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All rings in this course are associative and have an identity element 1, but are not

necessarily commutative. Modules are left modules, unless stated otherwise.

1. Some examples of noncommutative rings

Definition 1.1. Let M be an abelian group, and let

End(M)

denote the set of homomorphismsM →M . It is an additive group under pointwise

addition, and a ring under composition. More generally, if M is an R-module for

some ring R, then the set

EndR(M)

of R-module homomorphisms M →M is again an associative ring.

For example, if M = Zn is the free abelian group of rank n then End(M) is the

ring Mn(Z) of n× n-matrices with integer entries. Also, if k is a field and V = kn

then Endk(V ) is the ring Mn(k) of n× n-matrices with entries in k.

Definition 1.2. Let G be a group and let R be a ring. The group algebra RG

consists of formal linear combinations

∑

g∈G

rgg,

where rg ∈ R for all g ∈ G and all but finitely many rg are zero. Addition and

multiplication is given by

(
∑

g∈G

rgg) + (
∑

g∈G

sgg) =
∑

g∈G

(rg + sg)g

(
∑

h∈G

rhh)(
∑

k∈G

skk) =
∑

g∈G

(
∑

h,k∈G

hk=g

rhsk)g.

Recall that a k-linear representation of G is a group homomorphism

ϕ : G→ Autk(V )

where V is some vector space over k.

Lemma 1.3. There is a natural bijection between k-linear representations of G

and left kG-modules.
1
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Proof. A group homomorphism ϕ : G → Autk(V ) extends uniquely to a k-algebra

homomorphism ϕ̃ : kG → Endk(V ), and V may then be regarded as a left kG-

module, via x.v = ϕ̃(x)(v) for all x ∈ kG.

Conversely, if V is a left kG-module, there is a representation ϕ : G→ Autk(V )

given by ϕ(g)(v) = g.v for all v ∈ V . �

Definition 1.4. A Lie algebra over k is a k-vector space g, equipped with bilinear

map [.] : g× g → g satisfying

(1) [x, x] = 0 for all x ∈ g and hence [y, z] = −[z, y] for all y, z ∈ g

(2) [x, [y, z]] + [y, [z, x]] + [z, [y, x]] = 0 for all x, y, z ∈ g.

Note that this bracket is not associative.

Examples 1.5.

(1) Any (associative) k-algebra R becomes a Lie algebra under the commutator

bracket [x, y] = xy − yx.

(2) gl(V ) := Endk(V ) with the commutator bracket.

(3) gln(k) := gl(kn) =Mn(k) with the commutator bracket.

Definition 1.6. A representation of the Lie algebra g is a homomorphism ϕ : g →
gl(V ) for some k-vector space V .

We now wish to find an analogue of the group algebra for representations of Lie

algebras.

Definition 1.7. The free associative algebra on n generators k〈x1, . . . , xn〉 is the k-
vector space with basis given by all possible products y1 · · · ym where y1, . . . , ym ∈
{x1, . . . , xn}. Multiplication is given by concatenation on basis elements and is

extended by k-linearity to the whole of k〈x1, . . . , xn〉.

Note that k〈x1, . . . , xn〉 is not finite dimensional over k. For example, if n = 1

then k〈x〉 has {1, x, x2, . . .} as a basis. In fact k〈x〉 ∼= k[x], the polynomial algebra.

Similarly, k〈x, y〉 has as a k-basis the set {1, x, y, x2, xy, yx, y2, x3, x2y, . . .}. This

algebra is not commutative!

Definition 1.8. The universal enveloping algebra U(g) of the Lie algebra g is

U(g) := k〈x1, . . . xn〉/I

where {x1, x2, . . . , xn} is a basis for g and I is the two-sided ideal of k〈x1, . . . xn〉
generated by the set {xixj − xjxi − [xi, xj ], 1 6 i, j 6 n}.

For example, if g is abelian, then U(g) is just the polynomial algebra k[x1, . . . , xn].

This definition can be extended to arbitrary Lie algebras, and does not depend on

the choice of basis.

Lemma 1.9. There is a natural bijection between representations of g and left

U(g)-modules.
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Proof. If ϕ : g → gl(V ) is a representation, we make V into a left module over

k〈x1, . . . , xd〉 by setting (xi1 · · ·xid) · v := ϕ(xi1)ϕ(xi2) · · ·ϕ(xid)(v). Because ϕ is

a Lie algebra homomorphism, we see that (xixj − xjxi) · v = [xi, xj ] · v for all i, j.

So the ideal I kills V and therefore V is actually a left U(g)-module.

Conversely, if V is a U(g)-module, then there is a k-algebra homomorphism

U(g) → Endk(V ) given by r 7→ (v 7→ r · v). We can view it as a Lie homomorphism

U(g) → gl(V ). The map g → U(g) is also a Lie homomorphism, so we get a

representation ϕ : g → gl(V ) by composing these. �

We will now introduce a basic example of a ring of differential operators.

Definition 1.10. Let k be a field and let A = k[x1, . . . , xn]. Let ∆(A) be the

k-subalgebra of Endk(A) generated by the k-linear operators

x̂i : A → A and ∂
∂xi

: A → A

f 7→ xif f 7→ ∂f
∂xi

,

for 1 6 i 6 n. When the characteristic of k is zero, we call ∆(A) the ring of

differential operators on A, and also denote it by D(A).

Definition 1.11. Let k be a field. The n-th Weyl algebra An(k) over k is

An(k) := k〈x1, . . . , xn, y1, . . . yn〉/I

where I is the ideal of the free algebra k〈x1, . . . , xn, y1, . . . yn〉 generated by

xixj − xjxi 1 6 i, j 6 n,

yiyj − yjyi 1 6 i, j 6 n,

yixi − xiyi − 1 1 6 i 6 n,

xiyj − yjxi i 6= j.

For example, if n = 1 then A1(k) = k〈x, y〉/〈yx− xy − 1〉.

Lemma 1.12. There is a surjective k-algebra homomorphism from An(k) onto

∆(A) which sends xi to x̂i and yi to
∂

∂xi
.

Proof. All pairs of generators of ∆(A) commute, except possibly ∂
∂xi

and x̂i, and

[
∂

∂xi
, x̂i

]
(f) =

∂

∂xi
(xif)− xi

∂f

∂xi
= f

for all f ∈ A. So the surjective map k〈x1, . . . , xn, y1, . . . , yn〉 → ∆(A) which sends

xi to x̂i and yi to
∂

∂xi
factors through An(k). You will see on Problem Sheet 1 that

An(k) → ∆(A) is an isomorphism if and only if char(k) is zero. �

We will now recall a key finiteness property of modules that is sufficiently restric-

tive to allow strong structure theorems to be proved, and yet sufficiently general to

include large classes of interesting noncommutative rings: the Noetherian condition.
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Definition 1.13. The left R-module M is said to be cyclic if it can be generated

by a single element: M = Rx for some x ∈ M . M is finitely generated if it can be

written as a finite sum of cyclic submodules M = Rx1 +Rx2 + . . .+Rxn.

Lemma 1.14. Let M be a left R-module. The following are equivalent:

(a) Every submodule of M is finitely generated

(b) Ascending chain condition: There does not exist an infinite strictly ascend-

ing chain of submodules of M

(c) Maximum condition: Every non-empty subset of submodules of M contains

at least one maximal element. (If S is a set of submodules, then N ∈ S is a

maximal element if and only if N ′ ∈ S, N 6 N ′ implies N = N ′).

Proof. (a)⇒ (b). SupposeM1 (M2 ( . . .. Let N = ∪Mn. Then N is a submodule

of M so N is finitely generated by m1, . . . ,mr say. If mi ∈ Mni
, then it follows

that N =Mn where n = maxni, a contradiction.

(b)⇒ (c) If S is a nonempty subset with no maximal element, pickM1 ∈ S. Since
S has no maximal element, we can find M2 ∈ S such that M1 ( M2. Continuing

like this gives a strictly ascending infinite chain M1 (M2 ( . . ., a contradiction.

(c) ⇒ (a) Let N be a submodule of M and let S be the set of submodules of

N which are finitely generated. Since 0 ∈ S, S has a maximal element L, say. Let

x ∈ N . Since L + Rx is a finitely generated submodule of N and L is maximal in

S, L+Rx = L so x ∈ L. Hence N = L is itself finitely generated. �

Dually, we have the descending chain condition and the minimum condition;

these are equivalent to each other.

Definition 1.15. Let R be a ring.

• An R-module satisfying (a), (b), (c) of Lemma 1.14 is Noetherian.

• The ring R is left Noetherian if it is Noetherian as a left R-module.

• An R-module satisfying the descending chain condition, or equivalently, the

minimum condition, is said to be Artinian.

• The ring R is left Artinian if it is Artinian as a left R-module.

We have similar definitions “on the right hand side”. Note that if the ring is

commutative, there is no difference between “left” and “right”. If R is both left

and right Noetherian, then we will simply say that R is Noetherian; similarly, R is

Artinian if it is both left and right Artinian.

Here is the main engine for proving that certain rings are left Noetherian: it is

a non-commutative version of Hilbert’s Basis Theorem.

Theorem 1.16 (McConnell, 1968). Let S be a ring, R a left Noetherian subring

and suppose that for some x ∈ S we have

(1) R+ xR = R+Rx, and
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(2) S = 〈R, x〉.
Then S is also left Noetherian.

We postpone the proof of this result for a little while, and apply it immediately

to obtain a large class of Noetherian group rings.

Definition 1.17. The group G is said to be polycyclic if there is a chain

1 = G0 ⊳ G1 ⊳ . . . ⊳ Gn−1 ⊳ Gn = G

of subgroups of G such that each Gi/Gi−1 is cyclic for each i = 1, . . . , n.

Examples 1.18.

(a) Infinite cyclic G = 〈x〉 ∼= Z.
(b) Free abelian G = 〈x1, . . . , xn〉 ∼= Zn.

(c) G =



1 Z Z
0 1 Z
0 0 1


. Here we have the chain 1 ⊳ G1 ⊳ G2 ⊳ G3 = G where

G1 =



1 0 Z
0 1 0

0 0 1


 and G2 =



1 Z Z
0 1 0

0 0 1


.

(d) {I +N ∈Mn(Z) : N is strictly upper triangular} is always polycyclic.

Proposition 1.19. Let R be a Noetherian ring and let G be a polycyclic group.

Then RG is Noetherian.

Proof. Choosing a chain of subnormal subgroups with cyclic quotients

1 = G0 ⊳ G1 ⊳ . . . ⊳ Gn−1 ⊳ Gn = G

we see that it’s sufficient to show that if RGi−1 is left Noetherian then so is RGi

for all i = 1, . . . , n. Choose a generator xGi−1 for the cyclic group Gi/Gi−1, let

S = RGi−1 and let T = 〈S, x〉, a subring of RGi. Because x−1Gi−1x = Gi−1, we

see that Gi−1x = xGi−1 so Sx = xS. Hence S + Sx = S + xS, and therefore T is

left Noetherian by Theorem 1.16.

Let I be a left ideal of RGi. Now, I ∩ T is a left ideal of T and is hence finitely

generated: I ∩ T =
∑n

i=1 Tsi, say. If s ∈ I, then xms ∈ I ∩ T for some m ≥ 0,

so s =
∑n

i=1 x
−maisi for some ai ∈ T . Hence the si’s generate I as a left ideal of

RGi. Hence RGi is left Noetherian. �

Proof of Theorem 1.16. R+Rx+ . . .+Rxn = R+xR+ . . .+xnR: this follows from

R+xR = R+Rx. To see this, use induction to show that xnR ⊆ R+Rx+. . .+Rxn

and Rxn ⊆ R+ xR+ . . . xnR for all n ≥ 1.

