Noncommutative Rings
Solutions to Problem Sheet 4
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1. Let A = (0 Z) and let P = (0 O). Show that P is a prime ideal in A. Also, show that

S := A\P is multiplicatively closed but is not a right Ore set. Prove that S is a left localisable
subset of A and that S™1A = Q.

a b
Solution. The map 6 : A — Z which sends to ¢ is a surjective ring homomorphism with
c

kernel P. Since Z is an integral domain, we deduce that xy € P forces x € P or y € P (such ideals
in the non-commutative world are called completely prime). Now if I, J are ideals in A such that
IJ C P then for all x € P, xJ C P forces either x € P or J C P. Hence I C Por J C P and P is

prime.

Note that S = 071(Z\{0}). If 6(z) # 0 and 6(y) # 0 then §(xy) = 6(x)8(y) # 0. So =,y € S
implies zy € S; also 1 € S so S is indeed multiplicatively closed. To see that S is not a right Ore

set, consider the elements

0 o

!
sa = 00 and as’ = 0 2 .
0 w 0 0

Since 2’ # 0 because s’ € S, we see that sa’ cannot be equal to as’. Thus S is not a right Ore set.

/ / / /
Then for any s’ := <a(c) y) € Sand d := (u U) € A we have

To show that S is a left localisable, we could note that A is a finitely generated Z module, hence
a left Noetherian ring, so by Proposition 3.11 and Theorem 3.8 it is enough to show that S is a
left Ore set. This can be done by a direct verification. Here is an alternative, perhaps a little more

conceptual, solution, which also has the advantage of simultaneously computing S~ A.

Let ¢ : A — S7'A and + : Z — Q be the localisation maps. Since 1o : A — Q sends S to units,
by the universal property of S~'A there is some v : S~ A — Q such that 1) o ¢ = ¢ 0 6:

Alr]?ldly S~1Ald)?
Z[r], Q
Now if ¢(a) = 0 then t8(a) = 1 (p(a)) =0 so a € ker = P. On the other hand,
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Hence ¢(P) = ¢(s) 1p(sP) = 0 and P = ker . Since A/P = im@ = Z, there is a map o : Z —
S~ A such that ¢ = o 0 6:

(Awwe s—%W)
Zlur)s[r], Q .

0 0
If n € Z then o(n) = o(8(n)) = ¢(n) where n := 0 . Since n € S whenever n # 0, by the
n

universal property of Q there is a map o : Q — S~'A4 such that ¢ = g o ¢. Now
oYpp=c1d=00=¢p

so the ring endomorphism ¢ : S™1A — S~1A is the identity map on p(A). So it is also the identity
map on ¢(S)~!. But ST!A is generated as a ring by these two sets, so g1 is the identity map on
all of ST1A. Tt follows that v is injective. Now

n”tm = () " p(m))

for any n~'m € Q so v is surjective. Hence ¥ : S~'A — Q is an isomorphism. It follows that every
element of S~'A can be written in the form ¢ (7)1 (m) for some n,m € Z with n # 0. Finally, we
saw above that ker p = P, which is left S-torsion because sP = 0. So ker¢ = tg(A) and S is left
localisable, directly from Definition 3.4(a).

. Suppose that A is left Noetherian, and let .S be a left localisable subset of A.

(a) Prove that @ := S~'A is also left Noetherian.
(b) Show that if I is a two-sided ideal in A then @ - I is also a two-sided ideal in Q.

(c) Suppose further that A is also right Noetherian, and that P is a prime ideal in A such that
PN S =0. Show that Q - P is a prime ideal in Q.

Solution. (a) Let I be a left ideal in @, and let ¢ : A — Q = S~ A be the localisation map. Then
J = ¢ () is a left ideal in A. Since A is left Noetherian, J is generated by some finite subset
X of A. Clearly Q- p(X) C I. Now if x € I then ¢(s)x € ¢(A) for some s € S, so p(s)r = p(u)
for some u € J. This shows that 2 = ¢(s)Lp(u) € Q- p(J) = Q- p(A) - p(X) = Q - p(X). Thus
I =@ - ¢(X) is finitely generated, so @ is left Noetherian.

