
Noncommutative Rings

Solutions to Problem Sheet 4

1. Let A =

(
Z Z
0 Z

)
and let P =

(
Z Z
0 0

)
. Show that P is a prime ideal in A. Also, show that

S := A\P is multiplicatively closed but is not a right Ore set. Prove that S is a left localisable

subset of A and that S−1A ∼= Q.

Solution. The map θ : A → Z which sends

(
a b

0 c

)
to c is a surjective ring homomorphism with

kernel P . Since Z is an integral domain, we deduce that xy ∈ P forces x ∈ P or y ∈ P (such ideals

in the non-commutative world are called completely prime). Now if I, J are ideals in A such that

IJ ⊆ P then for all x ∈ P , xJ ⊆ P forces either x ∈ P or J ⊆ P . Hence I ⊆ P or J ⊆ P and P is

prime.

Note that S = θ−1(Z\{0}). If θ(x) 6= 0 and θ(y) 6= 0 then θ(xy) = θ(x)θ(y) 6= 0. So x, y ∈ S

implies xy ∈ S; also 1 ∈ S so S is indeed multiplicatively closed. To see that S is not a right Ore

set, consider the elements

s :=

(
0 0

0 1

)
∈ S and a :=

(
0 1

0 0

)
∈ A.

Then for any s′ :=

(
x′ y′

0 z′

)
∈ S and a′ :=

(
u′ v′

0 w′

)
∈ A we have

sa′ =

(
0 0

0 w′

)
and as′ =

(
0 z′

0 0

)
.

Since z′ 6= 0 because s′ ∈ S, we see that sa′ cannot be equal to as′. Thus S is not a right Ore set.

To show that S is a left localisable, we could note that A is a finitely generated Z module, hence

a left Noetherian ring, so by Proposition 3.11 and Theorem 3.8 it is enough to show that S is a

left Ore set. This can be done by a direct verification. Here is an alternative, perhaps a little more

conceptual, solution, which also has the advantage of simultaneously computing S−1A.

Let ϕ : A → S−1A and ι : Z → Q be the localisation maps. Since ι ◦ θ : A → Q sends S to units,

by the universal property of S−1A there is some ψ : S−1A→ Q such that ψ ◦ ϕ = ι ◦ θ:(
A[r]ϕ[d]θ S−1A[d]ψ

Z[r]ι Q

)
Now if ϕ(a) = 0 then ιθ(a) = ψ(ϕ(a)) = 0 so a ∈ ker θ = P . On the other hand,

sP =

(
0 0

0 1

)(
Z Z
0 0

)
=

(
0 0

0 0

)
.



Hence ϕ(P ) = ϕ(s)−1ϕ(sP ) = 0 and P = kerϕ. Since A/P ∼= im θ = Z, there is a map σ : Z →
S−1A such that ϕ = σ ◦ θ: (

A[r]ϕ[d]θ S−1A[d]ψ

Z[ur]σ[r]ι Q

)
.

If n ∈ Z then σ(n) = σ(θ(ñ)) = ϕ(ñ) where ñ :=

(
0 0

0 n

)
. Since ñ ∈ S whenever n 6= 0, by the

universal property of Q there is a map σ̃ : Q→ S−1A such that σ = σ̃ ◦ ι. Now

σ̃ψϕ = σ̃ιθ = σθ = ϕ

so the ring endomorphism σ̃ψ : S−1A→ S−1A is the identity map on ϕ(A). So it is also the identity

map on ϕ(S)−1. But S−1A is generated as a ring by these two sets, so σ̃ψ is the identity map on

all of S−1A. It follows that ψ is injective. Now

n−1m = ψ(ϕ(ñ)−1ϕ(m̃))

for any n−1m ∈ Q so ψ is surjective. Hence ψ : S−1A→ Q is an isomorphism. It follows that every

element of S−1A can be written in the form ϕ(ñ)−1ϕ(m̃) for some n,m ∈ Z with n 6= 0. Finally, we

saw above that kerϕ = P , which is left S-torsion because sP = 0. So kerϕ = tS(A) and S is left

localisable, directly from Definition 3.4(a).

2. Suppose that A is left Noetherian, and let S be a left localisable subset of A.

(a) Prove that Q := S−1A is also left Noetherian.

(b) Show that if I is a two-sided ideal in A then Q · I is also a two-sided ideal in Q.

(c) Suppose further that A is also right Noetherian, and that P is a prime ideal in A such that

P ∩ S = ∅. Show that Q · P is a prime ideal in Q.

