \cap \mathbb{C}[z]_{\leq 0}$. Now $R \cdot \mathbb{C}[z] \cap \mathbb{C}[z]_{\leq 0}$ consists precisely of the Laurent polynomials of the form T(1/z), where $T \in \mathbb{C}[z]$ is a polynomial of degree at most -k (with again the convention that the 0 polynomial 0 has degree $-\infty$). This space has dimension -k - 1 if $k \leq 0$ and has dimension 0 otherwise.

We conclude that

$$\dim_{\mathbb{C}}(H^0(X,J)) - \dim_{\mathbb{C}}(H^1(X,J)) = k+1$$
(2)

Coming back to the original problem, suppose that L and M have the same degree. Then from the solution of Ex. 1.3 of this sheet, we see that

$$\dim_{\mathbb{C}}(H^0(X,L^{\vee})) - \dim_{\mathbb{C}}(H^1(X,L^{\vee})) = \dim_{\mathbb{C}}(H^0(X,M^{\vee})) - \dim_{\mathbb{C}}(H^1(X,M^{\vee})).$$

From equation (2) we see that the unit associated with the glueing map of L^{\vee} is of the form

$$\lambda \cdot z^{\dim_{\mathbb{C}}(H^0(X,L^{\vee})) - \dim_{\mathbb{C}}(H^1(X,L^{\vee})) - 1}$$

and by the above remark we may assume without restriction of generality that $\lambda = 1$. The same applies to M^{\vee} . Thus the glueing data of L^{\vee} and M^{\vee} are the same and they are thus isomorphic. Since $(L^{\vee})^{\vee} \simeq L$ and $(M^{\vee})^{\vee} \simeq M$ we conclude that L and M are isomorphic.