(b) We have to show that Q- I = Qp(I) is a right ideal in Q. Since it is clearly stable under right
multiplication by ((A), we have to show that QI-s~! C QI for all s € ¢(S). Consider the ascending
chain of left ideals QI < QIs~' < QIs~2 < --- . This chain terminates because Q is left Noetherian
by part (a). So QIs™" = QIs "1 for some n € N. Multiplying this on the right by s” shows that
QIs~! = QI, as required.

(c) By part (b), Q- P is a two-sided ideal in (). Suppose @-P = Q. Then 1 € Qp(P) so ¢(s) € ¢(P)
for some s € S. Hence ¢(s —u) = 0 for some u € P so t(s —u) = 0 for some ¢t € S. But then

ts =tu € SN P, a contradiction. Thus @ - P is a proper ideal of Q.

Consider the two-sided ideal K := ¢~ }(QP) of A. If u € K then p(u) € QP so ¢(su) € P for some
s € 8,s0tsu € Pforsomet € S. Thus, for all u € K there exists € S such that zu € P. Since A is



right Noetherian and K is a right ideal, we can write K = u1 A+- - - +u,, A for some uy,...,u, € K.
Using the left Ore condition, we can find s € S such that su; € P for all i = 1,...,m. Therefore
sK = su1A+ -+ + su,, A C P. But P is prime, so (RsR)- K C P forces s € P or K C P.
Since S N P = () by assumption, we deduce that K = P. Now suppose that I,.J < @ are such that
IJ C QP. Then o~ t(I)¢e~1(J) C o~ HQP) = K = P so either p='(I) C P or ¢~ '(J) C P. But
I=Q o(p~ (1)) and J = Q- ¢(p~1(J)) by part (a), so we deduce that either I C QP or J C QP.

. Let A be a filtered ring and let M be a filtered left A-module.

(a) Show that M / tM is isomorphic to gr M as a left gr A-module.
(b) Viewing M as a left A-module via the isomorphism A/(t —1)A = A from Lemma 4.20(2), show
that M/(t - 1)]\7 is isomorphic to M as a left A-module.

Solution. (a) Define 7 : M — gr M on homogeneous elements by w(m;t') = m; + M;_1, and
extend to the whole of M. It is a surjective map on homogeneous components, hence surjective. If
S m;tt € ker then Y. m; + M;_1 = 0 in gr M, so that m; € M;_; for all i. But then Y m;t! =
t- S mttl € tM. So kerm = tM. Hence 7 : M/t]\? — gr M given on homogeneous elements
by T(m;t* + tM ) = m; + M;_1 is an isomorphism of abelian groups. It remains to check that this

isomorphism is compatible with the left Z/ tA gr A-module structures:
T((ait’ + tA) - (mjt! +tM)) = T(aimt™7 +tM) = aim; + Miyj
whereas
T(agt! + tA) - w(mjt! + tM) = (a; + Ai_1) - (mj + M;_1) = aymj + Miy ;1.

(b) The map 0y : M[t,t~'] — M which is the identity on M and which sends #' to 1 for all i € Z has
kernel (t—1)M[t,t~!]. A similar argument to the one given in the proof of Lemma 4.20(2) also shows
that (t—1)M][t,t=]NM = (t—1)M. Since 6y is onto, we sce that the map a7 : M /(t—1)M — M
which sends " mgt + (t — 1)M to S m; is an isomorphism of abelian groups. It remains to check
that it is compatible with the isomorphism 6 : A/(t — 1)A — A:

Onr ((ait’ + (t — 1) A)(myt) + (t — 1)M)) = a;m;
whenever a; € A; and m; € M;, and
O(ait’ + (t — 1)A) - Opr(mgt? + (t — 1)M) = a; - mj = amm.
Hence M /(t — 1)M is isomorphic to M as a left A-module.