Consequences:

(a) The set of polynomials of degree 6 n, namely Sn := R + Rx + . . . + Rxn, is

both a left and a right R-submodule of S.
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(b) The set of all elements of S of the form

r0 + xr1 + . . .+ xnrn, n ≥ 0 (∗)

forms a subring of S. Since it contains both R and x and S = 〈R, x〉, we see

that S is the ring of all such ’polynomials’. Note that elements of S need not

be uniquely expressible in the form (∗).
(c) For each r ∈ R and n ≥ 0 there exists r′ ∈ R such that r′xn = xnr + s where

deg s < n.

Now, let I be a left ideal in S. We will show that I is finitely generated. Let

In := {rn ∈ R : there exists s ∈ I such that s = r0 + xr1 + . . .+ xnrn}.

Then In is closed under addition. Let r ∈ R. By part (c) above, we can find

r′ ∈ R such that r′xn − xnr has degree < n. Since I is a left ideal, r′s ∈ I, and

r′s ≡ r′xnrn ≡ xn(rrn)

modulo terms of degree < n. Hence rrn ∈ In so In is a left ideal of R.

Next, if s =
∑n

i=0 x
iri ∈ I, then xs =

∑n+1
i=1 x

iri−1 ∈ I so rn ∈ In+1. Hence

In 6 In+1 for all n ≥ 0. Since R is left Noetherian, the increasing chain

I0 6 I1 6 . . . 6 In 6 . . .

must terminate. Say Im = Im+1 = . . .. For i = 0, . . . ,m let {rij} be finitely many

elements of R generating Ii as a left ideal of R. Choose sij = xirij+ lower degree

terms ∈ I.

Claim: X = {sij : 0 6 i 6 m, all j} generates I as a left ideal.

Let s = r0 + xr1 + . . . + xnrn ∈ I, so that rn ∈ In; we’ll show that s ∈ SX.

Proceed by induction on n, the case n = 0 being trivial.

If n ≥ m then rn ∈ Im so rn =
∑
ajrmj for some aj ∈ R. Choose a′j ∈ R such

that a′jx
n = xnaj+ lower degree terms. Then s −∑ a′jx

n−msmj ∈ I and modulo

terms of degree < n,

s−
∑

a′jx
n−msmj ≡ xnrn −

∑
a′jx

nrmj ≡ xnrn −
∑

xnajrmj = 0.

So s−∑ a′jx
n−msmj has smaller degree than s and we can apply induction.

If n 6 m then rn =
∑
ajrnj for some aj ∈ R, so for suitable a′j ∈ R, s −∑

a′jsnj ∈ I also has smaller degree than s. By induction, these smaller degree

elements of I lie SX, as required. �

Definition 1.20. Let R be a ring. A (Z−)filtration on a R is a set of additive

subgroups (Ri)i∈Z such that

• Ri ⊆ Ri+1 for all i ∈ Z,
• Ri.Rj ⊆ Ri+j for all i, j ∈ Z,
• 1 ∈ R0, and

• ∪i∈ZRi = R.
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If R has a filtration, we say that R is a filtered ring. The filtration on R is

positive if Ri = 0 for all i < 0.

Note that the axioms imply that R0 is a subring of R and that each Ri is a left

and right R0−module. Note also that ∩i∈ZRi is always an ideal in R.

Example 1.21. Suppose R is a finitely generated k−algebra with generating set

{x1, . . . , xn}. Define R0 = k and let Ri be the k−subspace of R spanned by words

in the xj ’s of length at most i for i > 0. Also define Ri = 0 whenever i < 0.

Definition 1.22. A (Z−)graded ring is a ring S which can be written as

S =
⊕

i∈Z

Si

for some additive subgroups Si ⊆ S, satisfying Si.Sj ⊆ Si+j for all i, j ∈ Z and

1 ∈ S0. Si is called the i−th homogeneous component of S, and an element s ∈ S

is homogeneous iff it lies in some Si.

Definition 1.23. Let R be a filtered ring with filtration (Ri)i∈Z. Define

grR =
⊕

i∈Z

Ri/Ri−1.

Equip grR with multiplication, which is given on homogeneous components by

Ri/Ri−1 × Rj/Rj−1 −→ Ri+j/Ri+j−1

r +Ri−1 , s+Rj−1 7→ rs+Ri+j−1

and on the whole of grR by bilinear extension. Then grR becomes a graded ring

called the associated graded ring of R.

Note that the multiplication is well-defined because RiRj ⊆ Ri+j , Ri−1Rj ⊆
Ri+j−1 and RiRj−1 ⊆ Ri+j−1. One should think of grR as an approximation

to the ring R which is often easier to understand but nonetheless contains useful

information about the ring R itself.

Proposition 1.24. Let g be a Lie algebra with basis {x1, . . . , xn}. Equip U(g) with

the positive filtration as in Example 1.21. Then there is a surjective homomorphism

of k−algebras

ϕ : k[X1, . . . , Xn] ։ grU(g)

given by ϕ(Xi) = xi +R0, i = 1, . . . , n.

Proof. Let R = U(g) and note that xi ∈ R1 for all i. Now because xixj − xjxi =

[xi, xj ] ∈ R1 for all i, j we have

(xi +R0)(xj +R0) = xixj +R1 = xjxi +R1 = (xj +R0)(xi +R0),
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meaning that ϕ(Xi) and ϕ(Xj) commute. Hence the k−algebra map ϕ exists. To

show that ϕ is surjective, it’s sufficient to show that u + Rt−1 lies in imϕ for any

u ∈ Rt\Rt−1. Now

xi1xi2 · · ·xit +Rt−1 = ϕ(Xi1)ϕ(Xi2) · · ·ϕ(Xit) ∈ imϕ

and u as a k−linear combination of words of length at most t in the generators

{x1, . . . , xn}. �

What about the Weyl algebra An(k)? Consider the standard monomials

xα = xα1

1 · · ·xαn
n , yα = yα1

1 · · · yαn
n ∈ An(k) for all α = (α1, . . . , αn) ∈ Nn.

It follows from Exercise 1.3 that

{xαyβ ∈ An(k) : α, β ∈ Nn}

is a basis for An(k) as a k-vector space. Write |α| =∑n
i=1 αi for all α ∈ Nn.

Proposition 1.25. Let R := An(k), set R0 := k[x1, . . . , xn], and define

Ri :=
∑

|β|6i

R0y
β for all i ∈ N.

(a) (Ri) is a filtration on R.

(b) grR ∼= k[X1, . . . , Xn, Y1, . . . , Yn] with respect to this filtration.

Proof. (a) By the defining relations in the Weyl algebra we have yiR0 = R0yi+R0 ⊆
R1 for each i. It follows that yβR0 ⊆ R|β| for all β ∈ Nn. Hence R0y

βR0y
γ ⊆

R|β|+|γ|, so that RiRj ⊆ Ri+j for all i, j ∈ N.
(b) There is a natural map ϕ : R0[Y1, . . . , Yn] → grR of graded rings which

sends Yi to σ(yi) = yi + R0. Because every element in R can be written as a

finite sum
∑

β∈Nn rβy
β for some rβ ∈ R0, ϕ is surjective. Because ϕ respects

the graded structure, to show that ϕ is injective it is enough to show that kerϕ

contains no non-zero homogeneous elements. So let
∑

|β|=m rβY
β ∈ kerϕ; then∑

|β|=m rβy
β ∈ Rm−1, so we can find rβ ∈ R whenever |β| < m such that

∑

|β|=m

rβy
β =

∑

|β|<m

rβy
β .

Because {xαyβ ∈ An(k) : α, β ∈ Nn} is a basis for R, rβ = 0 for all β. �

Definition 1.26. The filtration on An(k) constructed in Proposition 1.25 is called

the filtration by order of differential operator.

Theorem 1.27. Suppose R is a positively filtered ring such that grR is left Noe-

therian. Then R is left Noetherian.



9

Proof. Let I be a left ideal in R, and consider the left ideal

gr I :=
⊕

n≥0

(I ∩Rn) +Rn−1

Rn−1
.

in grR. For each n ∈ N, consider the projection operator πn : grR → grR which

sends
∑
xi ∈ grR to xn ∈ grR. Note that these operators preserve gr I. This

means that gr I contains the homogeneous components of each of its elements. Now

because grR is Noetherian, gr I has a finite generating set {X1, . . . , Xm}, which we

may without loss of generality assume to consist of homogeneous elements.

Choose some xi ∈ I ∩Rni
\Rni−1 such that xi +Rni−1 equals Xi. To finish the

proof, we prove that

I =

m∑

i=1

Rxi.

The inclusion ⊇ is clear. For ⊆, it is enough to prove that I ∩Rn ⊆∑m
i=1Rxi for

all n ≥ −1. Induct on n: n = −1 is clear because R−1 = {0}. If x ∈ I ∩Rn, then

x+Rn−1 =

m∑

i=1

YiXi

for some Yi ∈ grR. We can again assume that each Yi is homogeneous of degree

n − ni, so choose ri ∈ R such that Yi = ri + Rn−ni−1. Then x ≡ ∑m
i=1 rixi

(mod Rn−1), so x−∑m
i=1 rixi ∈ I ∩Rn−1 ⊆∑m

i=1Rxi. So x ∈∑m
i=1Rxi. �

Corollary 1.28.

(a) U(g) is Noetherian whenever dimk g <∞.

(b) An(k) is Noetherian.

Proof. (a) By Proposition 1.24, grU(g) is a quotient of a polynomial algebra

k[x1, . . . , xn] for some n, which is Noetherian by Theorem 1.16. Hence U(g) is

Noetherian by Theorem 1.27.

(b) Similar, using Proposition 1.25 instead. �

Question 1.29. (a) Let g be a Lie algebra over a field k such that U(g) is Noe-

therian. Must dimk g <∞?

(b) Suppose that kG is left Noetherian. Must G contain a polycyclic subgroup of

finite index?

2. Simple modules and Artinian rings

Throughout this chapter, R denotes an arbitrary ring, unless stated otherwise.

Definition 2.1. An R-module M is simple or irreducible if M 6= 0 and the only

submodules of M are 0 and M .
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Suppose M is simple. Choose 0 6= x ∈ M ; then M = Rx so M ∼= R/I where

I = ann(x) is the point annihilator of x. Note that ann(x) need not be equal to

ann(y) if x, y are distinct nonzero elements of M , unless R is commutative.

Note that M = Rx is simple if and only if ann(x) is a maximal left ideal of R.

Definition 2.2. A poset is a set equipped with a binary relation 6 which is reflex-

ive, transitive and antisymmetric. A chain in a poset S is totally ordered subset C
of S: if s, t ∈ C then either s 6 t or t 6 s. An upper bound for a subset C of S is

an element u ∈ S such that x 6 u for all x ∈ C. We say that x ∈ S is a maximal

element if x 6 y with y ∈ S forces x = y.

Theorem 2.3 (Zorn’s Lemma). Let S be a nonempty poset. Suppose every chain

in S has an upper bound. Then S has a maximal element.

This is equivalent to the Axiom of Choice, which we will always assume.

Lemma 2.4. Suppose L is a proper left ideal of R. Then L is contained in a

maximal ideal I of R. Equivalently, every nonzero cyclic module has a simple

quotient.

Proof. Since L is proper, 1 /∈ L. Let S = {K ⊳l R : L ⊆ K, 1 /∈ K}. Since L ∈ S,
this set is nonempty. S is partially ordered by inclusion. If C is a chain in S, then
∪C also contains L and doesn’t contain 1, i.e. ∪C ∈ S. Hence every chain in S has

an upper bound in S. By Zorn’s Lemma, S has a maximal element I. It’s clear

that I is now a maximal left ideal of R containing L. �

By an ideal of R we mean a two-sided ideal.