Solution. (a) Let I be a left ideal in Q, and let ϕ : A→ Q = S−1A be the localisation map. Then

J := ϕ−1(I) is a left ideal in A. Since A is left Noetherian, J is generated by some finite subset

X of A. Clearly Q · ϕ(X) ⊆ I. Now if x ∈ I then ϕ(s)x ∈ ϕ(A) for some s ∈ S, so ϕ(s)x = ϕ(u)

for some u ∈ J . This shows that x = ϕ(s)−1ϕ(u) ∈ Q · ϕ(J) = Q · ϕ(A) · ϕ(X) = Q · ϕ(X). Thus

I = Q · ϕ(X) is finitely generated, so Q is left Noetherian.

(b) We have to show that Q · I = Qϕ(I) is a right ideal in Q. Since it is clearly stable under right

multiplication by ϕ(A), we have to show that QI ·s−1 ⊆ QI for all s ∈ ϕ(S). Consider the ascending

chain of left ideals QI 6 QIs−1 6 QIs−2 6 · · · . This chain terminates because Q is left Noetherian

by part (a). So QIs−n = QIs−n−1 for some n ∈ N. Multiplying this on the right by sn shows that

QIs−1 = QI, as required.

(c) By part (b), Q ·P is a two-sided ideal in Q. Suppose Q ·P = Q. Then 1 ∈ Qϕ(P ) so ϕ(s) ∈ ϕ(P )

for some s ∈ S. Hence ϕ(s − u) = 0 for some u ∈ P so t(s − u) = 0 for some t ∈ S. But then

ts = tu ∈ S ∩ P , a contradiction. Thus Q · P is a proper ideal of Q.

Consider the two-sided ideal K := ϕ−1(QP ) of A. If u ∈ K then ϕ(u) ∈ QP so ϕ(su) ∈ P for some

s ∈ S, so tsu ∈ P for some t ∈ S. Thus, for all u ∈ K there exists x ∈ S such that xu ∈ P . Since A is
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right Noetherian and K is a right ideal, we can write K = u1A+ · · ·+umA for some u1, . . . , um ∈ K.

Using the left Ore condition, we can find s ∈ S such that sui ∈ P for all i = 1, . . . ,m. Therefore

sK = su1A + · · · + sumA ⊆ P . But P is prime, so (RsR) · K ⊆ P forces s ∈ P or K ⊆ P .

Since S ∩ P = ∅ by assumption, we deduce that K = P . Now suppose that I, J / Q are such that

IJ ⊆ QP . Then ϕ−1(I)ϕ−1(J) ⊆ ϕ−1(QP ) = K = P so either ϕ−1(I) ⊆ P or ϕ−1(J) ⊆ P . But

I = Q ·ϕ(ϕ−1(I)) and J = Q ·ϕ(ϕ−1(J)) by part (a), so we deduce that either I ⊆ QP or J ⊆ QP .

3. Let A be a filtered ring and let M be a filtered left A-module.

(a) Show that M̃/tM̃ is isomorphic to grM as a left grA-module.

(b) Viewing M as a left Ã-module via the isomorphism Ã/(t− 1)Ã ∼= A from Lemma 4.20(2), show

that M̃/(t− 1)M̃ is isomorphic to M as a left Ã-module.

Solution. (a) Define π : M̃ → grM on homogeneous elements by π(mit
i) = mi + Mi−1, and

extend to the whole of M̃ . It is a surjective map on homogeneous components, hence surjective. If∑
mit

i ∈ kerπ then
∑
mi + Mi−1 = 0 in grM , so that mi ∈ Mi−1 for all i. But then

∑
mit

i =

t ·
∑
mit

i−1 ∈ tM̃ . So kerπ = tM̃ . Hence π : M̃/tM̃ −→ grM given on homogeneous elements

by π(mit
i + tM̃) = mi + Mi−1 is an isomorphism of abelian groups. It remains to check that this

isomorphism is compatible with the left Ã/tÃ ∼= grA-module structures:

π((ait
i + tÃ) · (mjt

j + tM̃)) = π(aimjt
i+j + tM̃) = aimj +Mi+j−1

whereas

π(ait
i + tÃ) · π(mjt

j + tM̃) = (ai +Ai−1) · (mj +Mj−1) = aimj +Mi+j−1.