. (a) Verify that the commutator bracket on a ring A is a Poisson bracket.

(b) Let k be a field. Suppose that {, } is a Poisson bracket on the polynomial ring A = k[z1, ..., zy)
such that {k, A} = 0. Prove that {, } is completely determined by its values on the z;’s.

(c) Let A be a filtered ring such that gr A is commutative, and let {,} be the induced Poisson
bracket on gr A. Show that gr [ is closed under {, } for any left ideal I in A.



(d) Find an example of a filtered ring A and a graded ideal J in gr A such that gr A is commutative

and {J,J} C J but {v/J,VJ} € VJ.

Solution. (a) This is straightforward: expand everything out and compare sides. For example:
[, yz]—ylz, 2] [z, y]z = 2(y2) - (y2)z—y(zz—22) - (2y—yx)z = vyz—yza—yrz+yza—ryz+yzrz = 0.

(b) Since {k, A} = 0 we see that {\z,y} = {\y}z + Mz,y} = Muzx,y} for all z,y € A and

A € k. Thus {,} is k-bilinear because it is anti-symmetric by definition. Since A is spanned by

(077}

the monomials z{" - - z%

as a k-vector space, the Poisson bracket is completely determined by its

values on such monomials. Now
n
aq « _ § : %t a;—1 « .
{:1;1 ...xnnja}_ 041371 ...xi'b ...xn"{‘r“a}
i=1

shows that the Poisson bracket is completely determined by terms of the form {z;, xf Lo xﬁ"} But

this is equal to
n

i—1
S fwiwByal g
j=1

so we see that it’s enough to know {;,x;} to calculate all possible values of {, }.

(c) Let X,Y be homogeneous elements of grl of degrees i,j respectively. Then X € ((I N R;) +
R;_1)/R;i—1, so we can write X = x + R;_; for some x € I N R; and similarly Y = y + R;_; for
some y € I N R;. Now on the one hand, [z,y] = -y + (—y) - ¢ € I because [ is a left ideal, and
on the other hand, [z,y] € R;;;j—1 because gr R is commutative. Thus {X,Y} = [z,y] + Ri1j_2 €
(INRiyj—1) + Riyj—2)/Ritj—2 Cgrl. So{grl,grl} Cgrl.

(d) Let A = A;(k) be the first Weyl algebra so that gr A = k[X,Y] is a commutative polynomial
ring in two variables, and let J = m? where m is any ideal of gr A. Then {J,J} = {m? J} C
m{m, J} +{m, J}m and {m,J} = {m,m?} = m{m, m} + {m, m}m C m. Hence {J, J} C J regardless
of what m is. Now take m = (x,y) < A. Then J := m? = (22 2y,3?) is a graded ideal of gr A

closed under the Poisson bracket, but VJ = m is not closed under the Poisson bracket because
{y,2} =1¢m.

. Let B be a left Noetherian ring, and let ¢ € B be a central regular element. By considering the ring
(tN)~1 B or otherwise, show that for any left ideal I of B there is an integer n such that INt"B C tI.

Solution. Since t is regular, we can view B as a subring of B; = ()" B. Consider the chain
ICt ' INB Ct2INB C --- of left ideals of B. Since B is left Noetherian, for some n > 1 we have
that t~ ("~ INB = t~"INB. Multiplying this relation by ¢" shows that INt"B C t*(t~("~1I) = ¢I.

. Let n > 1, and let k be a field of characteristic zero. Show that there are no n x n matrices X,Y
with entries in k that satisfy the relation Y X — XY = 1. What happens if the characteristic of &k

is positive?