Definition 2.5. Let I be a two-sided ideal of R. Then I is left primitive if I is the

annihilator of a simple left R-module M :

I = AnnR(M) = {x ∈ R : xM = 0} =
⋂

x∈M

ann(x).

The ring R itself is called left primitive if its zero ideal is left primitive, or equiva-

lently, if R has at least one faithful simple left module.

There are examples due to George Bergman of rings which are left primitive,

but not right primitive! Note that the annihilator I of any module M is always an

ideal of R.

Lemma 2.6. Let M = Rx be a cyclic left R-module. Then I = AnnR(M) is the

largest two-sided ideal contained in L = ann(x).

Proof. Note that this largest two-sided ideal K exists, since the sum of all two-sided

ideals contained in L is itself a two-sided ideal contained in L. Certainly I ⊆ L, so

I ⊆ K. Now KM = KRx ⊆ Kx ⊆ Lx = 0 since K is two-sided, so K ⊆ I. �
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Corollary 2.7. Every maximal ideal of R is left and right primitive. Moreover, if

R is commutative, every primitive ideal is maximal.

Definition 2.8. The Jacobson radical J(R) of R is defined to be the intersection

of all left primitive ideals of R.

Note that J(R) is the set of elements of R which annihilate every simple left

R-module.

Lemma 2.9. J(R) is equal to the intersection K of all maximal left ideals of R.

Proof. Let I be a maximal left ideal. Then P = AnnR(R/I) is primitive, so J(R) ⊆
P ⊆ I by Definition 2.5. Hence J(R) ⊆ K.

Now let P = AnnR(M) be a primitive ideal, where M is a simple R-module.

Note that P = ∩0 6=x∈M ann(x) is an intersection of maximal left ideals, so K ⊆ P .

It follows that K ⊆ J(R) as required. �

Lemma 2.10 (Nakayama). Let M be a finitely generated nonzero left R-module

and let J = J(R). Then JM is strictly contained in M .

Proof. Since M is finitely generated, by choosing a minimal finite generating set

for M we see that M has a non-zero cyclic quotient module M/L, which in turn

has a simple quotient M/K by Lemma 2.4. Then J(M/K) = 0 so JM ⊆ K which

is strictly contained in M . �

Corollary 2.11. Let M be a finitely generated left R−module and let J = J(R).

If N is a submodule of M such that M = N + JM then M = N .

Proof. Apply the Lemma to M/N . �

Recall that an element x ∈ R is a unit if there exists y ∈ R such that xy = yx = 1.

Proposition 2.12.

J(R) = {x ∈ R : 1− axb is a unit for all a, b ∈ R} =: K.

Proof. Let x ∈ J(R). Since J(R) is a two-sided ideal, to show that x ∈ K it’s

sufficient to show 1−x is a unit. Now R(1−x)+Rx = R, so Corollary 2.11 implies

that R(1− x) = R. Hence there exists y ∈ R such that

y(1− x) = 1.

Now, 1− y = −yx ∈ J(R), so by the above argument applied to 1− y, we can find

z ∈ R such that

z(1− (1− y)) = zy = 1.

Hence zy(1− x) = 1− x = z so yz = 1 and zy = 1. Hence z = 1− x ∈ R×.

Now let x ∈ K, let I be a maximal left ideal of R and suppose that x /∈ I. Since

I is maximal, I + Rx = R, so 1 − ax ∈ I for some a ∈ R. Since x ∈ K, 1 − ax
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is a unit, a contradicting the fact that I is proper. Hence x ∈ I so K ⊆ I for all

maximal left ideals I of R. By Lemma 2.9, K ⊆ J(R). �

This result shows that J(R) is the largest ideal two-sided A of R such that 1−A
consists entirely of units of R.

Corollary 2.13. The Jacobson radical is left-right symmetric. It follows that the

intersection of all maximal left ideals of R is equal to the intersection of all maximal

right ideals.

We will now work towards understanding the structure of left primitive rings. Let

V be a left R-module and letD = End(RV ). Let us write R-module endomorphisms

of V on the right, and define composition of such endomorphisms by the rule

v(α · β) = (vα)β for all v ∈ V, α, β ∈ D.

Thus α · β is the product of α and β inside D in this new notation. Naturally, V is

then a right D-module, and in fact, V becomes an R-D-bimodule: this means that

V is simultaneously a left R-module and a right D-module via the rule v · α = vα,

and the two structures are compatible in the following sense:

r · (v · α) = (r · v) · α for all r ∈ R,α ∈ D.

Of course, this just says that every element of D is an endomorphism of the left

R-module V .

Theorem 2.14 (Schur’s Lemma). Let V be a simple left R-module. Then D :=

End(RV ) is a division ring.

Proof. Let ϕ : V → V be a nonzero R-module homomorphism. Then ker(ϕ) < V

and im(ϕ) > 0. The simplicity of V forces ker(ϕ) = 0 and im(ϕ) = V , so ϕ is an

isomorphism. Thus every nonzero element of D is a unit. �

So whenever V is a simple left R-module, V becomes a right vector space over

the division ring D = EndR(V ).

Theorem 2.15 (Jacobson’s Density). Let V be a simple left R-module, and let

X ⊂ V be a finite D-linearly independent subset of V where D := EndR(V ). Then

for every α ∈ End(VD) there exists r ∈ R such that α(x) = r · x for all x ∈ X.

Proof. Write X = {x1, . . . , xn}, fix i ∈ {1, . . . , n} and write Xi := X\{xi}. Since

xi /∈ Xi ·D, Lemma 2.16 below gives ann(Xi) ·xi 6= 0. So there is some ri ∈ ann(Xi)

such that ri ·xi 6= 0. Since V is simple, R · (ri ·xi) = V , so we can find some si ∈ R

such that si · (ri · xi) = α(xi). Now

n∑

j=1

sjrj · xi = si · ri · xi = α(xi) for all i = 1, . . . , n.

So we can take r =
∑n

j=1 sjrj . �
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Lemma 2.16. Let V be a simple left R-module, let D = EndR(V ), let X be a finite

D-linearly independent subset of V , and let I := ann(X). Suppose that I · y = {0}
for some y ∈ V . Then y ∈ X ·D, the D-linear span of X.

Proof. We proceed by induction on n = |X|. When n = 0, we have ann(∅) = R

and ∅ ·D = {0}. So since R · y = {0} by assumption, we have y = 0 ∈ ∅ ·D.

Assume now that n ≥ 1 and let J = ann(X\{x}) for some x ∈ X so that

I = J ∩ ann(x). If J ⊆ ann(x) then J = I, so J · y = 0 and we can apply the

induction hypothesis. So we can assume that J is not contained in ann(x). But

then the R-submodule J · x of V is non-zero, so J · x = V by the simplicity of V .

Define d : V → V by the rule (r ·x)d = r ·y, whenever r ∈ J . This is well-defined,

because if r ·x = 0 for some r ∈ J then r ∈ ann(x)∩J = I, so r ·y = 0 since I ·y = 0

by assumption. This function is left R-linear because (s · (r · x))d = (sr · x)d =

sr · y = s · (r · y) = s · ((r · x)d) for all s ∈ R. Thus we have found an element

d ∈ D such that J · (y− x · d) = 0. Hence y− x · d ∈ (X\{x}) ·D by induction and

therefore y ∈ X ·D. �

This completes the proof of Theorem 2.15. Lemma 2.16 also has the following

interesting consequence.

Lemma 2.17. Let R be a left Artinian ring, let V be a simple left R-module and

let D = EndR(V ). Then V is finite dimensional as a right D-vector space.

Proof. Since R is left Artinian, by Exercise 2.4 the set {ann(X) : X ⊂ V, |X| <∞}
has a minimal element I = ann(X), say. We will show that V = X ·D. Let y ∈ V

and consider ann(X ∪ {y}) ⊆ ann(X). The minimality of ann(X) forces these to

be equal. Hence I · y = 0, so y ∈ X · D for any y ∈ V by Lemma 2.16. Hence

V = X ·D. �

Theorem 2.18 (Artin-Wedderburn). Let R be a left primitive, left Artinian ring.

Then R ∼=Mn(D) for some division ring D and integer n ≥ 1.

The proof requires the following

Lemma 2.19. Let S be a ring, let N be a right S-module and let n ≥ 1 be an

integer. Then the ring of right S-module endomorphisms of (NS)
n is isomorphic to

the n× n matrix ring with coefficients in T := End(NS):

End((NS)
n) ∼=Mn(T ).

Proof. This is best seen by writing elements of Nn as column vectors x = (xj)
n
j=1

and thinking of S-module endomorphisms acting by matrix multiplication on the

left of these column vectors.

Formally, let σj : N →֒ Nn and πj : N
n ։ N for j = 1, . . . , n be given by

σj(x)i = xδij and πj(x) = xj .
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These are right S-module homomorphisms. We define α : End((NS)
n) → Mn(T )

by setting the (i, j) element of α(f) to be the composition

N
σj→ Nn f→ Nn πi→ N ;

thus α(f)ij = πifσj . We can also define β :Mn(T ) → End((NS)
n) by

β(A) =

n∑

i,j=1

σjAjiπi.

It is a pleasant exercise to show that α and β are mutually inverse ring homomor-

phisms. �

We say that a left R-module M is faithful if AnnR(M) is zero, or equivalently,

if the representation ρM : R→ End(M) afforded by M is injective.

Proof of Theorem 2.18. Let V be a faithful simple left R-module, and let D =

End(RV ). Then D is a division ring by Theorem 2.14. Now VD ∼= (DD)n for some

positive integer n by Lemma 2.17 and End(DD) ∼= D by Exercise 2.2(a). So

End((DD)n) ∼=Mn(End(DD)) ∼=Mn(D)

by Lemma 2.19. Now we have a natural ring homomorphism

ψ : R→ End(VD)

given by ψ(r)(v) = r · v. It is injective because V is faithful, and it is surjective by

Theorem 2.15. We conclude that R ∼=Mn(D). �

Theorem 2.20 (Chinese Remainder). Let R be a ring, and let P1, . . . , Pn be two-

sided ideals in R such that Pi + Pj = R whenever i 6= j. Then

R/(P1 ∩ P2 ∩ · · · ∩ Pn) ∼= (R/P1)⊕ (R/P2)⊕ · · · ⊕ (R/Pn).

Proof. There is a natural ring homomorphism ϕ : R→⊕n
i=1R/Pi given by ϕ(r) =

(r + Pi)
n
i=1. Its kernel is P1 ∩ · · · ∩ Pn, so by the First Isomorphism Theorem for

rings it will be sufficient to show that ϕ is surjective. We prove this by induction

on n, the case n = 1 being clear.

Since Pi + Pn = R for all i < n, we can find ai ∈ Pi and bi ∈ Pn such that

ai + bi = 1 for all i = 1, . . . , n − 1. Let a := a1 · · · an−1 ∈ P1 ∩ · · · ∩ Pn−1 and let

b := 1− a. Then

b = 1− a = (a1 + b1) · · · (an−1 + bn−1)− a1 · · · an−1 ∈ Pn.