(b) The map θM : M [t, t−1]→M which is the identity on M and which sends ti to 1 for all i ∈ Z has

kernel (t−1)M [t, t−1]. A similar argument to the one given in the proof of Lemma 4.20(2) also shows

that (t−1)M [t, t−1]∩M̃ = (t−1)M̃ . Since θM is onto, we see that the map θM : M̃/(t−1)M̃ →M

which sends
∑
mit

i + (t− 1)M̃ to
∑
mi is an isomorphism of abelian groups. It remains to check

that it is compatible with the isomorphism θ : Ã/(t− 1)Ã→ A:

θM ((ait
i + (t− 1)Ã)(mjt

j + (t− 1)M̃)) = aimj

whenever ai ∈ Ai and mj ∈Mj , and

θ(ait
i + (t− 1)Ã) · θM (mjt

j + (t− 1)M̃) = ai ·mj = aimj .

Hence M̃/(t− 1)M̃ is isomorphic to M as a left Ã-module.

4. (a) Verify that the commutator bracket on a ring A is a Poisson bracket.

(b) Let k be a field. Suppose that {, } is a Poisson bracket on the polynomial ring A = k[x1, . . . , xn]

such that {k,A} = 0. Prove that {, } is completely determined by its values on the xi’s.

(c) Let A be a filtered ring such that grA is commutative, and let {, } be the induced Poisson

bracket on grA. Show that gr I is closed under {, } for any left ideal I in A.
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(d) Find an example of a filtered ring A and a graded ideal J in grA such that grA is commutative

and {J, J} ⊆ J but {
√
J,
√
J} *

√
J .

Solution. (a) This is straightforward: expand everything out and compare sides. For example:

[x, yz]−y[x, z]−[x, y]z = x(yz)−(yz)x−y(xz−zx)−(xy−yx)z = xyz−yzx−yxz+yzx−xyz+yxz = 0.

(b) Since {k,A} = 0 we see that {λx, y} = {λ, y}x + λ{x, y} = λ{x, y} for all x, y ∈ A and

λ ∈ k. Thus {, } is k-bilinear because it is anti-symmetric by definition. Since A is spanned by

the monomials xα1
1 · · ·xαn

n as a k-vector space, the Poisson bracket is completely determined by its

values on such monomials. Now

{xα1
1 · · ·x

αn
n , a} =

n∑
i=1

αix
α1
1 · · ·x

αi−1
i · · ·xαn

n {xi, a}

shows that the Poisson bracket is completely determined by terms of the form {xi, xβ11 · · ·x
βn
n }. But

this is equal to
n∑
j=1

{xi, xj}βjxβ11 · · ·x
βj−1
j · · ·xβnn

so we see that it’s enough to know {xi, xj} to calculate all possible values of {, }.

(c) Let X,Y be homogeneous elements of gr I of degrees i, j respectively. Then X ∈ ((I ∩ Ri) +

Ri−1)/Ri−1, so we can write X = x + Ri−1 for some x ∈ I ∩ Ri and similarly Y = y + Rj−1 for

some y ∈ I ∩ Rj . Now on the one hand, [x, y] = x · y + (−y) · x ∈ I because I is a left ideal, and

on the other hand, [x, y] ∈ Ri+j−1 because grR is commutative. Thus {X,Y } = [x, y] + Ri+j−2 ∈
((I ∩Ri+j−1) +Ri+j−2)/Ri+j−2 ⊂ gr I. So {gr I, gr I} ⊆ gr I.

(d) Let A = A1(k) be the first Weyl algebra so that grA = k[X,Y ] is a commutative polynomial

ring in two variables, and let J = m2 where m is any ideal of grA. Then {J, J} = {m2, J} ⊆
m{m, J}+ {m, J}m and {m, J} = {m,m2} = m{m,m}+ {m,m}m ⊆ m. Hence {J, J} ⊆ J regardless

of what m is. Now take m = 〈x, y〉 / A. Then J := m2 = 〈x2, xy, y2〉 is a graded ideal of grA

closed under the Poisson bracket, but
√
J = m is not closed under the Poisson bracket because

{y, x} = 1 /∈ m.

5. Let B be a left Noetherian ring, and let t ∈ B be a central regular element. By considering the ring

(tN)−1B or otherwise, show that for any left ideal I of B there is an integer n such that I∩tnB ⊆ tI.

Solution. Since t is regular, we can view B as a subring of Bt = (tN)−1B. Consider the chain

I ⊆ t−1I∩B ⊆ t−2I∩B ⊆ · · · of left ideals of B. Since B is left Noetherian, for some n ≥ 1 we have

that t−(n−1)I∩B = t−nI∩B. Multiplying this relation by tn shows that I∩tnB ⊆ tn(t−(n−1)I) = tI.