Solution. If YX — XY = 1 then taking traces shows that tr(YX — XY) = tr(l) = n. But
tr(XY) = tr(YX) so n =0, a contradiction. If the characteristic of k is positive, then it is possible



to find such matrices: the problem is equivalent to finding a non-zero finite dimensional module
over the first Weyl algebra A := A;(k). Now by Exercise 1.1, inside A we have

P
p . s
yPr = Z <z> dy, (z)y"™" = zy? + adj)(z) = xy?
=0
because adz(x) = [y, [y, z]] = [y,1] = 0. Hence y? is central in A;(k) and a similar argument shows

that oP is central. Let V = A/(AxP + AyP). It follows from Exercise 1.3(b) that the image of
{2'y/ : 0 <i,j < p—1}in V is a k-vector space basis for V. So V is a p?-dimensional k-vector

space and also a left A-module. If X,Y € Endg(V) = M,2(k) are the matrices that give the action

of z,y € A on V respectively, then Y X — XY = 1 inside M, (k).

. Let R be a filtered ring, let M be a filtered left R—module with filtration (M;);cz and let N be a
submodule of M. Equip N with the subspace filtration N; := N N M;, and equip M /N with the
quotient filtration (M /N); :== (M; + N)/N. Show that

(a) there is an injective gr R-module homomorphism « : gr N — gr M,
(b) there is a surjective gr R-module homomorphism £ : gr M — gr(M/N),
(c) ker f =Ima.

Solution: (a) The natural composition of maps N; < M; and M; — M;/M;_; has kernel N; N
M;_ 1 =NnNM,;_1=N,;_1. So we have an injection of abelian groups

(o7 Ni/Ni,1 — Mi/Mi,1
for all ¢ € Z. Putting these together we get an injection
a=®a;:gr N — gr M.

You should now check that « is a left gr R—module homomorphism.

(b) Let §; be the composition

B Mi/Miy = J\f_i:rNN = (%LNJ%]/VN
where w;(m + M;_1) = m + M;_1 + N and v; is the natural isomorphism. Then f; is surjective,
hence so is
B:=@f; :grM — gr(M/N).
You should now check that § is a left gr R-module homomorphism.

(c) Recall the modular law, which states that if XY, Z are three subgroups of some larger abelian
group with X C Y, then
YN(X+2)=X+(YNnZ).

Using this fact, we see that

ker(u;) = Min(Mia+N)  Mia+(M;ON)  Mia+Ni im (o)
’ M; 1 M; 4 M;_4 ’

Since v; is an isomorphism, it follows that ker(3;) = im(q;) for all i« € Z. Hence ker(5) = im(«).



8. Let A = A, (k) be the Weyl algebra, and let r be an integer such that n < r < 2n. Give an example
of a cyclic A-module M such that d(M) = r. Justify your answer.

Solution. Fix d =0,...,n,let I = Ay; +---+ Ayg, and let J := (gr A)Y7 + -+ (gr A)Yy. We will
show that gr I = .J, the D inclusion being clear. The monomials {y” : 5 € N"} form a basis for A
as a left R = k[x1, ..., 2,)-module by Exercise 1.3(b). Hence {y” : y; > 1 for some 1 < i < d} forms
a basis for I as a left R-module. Let v € I have degree m; then we can write u = szm ugyﬁ for
some ug € R such that ug = 0 whenever $; = --- = 83 = 0. Hence u+A,,_1 = szm ug - Y8 e J,
because ug # 0 forces Yi|Yﬁ for some 1 < i < d and then Y? € J. Thus grl C J as claimed. The
ideal J is prime, and the ring gr A/J is isomorphic to a polynomial ring over k in n+(n—d) = 2n—d
variables. Hence Kdim(gr A/J) = 2n — d.

Let d :=2n —r. Since n < r < 2n, we have 0 < d < n. Let M := A/I; then gr M = gr A/ grI by
Question 5, so d(M) = Kdim(gr A/grI) =2n— 2n—r) =r.