Now, given (ri +Pi) ∈ ⊕n
i=1R/Pi, we can find some s ∈ R such that s− ri ∈ Pi for

all i < n by induction. Let r := sb + rna; then r ≡ rn mod Pn and r ≡ sb ≡ ri

mod Pi for each i < n. So ϕ(r) = (ri + Pi)
n
i=1 and ϕ is surjective. �



15

Corollary 2.21. Let R be a left Artinian ring with J(R) = 0. Then there exist

division rings D1, . . . , Dn and integers r1, . . . , rn ≥ 1 such that

R ∼=Mr1(D1)⊕ · · · ⊕Mrn(Dn).

Proof. Let S be the set of finite intersections of left primitive ideals of R; it is

non-empty by Lemma 2.4. Since R is left Artinian, this set has a minimal element

I := P1 ∩ · · · ∩ Pn say. If Q is another left primitive ideal of R then I ∩ Q = I

by the minimality of I, so that I ⊆ Q. Hence I ⊆ J(R) = {0} by assumption.

Now R/Pi
∼=Mri(Di) for some division ring Di, and this ring is simple by Exercise

3.3(c). So each Pi is a maximal two-sided ideal, and therefore Pi+Pj = R whenever

i 6= j. Now apply Theorem 2.20. �

Proposition 2.22. The Jacobson radical J of a left Artinian ring R is nilpotent.

Proof. The descending chain J ⊇ J2 ⊇ J3 ⊇ . . . must terminate since R is left

Artinian. Hence Jn = Jn+1 = . . . for some n ≥ 0. Let X = rann(Jn) = {x ∈ R :

Jnx = 0}, this is a two-sided ideal of R. Suppose for a contradiction that X 6= R.

Then R/X has a minimal nonzero left submodule Y/X, being left Artinian. This

module is simple. Now J · (Y/X) = 0 so JY ⊆ X. It follows that JnY = Jn+1Y ⊆
JnX = 0, so Y ⊆ rann(Jn) = X, contradicting Y/X 6= 0. Hence X = R so

Jn = RJn = XJn = 0. �

Theorem 2.23 (Hopkins). Let R be a left Artinian ring. Then R is also left

Noetherian.

Proof. Let J = J(R). For any i ∈ N, J i/J i+1 is a left Artinian R/J-module, so it

is also left Noetherian by Theorem 2.18 and Exercise 3.3(c). Since J is nilpotent by

Proposition 2.22, R is a finite extension of left Noetherian modules, and is therefore

itself left Noetherian by Exercise 1.4(a). �

3. Noncommutative localisation

Let A be a ring and let S be a subset of A. We want to “invert S”, meaning

that we want to find a ring homomorphism

ϕ : A→ S−1A such that ϕ(S) ⊆ (S−1A)×,

and we want S−1A to be “minimal” in some sense.

Construction 3.1. Form the free algebra on a set which is in bijection with S

A〈is : s ∈ S〉

and impose the relation that is is a two-sided inverse of s ∈ S for each s ∈ S:

S−1A :=
A〈is : s ∈ S〉

〈sis − 1, iss− 1 : s ∈ S〉.
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Then define ϕ : A→ S−1A by letting ϕ(s) be the image of s in S−1A. By definition,

ϕ(S) consists of units in S−1A.

This ring S−1A is minimal in the following precise sense.

Proposition 3.2 (Universal property of S−1A). Suppose that θ : A→ B is a ring

homomorphism such that θ(S) ⊆ B×. Then there is a unique ring homomorphism

θ : S−1A→ B such that θ = θ ◦ ϕ.

A
ϕ

//

θ
""❊

❊

❊

❊

❊

❊

❊

❊

❊

S−1A

θ
��

B

.

Problems.

(1) S−1A could be the zero ring!

(2) Non-examinable: S−1A will not be a flat left A-module, in general.

Definition 3.3. The left S-torsion subset of A is

tS(A) := {a ∈ A : sa = 0 for some s ∈ S}.

Note that ϕ(tS(A)) = 0, so that tS(A) ⊆ kerϕ. Note also that if 〈S〉 is the

sub-monoid of A generated by S, then 〈S〉−1A = S−1A. For this reason, we will

focus on multiplicatively closed subsets of A: by definition, these are the subsets S

of A such that 1 ∈ S and s, t ∈ S ⇒ st ∈ S.

Definition 3.4. Let S be a multiplicatively closed subset of A.

(a) S is left localisable if

(i) S−1A = {ϕ(s)−1ϕ(a) | a ∈ A, s ∈ S} and

(ii) kerϕ = tS(A).

(b) S is a left Ore set if

Sa ∩As 6= ∅ for all a ∈ A, s ∈ S.

(c) S is left reversible if whenever as = 0 for some s ∈ S and a ∈ A, there is some

s′ ∈ S such that s′a = 0. In other words, right S-torsion elements in A are also

left S-torsion.

(d) s ∈ A is a regular element if sa = 0 or as = 0 imply that a = 0.

(e) A is a domain if every non-zero element is regular.

Obviously if A is a commutative ring, or more generally, if S consists of central

elements in A then S is a left Ore set. We will shortly see examples of multiplica-

tively closed sets which do not have this property.

Proposition 3.5. Every left localisable subset is a left reversible, left Ore set.
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Proof. Let a ∈ A and s ∈ S. Then by definition, the element ϕ(a)ϕ(s)−1 ∈ S−1A

can be written as a right fraction

ϕ(a)ϕ(s)−1 = ϕ(u)−1ϕ(c)

for some c ∈ A and u ∈ S. Hence ua − cs ∈ kerϕ so we can find v ∈ S such that

v(ua− cs) = 0. Hence (vu)a = (vc)s so take t = vu ∈ S and b = vc ∈ A, then

ta = bs

and hence S is a left Ore set. Next, if as = 0 for some s ∈ S and a ∈ A, then

ϕ(a) = ϕ(as)ϕ(s)−1 = 0

so s′a = 0 for some s′ ∈ A. Hence S is left reversible. �

Examples 3.6.

(a) Say that an element s ∈ A is normal if sA = As. Then if every element s ∈ S

is regular and normal, then S is a left Ore set. This happens, for example,

whenever every element of S is central in A.

(b) Let A = k〈x, y〉 be a free algebra in two variables over a field. This is a domain,

so S := A\{0} is multiplicatively closed. But

Ax ∩Ay = {0}

so Sx ∩Ay = ∅. Hence S is not left localisable by Proposition 3.5.

Theorem 3.7 (Ore, 1930). Let S be a left Ore set in A consisting of regular

elements. Then ϕ : A→ S−1A is injective.

Proof (non-examinable). Define a relation on S ×A as follows:

(s, a) ∼ (t, b) ⇔ ∃c, d ∈ A such that cs = dt ∈ S and ca = db.

This is an equivalence relation. Let Q be the set of equivalence classes on S × A

under this equivalence relation:

Q := (S ×A)/ ∼ .

Then Q is a ring, and the map ψ : A→ Q defined by ψ(a) = [(1, a)] is an injective

ring homomorphism which inverts S. So by the universal property of S−1A, there

is a map θ : S−1A → Q such that ψ = θ ◦ ϕ. Hence ϕ is injective because ψ is

injective. More details can be found in the Appendix at the end of these notes. �

Theorem 3.8 (Gabriel). Let S be a multiplicatively subset of A. Then S is left

localisable if and only if it is a left reversible, left Ore set.

Proof. We need to prove the converse of Proposition 3.5. So suppose that S is a

left reversible left Ore set, and consider the element

ϕ(s1)
−1ϕ(a1)ϕ(s2)

−1ϕ(a2) · · ·ϕ(sn)−1ϕ(an)
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in S−1A; notice that by the construction of S−1A, since S is multiplicatively closed,

every element of S−1A is a finite sum of such elements. Using the left Ore condition,

we can rewrite it in the form ϕ(s)−1ϕ(a) for some a ∈ A and s ∈ S.

Next, given a, b ∈ A and s, t ∈ S, choose u ∈ A and v ∈ S such that

ut = vs.

Since s, v ∈ S and S is multiplicatively closed, this element lies in S. So we can

bring the sum of the two left fractions ϕ(s)−1ϕ(a) and ϕ(t)−1ϕ(b) to a common

left denominator:

ϕ(s)−1ϕ(a) + ϕ(t)−1ϕ(b) = ϕ(vs)−1ϕ(va+ ub).

So every element of S−1A is of the form ϕ(s)−1ϕ(a) for some a ∈ A and s ∈ S.

It remains to prove that kerϕ = tS(A). Now, the left S-torsion subset tS(A) of

A satisfies tS(A) · A ⊂ tS(A). It is also a left ideal in A by Exercise 4.1. So it is

a two-sided ideal. Next, let s ∈ S and a ∈ A and suppose that as ∈ tS(A). Then

tas = 0 for some t ∈ S, but S is left reversible so s′ta = 0 for some s′ ∈ S. So

a ∈ tS(A) because s
′t ∈ S. If on the other hand sa ∈ tS(A) then tsa = 0 for some

t ∈ S so a ∈ tS(A) because ts ∈ S.

Thus the image S of S in the factor ring A := A/tS(A) consists of non-zero

divisors, and S is a left Ore set in A by Exercise 4.2. Now, the universal S-inverting

ring homomorphism ϕ : A → S
−1
A is injective by Theorem 3.7. If π : A ։ A is

the natural surjection, then ϕπ : A→ S
−1
A inverts S, so by the universal property

of S−1A there is a ring homomorphism θ : S−1A → S
−1
A such that the following

diagram commutes:

A
π

//

ϕ

��

A

ϕ
��

S−1A
θ

// S
−1
A.

Now if a ∈ kerϕ then ϕ(π(a)) = θ(ϕ(a)) = 0, but ϕ is injective so π(a) = 0, and

therefore a ∈ tS(A) = kerπ. �

A similar procedure is involved in the construction of the derived category of an

abelian category.

Theorem 3.9. [Goldie, 1957] Let A be a left Noetherian domain. Then S = A\{0}
is a left Ore set.

Proof. Let x ∈ A, y ∈ S. We want to show that Ay ∩ Sx 6= ∅. Let k ∈ N and

consider the left ideal

Ik := Ax+Axy + · · ·+Axyk
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of A. These form an ascending chain I0 ⊆ I1 ⊆ I2 ⊆ · · · which has to terminate.

Choose k ∈ N minimal such that Ik = Ik+1. Then xy
k+1 ∈ Ik, so

xyk+1 = a0x+ a1xy + · · ·+ akxy
k

for some a0, . . . , ak ∈ A. If k = 0 then xy = a0x; since A is a domain, xy 6= 0 so

a0 6= 0. Thus a0 ∈ S so that

xy = a0x ∈ Ay ∩ Sx.

If k ≥ 1 then (xyk − a1x − · · · − akxy
k−1)y = a0x and the minimality of k forces

a0 6= 0. So a0 ∈ S and a0x ∈ Sx ∩Ay. �

Corollary 3.10. Every Noetherian domain has a division ring of fractions.

Proof. Let S = A\{0}. This is a left Ore set by Theorem 3.9, and it is consists of

regular elements because A is a domain. So A embeds into S−1A by Theorem 3.7

and S−1A = {s−1a : s ∈ S, a ∈ A}. Now if s−1x ∈ S−1A is a non-zero element

then x, s ∈ S and x−1s is the inverse of s−1x. Hence every non-zero element of

S−1A is a unit, so S−1A is a division ring. �

It turns out that in left Noetherian rings, we don’t have to worry about the

left-reversibility condition on left Ore sets.

Proposition 3.11. Let A be a left Noetherian ring, and let S ⊂ A be a left Ore

set. Then S is left reversible.

Proof. Suppose that as = 0 for some s ∈ S and a ∈ A, and consider the ascending

chain of left annihilators

lann(s) 6 lann(s2) 6 · · · .