6. Let n ≥ 1, and let k be a field of characteristic zero. Show that there are no n × n matrices X,Y

with entries in k that satisfy the relation Y X −XY = 1. What happens if the characteristic of k

is positive?

Solution. If Y X − XY = 1 then taking traces shows that tr(Y X − XY ) = tr(1) = n. But

tr(XY ) = tr(Y X) so n = 0, a contradiction. If the characteristic of k is positive, then it is possible
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to find such matrices: the problem is equivalent to finding a non-zero finite dimensional module

over the first Weyl algebra A := A1(k). Now by Exercise 1.1, inside A we have

ypx =

p∑
i=0

(
p

i

)
adiy(x)yp−i = xyp + adpy(x) = xyp

because ad2
y(x) = [y, [y, x]] = [y, 1] = 0. Hence yp is central in A1(k) and a similar argument shows

that xp is central. Let V = A/(Axp + Ayp). It follows from Exercise 1.3(b) that the image of

{xiyj : 0 6 i, j 6 p − 1} in V is a k-vector space basis for V . So V is a p2-dimensional k-vector

space and also a left A-module. If X,Y ∈ Endk(V ) ∼= Mp2(k) are the matrices that give the action

of x, y ∈ A on V respectively, then Y X −XY = 1 inside Mp2(k).

7. Let R be a filtered ring, let M be a filtered left R−module with filtration (Mi)i∈Z and let N be a

submodule of M . Equip N with the subspace filtration Ni := N ∩Mi, and equip M/N with the

quotient filtration (M/N)i := (Mi +N)/N. Show that

(a) there is an injective grR-module homomorphism α : grN → grM ,

(b) there is a surjective grR-module homomorphism β : grM → gr(M/N),

(c) kerβ = Imα.

Solution: (a) The natural composition of maps Ni ↪→ Mi and Mi � Mi/Mi−1 has kernel Ni ∩
Mi−1 = N ∩Mi−1 = Ni−1. So we have an injection of abelian groups

αi : Ni/Ni−1 ↪→Mi/Mi−1

for all i ∈ Z. Putting these together we get an injection

α = ⊕αi : grN → grM.

You should now check that α is a left grR−module homomorphism.

(b) Let βi be the composition

βi : Mi/Mi−1
ui→ Mi +N

Mi−1 +N

vi→ (Mi +N)/N

(Mi−1 +N)/N

where ui(m + Mi−1) = m + Mi−1 + N and vi is the natural isomorphism. Then βi is surjective,

hence so is

β := ⊕βi : grM → gr(M/N).

You should now check that β is a left grR-module homomorphism.

(c) Recall the modular law, which states that if X,Y, Z are three subgroups of some larger abelian

group with X ⊆ Y , then

Y ∩ (X + Z) = X + (Y ∩ Z).

Using this fact, we see that

ker(ui) =
Mi ∩ (Mi−1 +N)

Mi−1
=
Mi−1 + (Mi ∩N)

Mi−1
=
Mi−1 +Ni

Mi−1
= im(αi)

Since vi is an isomorphism, it follows that ker(βi) = im(αi) for all i ∈ Z. Hence ker(β) = im(α).
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8. Let A = An(k) be the Weyl algebra, and let r be an integer such that n 6 r 6 2n. Give an example

of a cyclic A-module M such that d(M) = r. Justify your answer.

Solution. Fix d = 0, . . . , n, let I = Ay1 + · · ·+ Ayd, and let J := (grA)Y1 + · · · (grA)Yd. We will

show that gr I = J , the ⊇ inclusion being clear. The monomials {yβ : β ∈ Nn} form a basis for A

as a left R = k[x1, . . . , xn]-module by Exercise 1.3(b). Hence {yβ : yi ≥ 1 for some 1 6 i 6 d} forms

a basis for I as a left R-module. Let u ∈ I have degree m; then we can write u =
∑
|β|=m uβy

β for

some uβ ∈ R such that uβ = 0 whenever β1 = · · · = βd = 0. Hence u+Am−1 =
∑
|β|=m uβ ·Y β ∈ J ,

because uβ 6= 0 forces Yi|Y β for some 1 6 i 6 d and then Y β ∈ J . Thus gr I ⊆ J as claimed. The

ideal J is prime, and the ring grA/J is isomorphic to a polynomial ring over k in n+(n−d) = 2n−d
variables. Hence Kdim(grA/J) = 2n− d.

Let d := 2n − r. Since n 6 r 6 2n, we have 0 6 d 6 n. Let M := A/I; then grM ∼= grA/ gr I by

Question 5, so d(M) = Kdim(grA/ gr I) = 2n− (2n− r) = r.
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