Since A is left Noetherian this chain stops, so that lann(sk+1) = lann(sk) for some

integer k ≥ 1. Now because S is a left Ore set, we can find b ∈ A and t ∈ S

such that ta = bsk. Then bsk+1 = tas = 0 so b ∈ lann(sk+1) = lann(sk). Hence

ta = bsk = 0 with t ∈ S. �

We say that A is a prime ring if whenever I, J are non-zero two-sided ideals

of A, their product IJ is again non-zero. We say that A is a left Goldie ring if

A doesn’t have an infinite direct sum of non-zero left ideals, and every ascending

chain of left annihilators in A is stationary.

Theorem 3.12. [Goldie, 1958] Let A be a ring, and let S be the set of regular

elements of A. The following are equivalent:

(a) S is a left Ore set in A and S−1A is a left Artinian, left primitive ring

(b) A is a prime, left Goldie ring.

Proof. Omitted. �
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Clearly, every left Noetherian ring is a left Goldie ring. It follows from Corollary

2.21 that if A is a prime, left Goldie ring, then S is left localisable and S−1A is a

matrix ring over a division ring. In this way, Theorem 3.12 is a generalisation of

Theorem 3.9.

Definition 3.13. Let S be a left localisable subset of A and let M be a left

A−module.

(a) The localisation of M at S is defined to be the set of equivalence classes

S−1M = {s\m : m ∈M, s ∈ S}

in S ×M under the equivalence relation ∼ given by

(s,m) ∼ (t, n) if and only if ut′m = us′n for some u ∈ S,

where t′ ∈ A, s′ ∈ S are such that t′s = s′t ∈ S.

(b) The S-torsion submodule of M is defined to be

tS(M) = {m ∈M : sm = 0 for some s ∈ S}.

A long calculation shows that S−1M has the structure of an S−1A-module. To

do this, it is sufficient to check that S−1M is an A-module; then S clearly acts

invertibly on S−1M so by the universal property of S−1A the ring homomorphism

A→ EndZ(S
−1M) extends to S−1A.

4. Dimension theory for Noetherian modules

We will develop some dimension theory for finitely generated modules over Noe-

therian rings, with an emphasis on minimal primes.

Definition 4.1. Let R be a ring.

(a) A proper ideal P of R is said to be prime if, whenever I, J are ideals in R such

that IJ ⊆ P , either I ⊆ P or J ⊆ P .

(b) The set of prime ideals in R is denoted by Spec(R).

(c) Let I be an ideal in R. A prime ideal P of R is a minimal prime over I if

P ⊇ I and I ⊆ Q ⊆ P with Q prime forces Q = P .

(d) P is a minimal prime of R if it is a minimal prime over the zero ideal.

(e) min(I) := {minimal primes over I}.

Be warned that if R is not commutative and P is a prime ideal, then the factor

ring R/P may well have zero-divisors. For example, the zero ideal in every simple

ring is prime, and plenty of simple rings have zero-divisors: take, for example, any

matrix algebra Mn(k) over a field k with n ≥ 2.

Proposition 4.2. Let R be a left (or right) Noetherian ring and let I be a proper

ideal. Then

(1) There exist primes P1, . . . , Pn containing I such that P1 · · ·Pn ⊆ I.
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(2) The set of minimal primes over I is finite and non-empty.

Proof. Suppose that (1) is false. Since R is Noetherian, we can choose a maximal

counterexample I. Thus I contains no finite product of prime ideals containing I,

and I is maximal with respect to this property. We will show that I is prime.

If I is not prime, we can find A,B ⊳ R are such that AB ⊆ I but A ( I and

B ( I. By the maximality of I, I + A contains the product of primes P1, . . . , Pn

containing I + A, and similarly Q1 · · ·Qm ⊆ I + B for some primes Q1, . . . , Qm

containing I +B. Hence

P1 · · ·PnQ1 · · ·Qm ⊆ (I +A)(I +B) ⊆ I2 +AI + IB +AB ⊆ I,

so I itself contains a finite product of primes containing it. This contradicts the

definition of I, so in fact I is prime. Thus we have a contradiction, and (1) follows.

Hence we have a finite set of primes P1, . . . , Pn containing I such that P1 · · ·Pn ⊆
I. After relabelling, we may assume that {P1, . . . , Pm} are the distinct minimal

primes of {P1, . . . , Pn}. Thus I contains a product of primes from {P1, . . . , Pm},
possibly with repetition:

Pi1 · · ·Pin ⊆ I

for some i1, . . . , in ∈ {1, . . . ,m}. Now, suppose Q is any prime containing I. Then

Pi1Pi2 · · ·Pin ⊆ I ⊆ Q which forces Pij ⊆ Q for some j. If Q is a minimal prime

over I, Q must equal Pij .

Finally, we show that each Pk is a minimal prime over I for k = 1, . . . ,m. If

I ⊆ Q ⊆ Pk then Pj ⊆ Q ⊆ Pk for some j 6 m by the above. But P1, . . . , Pm are

the minimal primes in {P1, . . . , Pn}, so Pj = Q = Pk and (2) follows. �

Definition 4.3. Let I be an ideal in a left (or right) Noetherian ring R.

(a) The prime radical N(R) of R is the intersection of all prime ideals of R.

(b) The prime radical
√
I of I is the intersection of all prime ideals of R that

contain I.

(c) R is semiprime if N(R) = 0.

(d) I is said to be is semiprime if I =
√
I.

Thus I is semiprime if and only if it is the intersection of some collection of

prime ideals of R. Note that min(I) is completely determined by
√
I because

min(I) = min(
√
I).

Corollary 4.4. Let R be a left (or right) Noetherian ring. Then

N(R) =
⋂

P∈min(0)

P

is the largest nilpotent ideal in R.
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Proof. Every nilpotent ideal is contained in every prime ideal. Thus N(R) contains

every nilpotent ideal. On the other hand, it follows from Proposition 4.2, that

a finite product of the minimal primes of R is zero. If there are k terms in this

product, then N(R)k = 0, so N(R) is nilpotent. �

Definition 4.5. Let R be a left or right Noetherian ring. A dimension function

for R is a rule which assigns to every finitely generated R-module M a number

d(M) ∈ N, such that

d(M) = max{d(N), d(M/N)}
whenever N is a submodule of M .

Theorem 4.6. Let R be a left or right Noetherian ring. Then every function

d : {R/P : P ∈ Spec(R)} → N

such that d(R/P ) 6 d(R/Q) whenever Q ⊂ P extends to a dimension function d

for R, given by

d(M) = max{d(R/P ) : P ∈ min(Ann(M))}

for every finitely generated R-module M .

Proof. Let N be a submodule of a finitely generated R-module M , and write

min(Ann(M)) = {Pα}, min(Ann(N)) = {Iβ} and min(Ann(M/N)) = {Jγ}. Now

some finite product of the Pα’s kills M by Proposition 4.2, so it kills both N and

M/N . It follows that

• every Iβ contains some Pα, and

• every Jγ contains some Pα.

Now d(N) = d(R/Iβ) for some β and Iβ contains some Pα, so

d(N) = d(R/Iβ) 6 d(R/Pα) 6 d(M).

Similarly, d(M/N) 6 d(M), and we have shown that d(M) ≥ max{d(N), d(M/N)}.
On the other hand, some product, A say, of the Iβ ’s kills N and some product, B

say, of the Jγ ’s kills M/N , again by Proposition 4.2. So BM ⊆ N and AN = 0,

whence ABM = 0 and AB ⊆ Ann(M). It follows that

• every Pα contains either an Iβ or a Jγ .

So if d(M) = d(R/Pα) for some α then either Pα contains some Iβ , in which case

d(M) = d(R/Pα) 6 d(R/Iβ) 6 d(N),

or Pα contains some Jγ , in which case

d(M) = d(R/Pα) 6 d(R/Jγ) 6 d(M/N).

In either case, we see that d(M) 6 max{d(N), d(M/N)}. �
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It can be shown that if in addition R is commutative, then this extension is

unique. More precisely, any dimension function d′ for R such that d(R/P ) =

d′(R/P ) for all P ∈ Spec(R) must actually be equal to d, and is therefore completely

determined by the values that it takes on modules of the form R/P , P ∈ Spec(R)

— see Exercise 5.3.

Definition 4.7. Let R be a commutative ring.

(a) The Krull dimension of R is Kdim(R) is the supremum of the lengths of chains

of prime ideals in R:

Kdim(R) = max{n ∈ N : there exist P0 ( P1 ( · · · ( Pn, Pi ∈ Spec(R)}.

(b) Let M be a finitely generated R-module. Then

Kdim(M) := max{Kdim(R/P ) : P ∈ min(Ann(M))}

is the Krull dimension of M .

In general, Kdim(R) may well be infinite, even if R is Noetherian. However it is

always finite if R is a finitely generated commutative algebra over a field k. This

follows from the following Theorem, whose proof we omit.

Theorem 4.8. Let R be a finitely generated commutative k-algebra which is a

domain. Then

Kdim(R) := min{dimR/m(m/m
2) : m is a maximal ideal of R}.

The proof uses the Noether Normalisation Lemma and the fact that every affine

variety has a smooth, dense, open subset. Unfortunately we don’t have time in this

course to give all details of the proof.

Corollary 4.9. Let R be a finitely generated commutative k-algebra. Then Kdim

is a dimension function for R.

Proof. In order to apply Theorem 4.6, we just need to check that

Kdim(R/P ) 6 Kdim(R/Q) whenever Q ⊆ P.

Suppose that P = P0 ( P1 ( · · · ( Pn is the longest chain of prime ideals in R

starting with P so that n = Kdim(R/P ) by Theorem 4.8. Then this chain induces

a chain of prime ideals of R/Q of length n. Thus n 6 Kdim(R/Q). �

The vector space (m/m)∗ is the Zariski tangent space to the affine algebraic

variety X := Spec(R) at the point m, so dimR/m(m/m
2) is (roughly speaking) the

number of linearly independent tangent vectors to X at the point x.

We also need to borrow the following consequence of the Weak Nullstellensatz

from C2.6 Commutative Algebra:
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Lemma 4.10. If k is an algebraically closed field, then every maximal ideal of

the polynomial algebra k[x1, . . . , xn] is of the form (x1 −α1, · · · , xn −αn) for some

α ∈ kn.

Proof. Omitted. �

Example 4.11. Let R = k[x, y]/(xy) with k algebraically closed. This is the co-

ordinate ring of a pair of lines X = {(a, b) ∈ k2 : ab = 0} in the affine plane k2. By

Lemma 4.10, its maximal ideals are

MaxSpec(R) = {〈x− a, y〉 : 0 6= a ∈ k} ∪ {〈x, y − b〉 : 0 6= b ∈ k} ∪ {(x, y)}.

If m = 〈x− a, y〉 with a 6= 0 then m2 = 〈(x− a)2, (x− a)y, y2〉 = 〈(x− a)2, y〉 and
m/m2 is a one-dimensional vector space spanned by the image of x− a. Similarly,

if m = 〈x, y − b〉 then dimk m/m
2 = 1. However

〈x, y〉2 = 〈x2, xy, y2〉 = 〈x2, y2〉

so dimk〈x, y〉/〈x2, y2〉 = 2: there are two linearly independent tangent directions

at the origin. Thus, as might be expected geometrically, Kdim(R) = 1 since it is

intuitively clear that X is a one-dimensional space.

Now, let’s return to the non-commutative setting and seek a well-behaved di-

mension function in the case where the ring in question doesn’t necessarily have

many two-sided ideals.

Definition 4.12. Let R be a filtered ring with filtration (Ri)i∈Z and let M be

a left R−module. A filtration on M is a set (Mi)i∈Z of additive subgroups of M

satisfying

• Mi ⊆Mi+1 for all i ∈ Z,
• Ri ·Mj ⊆Mi+j for all i, j ∈ Z,
• ∪i∈ZMi =M .

Filtered right modules are defined similarly.

Example 4.13. Let M be a left R−module with generating set X. Then Mi :=

Ri ·X for all i ∈ Z gives a filtration of M , known as a standard filtration.

Definition 4.14. (a) Let S = ⊕i∈ZSi be a graded ring. A graded left S−module

is a left S−module V of the form

V =
⊕

i∈Z

Vi

such that SiVj ⊆ Vi+j for all i, j ∈ Z.
(b) A graded left ideal of S is a left ideal of the form J = ⊕i∈ZJi, where Ji ⊆ Si

for each i ∈ Z.
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Definition 4.15. Let R be a filtered ring and let M be a filtered left R−module

with filtration (Mi)i∈Z. Define the abelian group

grM =
⊕

i∈Z

Mi/Mi−1.

Equip grM with a grR−action, which is given on homogeneous components by

Ri/Ri−1 × Mj/Mj−1 −→ Mi+j/Mi+j−1

r +Ri−1 , m+Mj−1 7→ rm+Mi+j−1

and on the whole of grM by bilinear extension. Then grM becomes a graded left

grR−module, called the associated graded module of M .

Our next goal will be to define a well-behaved dimension function for certain

filtered non-commutative rings. For this, we first need to make a digression to

study Rees rings and good filtrations.

Definition 4.16. Let R be a filtered ring with filtration (Ri)i∈Z, and let M be

a filtered left R−module with filtration (Mi)i∈Z. The Rees ring is the following

subring R̃ of the ring of Laurent polynomials R[t, t−1]:

R̃ =
⊕

i∈Z

Rit
i ⊆

⊕

i∈Z

Rti = R[t, t−1].

The Rees module M̃ of M is the abelian group

M̃ =
⊕

i∈Z

Mit
i

where the action of R̃ is given by on homogeneous components by

Rit
i × Mjt

j → Mi+jt
i+j

rit
i , mjt

j 7→ rimjt
i+j .

Definition 4.17. Let R be a filtered ring and let M be a left R−module. A

filtration (Mi) on M is said to be good if the Rees module M̃ is finitely generated

over R̃.

Proposition 4.18. Let R be a filtered ring and let M be a left R−module. A

filtration (Mi) on M is good if and only if there exist k1, k2, . . . , ks ∈ Z and m1 ∈
Mk1

,m2 ∈Mk2
, . . . ,ms ∈Mks

such that

Mi = Ri−k1
m1 +Ri−k2

m2 + · · ·+Ri−ks
ms for all i ∈ Z.

Proof. If the graded module M̃ is finitely generated, it has a finite homogeneous

generating set {tk1m1, . . . , t
ksms} say, withmj ∈Mkj

. Then the i−th homogeneous

component of M̃ is

tiMi = Ri−k1
ti−k1(tk1m1) + · · ·+Ri−ks

ti−ks(tksms), so

Mi = Ri−k1
m1 +Ri−k2

m2 + · · ·+Ri−ks
ms.
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Conversely, any filtration of this form is good, since {tk1m1, . . . , t
ksms} is then

a generating set for M̃ . �

Corollary 4.19. Every finitely generated module over a filtered ring has at least

one good filtration.

Proof. Let X = {x1, . . . , xs} be a finite generating set for M , and let

Mi := Rix1 + . . .+Rixs = RiX

be the standard filtration on M . It is good by Proposition 4.18. �

Note that t ∈ R̃ is a central regular element, since 1 ∈ R1 always. There is a

certain amount of interplay between the Rees ring of R and the associated graded

ring grR.

Lemma 4.20. Let R and M be as above. Then

(1) R̃/tR̃ ∼= grR as rings,

(2) R̃/(t− 1)R̃ ∼= R as rings,

(3) M̃/tM̃ ∼= grM as left grR−modules,

(4) M̃/(t− 1)M̃ ∼=M as left R−modules.

Proof. We will only prove the result for the rings, leaving the modules as an exercise.

(1). We have an isomorphism of abelian groups

R̃/tR̃ =

⊕
i∈Z

Rit
i

⊕
i∈Z

Ri−1ti
∼=
⊕

i∈Z

Ri/Ri−1
∼= grR.

It can be checked that this is also a ring isomorphism.

(2). Define a ring homomorphism π : R[t, t−1] → R by π(
∑
rit

i) =
∑
ri. First

we show that kerπ = R[t, t−1](t − 1). To see this, let a =
∑
ait

i ∈ kerπ so that∑
ait

i = 0. Hence a = a−∑ ai =
∑
ai(t

i − 1) ∈ R[t, t−1](t− 1) because ti − 1 is

a multiple of t− 1 for any i ∈ Z. Next, we will show that

ker(π|R̃) = R̃(t− 1),

the inclusion ⊇ being clear. Now

ker(π|R̃) = kerπ ∩ R̃ = R[t, t−1](t− 1) ∩ R̃

from above, so suppose that b(t− 1) ∈ R̃ for some b =
∑n

i=m bit
i ∈ R[t, t−1]. Then

−bmtm +

n∑

i=m+1

(bi−1 − bi)t
i + bnt

n+1 ∈ R̃

and we deduce that −bm ∈ Rm and bi − bi−1 ∈ Ri for all m < i 6 n. An induction

starting with i = m now shows that bi ∈ Ri for all m 6 i 6 n and hence b ∈ R̃.

Hence ker(π|R̃) = R̃(t− 1) as claimed.
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Finally, if a ∈ R then a ∈ Ri for some i ∈ Z and hence π(ati) = a with ati ∈ R̃;

this shows that π|R̃ is surjective. Hence

R = imπ|R̃ ∼= R̃/ kerπ|R̃ = R̃/R̃(t− 1)

by the First Isomorphism Theorem for rings. �

So R̃ is a ring which has both R and grR as epimorphic images. It follows that

if R̃ is right (or left) Noetherian, then so are both R and grR.

Note that if (Mi) is a good filtration, then grM ∼= M̃/tM̃ is finitely generated

over grR and M ∼= M̃/(t− 1)M̃ is finitely generated over R, by Lemma 4.20.

Definition 4.21. Let R be a filtered ring and let M be a left R−module. Two

filtrations (Mi) and (M ′
i) on M are algebraically equivalent (or just equivalent) if

there exist c, d ∈ Z such that

M ′
i ⊆Mi+c and Mj ⊆M ′

j+d for all i, j ∈ Z.

Lemma 4.22. All good filtrations on M are equivalent.

Proof. Take two good filtrations (Mi) and (M ′
i). Then by Proposition 4.18,

Mi = Ri−k1
m1 + · · ·+Ri−ku

mu for all i

M ′
j = Rj−l1m

′
1 + · · ·+Rj−lvm

′
v for all j.

We can find c ∈ Z such that m′
s ∈Mls+c for all s = 1, . . . , v. Then M ′

i ⊆Mi+c for

all i, and similarly there exists d ∈ Z such that Mi ⊆M ′
i+d for all i. �

Theorem 4.23. Let R be a filtered ring such that grR is commutative and Noe-

therian, and let M be a finitely generated R-module. Let (Mi) and (M ′
i) be two

good filtrations onM , and let grM, gr′M be the respective associated graded mod-

ules. Then

min(Ann(grM)) = min(Ann(gr′M)).

Proof. By Lemma 4.22, we can find an integer c > 0 such that

Mi−c ⊆M ′
i ⊆Mi+c for all i ∈ Z.

Let I =
√
Ann(grM) and I ′ =

√
Ann(gr′M). Since min(Ann(grM)) = min(I),

by symmetry it will be sufficient to show that I ⊆ I ′. Because these ideals are

graded and grR is commutative, it will be enough to show that every homogeneous

element X ∈ I lies in I ′. We can assume that X = x+Rn−1 for some x ∈ Rn.

Since I/Ann(grM) is a nilpotent ideal by Corollary 4.4, Xm ∈ Ann(grM) for

some m ∈ N. Thus xm +Rmn−1 kills grM :

xmMi ⊆Mi+mn−1 for all i ∈ Z.

Apply this relation repeatedly to deduce that

xamMi ⊆Mi+amn−a for all i ∈ Z, a ∈ N.
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Now, take a = 3c and use Mi−c ⊆M ′
i ⊆Mi+c to obtain

x3cmM ′
i ⊆ x3cmMi+c ⊆Mi+3cmn−2c ⊆M ′

i+3cmn−c for all i ∈ Z.

Since X = x+Rn−1 and c ≥ 1, we see that X3cm kills gr′M :

X3cm ∈ Ann(gr′M).

Because grR is commutative, the image ofX grR in grR/Ann(gr′M) is a nilpotent

ideal, so X ∈
√
Ann(gr′M). �

Definition 4.24. Let R be a filtered ring such that grR is a finitely generated

commutative algebra over a field k, and let M be a finitely generated R-module.

Choose a good filtration on M using Corollary 4.19.

(a) The set of characteristic primes of M is Ch(M) := min(Ann(grM)).

(b) The dimension of M is d(M) := Kdim(grM).

The characteristic variety of M is the affine subvariety of Spec(grR) defined

by Ann(grM). Its irreducible components are the affine varieties defined by the

members of Ch(M). Theorem 4.23 ensures that Ch(M) does not depend on the

choice of good filtration on M . Since by Definition 4.7 Kdim(grM) only depends

on Ch(M), it also does not depend on this choice.

To ensure that d really is a dimension function for R in the setting of Definition

4.24, we need to do a little more work.

Definition 4.25. Let N be a submodule of a filtered left R-module M .

• The subspace filtration (Ni)i∈Z on N is given by

Ni := N ∩Mi.

• The quotient filtration ((M/N)i)i∈Z on M/N is given by

(M/N)i := (Mi +N)/N.

Proposition 4.26. Let R be a positively filtered ring such that grR is a finitely

generated commutative algebra over a field k. Then

M 7→ d(M) = Kdim(grM)

is a dimension function for R.

Proof. We have to show that d(M) = max{d(N), d(M/N)} whenever N is a sub-

module of a finitely generated R-module M . Equip M with a good filtration using

Corollary 4.19, and endow N and M/N with the subspace and quotient filtrations,

respectively. Then by definition, the associated sequence of Rees modules

0 → Ñ → M̃ → M̃/N → 0
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is exact. Now grR is Noetherian by Theorem 1.16, so R̃ is left Noetherian by

Exercise 6.7. Thus Ñ and M̃/N are finitely generated over R̃, so that the filtrations

on N and M are good. Now,

0 → grN → grM → grM/N → 0

is an exact sequence of finitely generated grR-modules by Exercise 6.5, so

Kdim(grM) = max{Kdim(grN),Kdim(gr(M/N))}

by Corollary‘4.9. �

We can now state one of the main results in this course: the proof occupies most

of Chapter 5.

Theorem 4.27 (Bernstein’s Inequality). Let k be an algebraically closed field of

characteristic zero, and let M be a finitely generated, non-zero module over the

Weyl algebra An(k). Then

d(M) ≥ n.

The Weyl algebra An(k) can be thought of as a non-commutative polynomial

ring in 2n variables because grAn(k) ∼= k[X1, . . . , X2n] by Proposition 1.25. So even

though grAn(k) has finitely generated modules of all possible dimensions between 0

and 2n, non-zero finitely generated An(k)-modulesM are “large”: n 6 d(M) 6 2n.

Remarks 4.28. Even though Theorem 4.23 ensures that d(M) does not depend

on the particular choice of good filtration on M , the definition still depends on the

choice of filtration on the ring R. It is quite possible that the same non-commutative

ring R has two “different” filtrations, in the sense that the respective associated

graded rings are not isomorphic. However, using more advanced techniques from

homological algebra such as the bidualising complex, it can be shown that in fact

d(M) does not depend on the choice of filtration on the ring R, and is therefore an

intrinsic invariant of the R-module M .

5. The integrability of the characteristic variety

Definition 5.1. Let R be a ring. A Poisson bracket on R is a function

{, } : R×R→ R

such that

(a) {, } is bi-additive,

(b) {x, x} = 0 for all x ∈ R,

(c) {x, {y, z}}+ {y, {z, x}}+ {z, {x, y}} = 0 for all x, y, z ∈ R,

(d) {x, yz} = {x, y}z + y{x, z} for all x, y, z ∈ R.
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In other words, a Poisson bracket is a Z-Lie bracket on R which is a bi-derivation

in the sense that the functions {x,−} : R→ R and {−, y} : R→ R are derivations

of R for all x, y ∈ R. For example, the commutator bracket on every ring is an

example of a Poisson bracket. However, it can happen that a commutative ring

has an interesting and non-trivial additional Poisson structure. One of the main

mechanisms for constructing Poisson brackets comes from deformation theory as

follows:

Proposition 5.2. Let R be a ring and suppose that τ ∈ R is a central element

such that R := R/τR is commutative, and

ann(τ) = τR.

Define {, } : R×R→ R by the rule

{x+ τR, y + τR} = z + τR

where [x, y] = τz. Then {, } is a well-defined Poisson bracket on R.

Proof. We will check that {, } is well-defined. Note that every commutator [x, y]

in R lies in τR because R/τR is commutative by assumption: this ensures the

existence of z ∈ R such that [x, y] = τz. Now suppose that

x′ = x+ τa and y′ = y + τb for some a, b ∈ R.

Then because τ2 = 0 we have

[x′, y′] = [x, y] + τ [x, b] + τ [a, y].

But [R,R] ⊆ τR and τ2 = 0, so in fact [x′, y′] = [x, y].

Finally, if [x, y] = τz = τz′ for some z′ ∈ R then by assumption,

z − z′ ∈ ann(τ) = τR

so z + τR = z′ + τR. The rest is straightforward. �

The following elementary Lemma will be useful many times in what follows. It

transforms questions about filtered modules into a problem in deformation theory.

Lemma 5.3. Let R be a filtered ring and let M be a filtered left R-module. Let

R := R̃/t2R̃, τ := t + t2R̃ ∈ R and let N := M̃/t2M̃ . Then τ ∈ R is a central

element such that τ2 = 0, and {m ∈ N : τm = 0} = τN .

Proof. Only the last part requires proof. Suppose that τm = 0 for some m ∈ N .

To show that m ∈ τN we may assume that m is homogeneous, and thus of the

form m = ati + t2M̃ for some a ∈Mi. Now

0 = τm = (t+ t2R̃)(ati + t2M̃) = ati+1 + t2M̃

implies that ati+1 ∈ t2M̃ . But the homogeneous component of t2M̃ of degree i+1

is Mi−1t
i+1, so a ∈Mi−1. Hence at

i = t(ati−1) ∈ tM̃ and thus m ∈ τN . �
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Corollary 5.4. Let R be a filtered ring such that grR is commutative. Then there

is a Poisson bracket

{, } : grR× grR→ grR

such that

{x+Ri−1, y +Rj−1} = [x, y] +Ri+j−2

whenever x ∈ Ri and y ∈ Rj .

Proof. We form the Rees ring R̃ and set R := R̃/t2R̃. Let τ ∈ R be the image

of t ∈ R̃ in R; then τ2 = 0 and τ is central in R by Lemma 5.3. Also, R/τR ∼=
R̃/tR̃ ∼= grR by Lemma 4.20(1), and because R is itself a filtered left R-module,

ann(τ) = τR

by Lemma 5.3. Proposition 5.2 now gives a Poisson bracket {, } on grR ∼= R/τR.

If x ∈ Ri and y ∈ Rj then x+Ri−1 and y +Rj−1 are the images of xti + t2R̃ and

ytj + t2R̃ respectively under the map R ։ grR. Now since grR is commutative,

[x, y] ∈ Ri+j−1 so [x, y]ti+j−1 ∈ R[t, t−1] lies in R̃. Hence

[xti + t2R̃, ytj + t2R̃] = [x, y]ti+j + t2R̃ = t([x, y]ti+j−1 + t2R̃)

so that
{
(xti + t2R̃) + τR, (ytj + t2R̃) + τR

}
= ([x, y]ti+j−1 + t2R̃) + τR.

Therefore {x+Ri−1, y +Rj−1} = [x, y] +Ri+j−2 by the definition of {, }. �

We will next calculate the Poisson bracket induced by the Weyl algebra An(k).

Equip An(k) with the filtration by order of differential operator, and recall that

grAn(k) ∼= k[X1, . . . , Xn, Y1, . . . , Yn]

by Proposition 1.25 with Xi in degree zero and Yj in degree one.

Example 5.5. The Poisson bracket on grAn(k) is given by

{Yi, Xj} = δij , and {Xi, Xj} = {Yi, Yj} = 0 for all i, j = 1, . . . n.

The goal of this Chapter is to prove the following Theorem.

Theorem 5.6 (Gabber). Let R be a filtered ring such that grR is a commutative

Noetherian Q-algebra and let M be a finitely generated R-module. Then

{P, P} ⊂ P

for every P ∈ Ch(M) = min(Ann(grM)).

To see how powerful this Theorem is, we will use it to prove Bernstein’s Inequality

(Theorem 4.27) after the next Lemma.
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Lemma 5.7. Let (, ) be a non-degenerate bilinear form on a finite dimensional

k-vector space V , and let W be a subspace of V such that (W,W ) = 0. Then

dimW 6
1

2
dimV.

Proof. Since (, ) is non-degenerate, the map Φ : V → V ∗ given by Φ(v)(w) = (v, w)

is injective. Pick a basis {f1, . . . , fr} for Φ(W ), extend it to a basis {f1, . . . , fm}
for V ∗ and let {v1, . . . , vm} be the dual basis for V . Then {vr+1, . . . , vm} is a basis

for W⊥ := {v ∈ V : (W, v) = 0} by construction, so dimW + dimW⊥ = dimV .

But (W,W ) = 0, so W 6W⊥ and hence 2 dimW 6 dimV . �

Proof of Theorem 4.27. Recall from Proposition 1.25(b) that the associated graded

ring of An(k) with respect to the filtration by order of differential operators is a

polynomial algebra over k in 2n-variables:

R := grAn(k) ∼= k[X1, . . . , X2n].

Choose a good filtration on M and let P ∈ Ch(M). Every maximal ideal of R/P

is of the form m/P for some maximal ideal m of R containing P , and

(m/P )/(m/P )2 ∼= m/(m2 + P )

as vector spaces over F := R/m. By Definition 4.24 and Theorem 4.7, it is enough

to prove that

dimF
m

m2 + P
≥ n

for every maximal ideal m of R containing P . The Poisson bracket {, } on R given

in Example 5.5 induces a well-defined alternating F -bilinear form

(, )m : m/m2 ×m/m2 → F

given by (v + m2, w + m2)m = {v, w} + m. Now because k is algebraically closed,

we can write m = (X1 − α1, . . . , X2n − α2n) for some α ∈ k2n by Lemma 4.10. So

the natural map k → F is an isomorphism, and if vi := Xi − α+m2 ∈ m/m2 then

the form (, )m is given by

(vi, vj)m =





1 if j = i+ n

−1 if i = j + n

0 otherwise.

by Example 5.5. It follows that (, )m is non-degenerate. Now {P, P} ⊆ P ⊆ m by

Theorem 5.6, so (, )m vanishes on the subspace (P +m2)/m2 of m/m2. Hence

dimk
m

m2 + P
= dimk

m

m2
− dimk

P +m2

m2
≥ 2n− n = n

by Lemma 5.7. �

We will use the techniques of Rees rings and noncommutative localisation to

prove Theorem 5.6. First, three preliminary Lemmas.
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Lemma 5.8. Let R be a commutative Noetherian ring and let M be a finitely

generated, non-zero, R-module. Let P ∈ min(Ann(M)) and let S = R\P . Then

(S−1P )w · S−1M = 0

for some w ∈ N.

Proof. Since M 6= 0, I := Ann(M) is a proper ideal, so min(I) is non-empty by

Proposition 4.2(1). Write min(I) = {P1, . . . , Pn} with P = P1. Then

Pw1

1 Pw2

2 · · ·Pwn
n ⊆ I

for some wi ∈ N by Proposition 4.2(2). Now pass to the localisation S−1R:

(S−1P1)
w1(S−1P2)

w2 · · · (S−1Pn)
wn ⊆ S−1I.

Now Pi * P1 whenever i ≥ 2, so Pi ∩S 6= ∅ and hence S−1Pi = S−1R for all i ≥ 2.

Hence

(S−1P )w1 · (S−1M) = 0

because S−1I · S−1M = 0. �

Our next result gives a very general mechanism for creating Ore sets. It can be

viewed as the start of the theory of algebraic microlocalisation.

Lemma 5.9. Let R be a ring containing a central element τ ∈ R such that τ2 = 0.

Let ξ : R → R := R/τR be the canonical surjection. If S ⊆ R is a left Ore set in

R, then ξ−1S ⊆ R is a left Ore set in R.

Proof. Let a ∈ R, s ∈ ξ−1(S). Then ta ≡ bs (mod τR) for some t ∈ ξ−1(S), b ∈ R.

So ta = bs+ τu, and also t′u = b′s+ τu′ for some t′ ∈ ξ−1(S). But then,

(t′t)a = t′bs+ τt′u = t′bs+ τ(b′s+ τu′) = (t′b+ τb′)s

because τ2 = 0, and t′t ∈ ξ−1(S). �

We need one more preliminary result on non-commutative localisation before we

can start our proof of Theorem 5.6.

Lemma 5.10. Let S be a left localisable subset of A and let N be a submodule of

an A-module M . Then there is an S−1A-linear isomorphism

S−1(M/N) ∼= (S−1M)/(S−1N).

Proof. There is a map α : S−1N → S−1M which sends s\n ∈ S−1N to s\n ∈
S−1M . It is left S−1A-linear, so its image is an S−1A-submodule. If s\n maps to

zero, then there is t ∈ S such that tn = 0. So s\n = ts\tn = 0. So α is injective.

Now define β : S−1M → S−1(M/N) by β(s\m) = s\(m+N). It is a well-defined,

surjective, S−1A-linear map. If s\m ∈ kerβ then t(m +N) = 0 for some t ∈ S so

that tm ∈ N . But then

s\m = (ts)\(tm) ∈ S−1N
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so that kerβ = S−1N . �

Remarks 5.11. Here is an alternative way of constructing S−1M :

S−1M ∼= S−1A⊗A M.

So, it follows from Lemma 5.10 that S−1A is a flat right A-module, whenever S is

a left localisable subset of A.

Proof of Theorem 5.6. As in the proof of Corollary 5.4, form the Rees ring R̃ and

set R := R̃/t2R̃. Let ξ : R ։ grR be the map defined by ξ(xti + t2R̃) = x+Ri−1

for x ∈ Ri, and let τ = t+ t2R̃ ∈ R. Then τ is central in R, τ2 = 0 and

ker ξ = τR = ann(τ)

by Lemma 5.3. Let S = grR\P and set S := ξ−1(S). Then S is a left Ore set in

R by Lemma 5.9, and R is a left Noetherian ring by Exercise 1.4(a) because grR

is Noetherian, so S is left localisable by Proposition 3.11. Form the localised ring

B := S−1R

and note that B/τB ∼= S−1(R/τR) ∼= S−1(grR) by Proposition 5.10. Note that

P := S−1ξ−1(P ) is a two-sided ideal in B, and

B/P ∼= S−1(R/ξ−1(P )) ∼= S−1(R/P )

is the field of fractions of R/P . Thus P is a maximal ideal in B.
Choose a good filtration onM and let N := M̃/t2M̃ . This is a finitely generated

R-module, and

τN ∼= N/τN ∼= grM

as grR ∼= R/τR-modules by Lemma 5.3 and Lemma 4.20(2). The localised module

M := S−1N

is finitely generated over B, and

τM ∼= M/τM ∼= S−1(grM)

by Proposition 5.10. By Lemma 5.8, S−1(grM) is killed by (S−1P )w for some

w ∈ N, so Pw ·M ⊆ τM. Hence P2w ·M = 0, so M is a finitely generated module

over

A := B/P2w.

Let J be the image of P in A; then J is a maximal ideal of A such that A/J ∼=
B/P ∼= S−1(R/P ). Since J is finitely generated as a one-sided ideal and J 2w = 0,

the ring A is left Artinian. So by Theorem 5.12 below,

[J ,J ] ⊆ τJ .
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Pulling back to B, we deduce that [P,P] ⊆ τP + P2w. But B/τB is commutative

by construction, so [P,P] ⊆ τB and

[P,P] ⊆ (τP + P2w) ∩ τB ⊆ τP + (P2w ∩ τB)

by the modular law. But if x ∈ B and τx ∈ P2w then τx kills M, so xM ⊆ τM
and x2M = 0. If x /∈ P then x is a unit in B which would force M = 0. But then

S−1(grM) = 0, and since grM is finitely generated, it is killed by some s ∈ S. But

then s ∈ Ann(grM) ⊆ P , which contradicts s ∈ S. Hence x ∈ P, so [P,P] ⊆ τP.
Finally, let x, y ∈ P and choose a, b ∈ ξ−1(P ) such that x = ξ(a) and y = ξ(b).

Then [a, b] ∈ τP and P = S−1ξ−1(P ), so there is some s ∈ S such that s[a, b] ∈
τξ−1(P ). Hence ξ(s){x, y} ∈ P and ξ(s) ∈ S. But S = grR\P and P is prime, so

{x, y} ∈ P . �

Thus it remains to prove

Theorem 5.12 (Gabber’s Local Theorem). Let A be a left Artinian Q-algebra

with unique maximal ideal J and a central element τ ∈ J such that τ2 = 0 and

A/τA is commutative. Suppose that M is a finitely generated non-zero A-module

such that

{m ∈ M : τm = 0} = τM.

Then [J ,J ] ⊆ τJ .

Only the following easy case of Gabber’s Local Theorem is examinable. The full

proof can be found in Appendix B.

Theorem 5.13. Theorem 5.12 holds whenever A contains a central subfield K

such that K ⊕ J = A.

Proof. Note that V := M/τM is a finite dimensional K-vector space, because it

is a module of finite length over the commutative Artinian local ring A/τA, and

because the subfield K of A maps isomorphically onto the unique simple A-module

A/J . Let {v1 + τM, . . . , vn + τM} be a basis for V as a K-vector space, and

let N :=
∑n

i=1K[τ ]vi. Then N + τM = M, so τN = τM and hence M =

N + τN = N . Thus {v1, . . . , vn} generates M as a K[τ ]-module. On the other

hand, if
∑n

i=1(λi + τµi)vi = 0 for some λi, µi ∈ K, then looking in M/τM we see

that λi = 0 for each i, and hence τ
∑n

i=1 µivi = 0. By our assumption on M, this

implies that
∑n

i=1 µivi ∈ τM. Looking in M/τM again, we conclude that µi = 0

for all i. So, in fact {v1, . . . , vn} forms a basis for M as a K[τ ]-module.

Since K[τ ] is central in A, the A-action on M gives a representation

ρ : A −→ EndK[τ ](M) ∼=Mn(K[τ ]).

Now, let x, y ∈ J and write [x, y] = τz where z = λ + u for some λ ∈ K and

u ∈ J . Since J is the unique maximal ideal of A, it is nilpotent by Proposition
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2.22. Hence u is also nilpotent. Now, apply tr ◦ρ to this equation:

tr ρ([x, y]) = tr(λτρ(1)) + tr τρ(u).

Now ρ([x, y]) = [ρ(x), ρ(y)] has trace zero, and ρ(u) is nilpotent, hence it also has

trace zero. Since tr ρ(1) = n, we conclude that

nλτ = 0

must hold inside the ground ring K[τ ] = K ⊕Kτ . But K is a Q-algebra and n ≥ 1

since M is non-zero, so in fact λ = 0. Hence [x, y] = τu ∈ τJ as claimed. �

Definition 5.14. Let A be a commutative ring.

(a) A is local if it has a unique maximal ideal.

(b) Let A be a local ring with unique maximal ideal J . A coefficient field is a

subfield K of A such that K + J = A.

Every coefficient field K is isomorphic to A/J : (K + J)/J ∼= K/J ∩ K ∼= K

because every proper ideal of a field is zero. Unfortunately coefficient fields do not

exist in general, as the example A = Z/4Z shows: this ring does not contain any

subfield whatsoever. In fact coefficient fields exist in any commutative complete

Noetherian local ring that contains a field: this is the key ingredient of the proof

of Cohen’s famous Structure Theorem for complete commutative Noetherian local

rings. The proof of Theorem 5.12 needs the following statement.

Theorem 5.15. Every commutative local Artinian Q-algebra has a coefficient field.

Proof. Let S be the set of subfields of the Artinian Q-algebra A. It is not empty

because A contains a copy of the rational numbers Q by assumption. If C is a chain

in S then ∪C is again a subfield of A, so ∪C ∈ S. Hence by Zorn’s Lemma 2.3, S
has a maximal element K. We will show that K is the required coefficient field.

Let J be the unique maximal ideal of A, fix x ∈ A and consider the subring

K[x] of A generated by x. Suppose for a contradiction that x is transcendental

over K. Then g(x) /∈ J for any non-zero g(X) ∈ K[X], because J is nilpotent by

Proposition 2.22. Hence g(x) is a unit in A for all non-zero g(X) ∈ K[X], which

means that the K-algebra homomorphism K[X] → A which sends X to x factors

through the field of fractions K(X) of K[X]. Then the image K(x) of K(X) in A

is a subfield of A which properly contains K, contradicting the maximality of K.

Hence x is algebraic over K. Let I := K[x] ∩ J ; then K[x]/I is isomorphic to a

K-subalgebra of the field A/J , and it is generated by the algebraic element x+ I.

So K[x]/I is itself a field and hence I is a maximal ideal in K[x]. It is also nilpotent

because J is nilpotent, so by Lemma 5.16 below we can find y ∈ K[x] such that

y ≡ x mod I and such that K[y] is a field. The maximality of K now forces y ∈ K,

and we conclude that x ∈ I +K ⊆ J +K. Hence A = J +K. �
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To complete the proof of Theorem 5.15 it remains to prove the following version

of Hensel’s Lemma.

Lemma 5.16. Let K be a field of characteristic zero and let A be a K-algebra

such that A = K[x] for some x ∈ A. Suppose that I is a maximal, nilpotent ideal

in A. Then there exists y ∈ A such that y ≡ x mod I and such that K[y] is a field.

Proof. Let f(X) ∈ K[X] be the monic minimial polynomial of x+I ∈ A/I. We will

find a sequence of elements x1 := x, x2, x3, · · · such that f(xm) ∈ Im and xm ≡ x

mod I for all m ≥ 0. Assume inductively that f(xm) ∈ Im and consider

f(xm + h) = f(xm) + hf ′(xm) +
h2

2!
f ′′(xm) + · · ·

for some h ∈ Im; this formal Taylor series makes sense because h ∈ Im is nilpotent

by assumption and because K has characteristic zero. Now if f ′(xm) ∈ I then

f ′(x) ∈ I since xm ≡ x mod I. So f(X) divides f ′(X) in K[X]. This is impossible

over a field of characteristic zero, so f ′(xm) /∈ I. Hence f ′(xm) is a unit in A. Since

f(xm + h) ≡ f(xm) + hf ′(xm) mod Im+1

we can take h := −f(xm)f ′(xm)−1 and xm+1 := xm + h. This completes the

induction. Now since I is nilpotent, In = 0 for some n ≥ 1 and hence f(xn) = 0.

But then K[xn] is a homomorphic image of the field K[X]/〈f(X)〉, so K[xn] is the

required subfield of A with xn ≡ x mod I. �
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Appendix A. Ore’s Theorem

Let R be a ring, and let S be a left Ore set in R consisting of regular elements.

We will define an equivalence relation on S ×R, and define the structure of a ring

on the set of equivalence classes.

Definition A.1. Define a relation ∼ on S ×R by setting

(s, a) ∼ (t, b)

if and only if there exist c, d ∈ R such that ca = db and cs = dt ∈ S.

Lemma A.2.

(a) Suppose s1, s2, . . . , sn ∈ S. There exist c1, c2, . . . , cn ∈ R and s ∈ S such that

c1s1 = c2s2 = · · · = cnsn = s.

(b) Suppose (s, a) ∼ (t, b) and c′, d′ ∈ R are such that c′s = d′t ∈ S. Then

c′a = d′b.

Proof. (a) Proceed by induction on n. When n = 1 we can take c1 = 1, so assume

n > 1. By induction, we can find b1, b2, . . . , bn−1 ∈ R such that

b1s1 = b2s2 = · · · = bn−1sn−1 = u ∈ S,

say. By the left Ore condition, we can find v ∈ S and cn ∈ R such that vu = cnsn.

Since u, v ∈ S and S multiplicatively closed, s := vu ∈ S. So if ci := vbi ∈ R, then

c1s1 = · · · = cn−1sn−1 = vu = cnsn = s.

(b) We have ca = db and cs = dt ∈ S for some c, d ∈ R. The left Ore condition

gives x′ ∈ S and x ∈ R such that x′(c′s) = x(cs). Hence x(dt) = x(d′t). Since

s, t ∈ S are regular, xc = x′c′ and xd = x′d′. Hence

x′c′a = xca = xdb = xd′b

but x′ ∈ S is regular so c′a = d′b. �

The first part of this Lemma shows that “any finite collection of denominators

have a common left multiple which is a denominator”, and consequently that any

finite set of fractions of the form si\ai “has a common denominator”, that is, each

one can be written in the form s\ciai for some ci ∈ R. It will also be useful to us

in the technical verifications below.

Lemma A.3. ∼ is an equivalence relation on S ×R.

Proof. Since 1 ∈ S, we can take c = d = 1 and obtain (s, a) ∼ (s, a) for any

a ∈ R, s ∈ S. Hence ∼ is reflexive. Also, ∼ is clearly symmetric.

Suppose (s, a) ∼ (t, b) ∼ (u, c). By Lemma A.2(a), we can find d, e, f ∈ R such

that ds = et = fu ∈ S. By Lemma A.2(b), da = eb = fc, so (s, a) ∼ (u, c). �
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Denote the equivalence class of (r, s) ∈ R × S by s\r and let Q be the set of

equivalence classes.

Definition A.4. We define the sum of the elements s\a and t\b of Q to be

s\a + t\b := z\(xa+ yb)

where x, y ∈ R are any elements given by Lemma A.2(a) such that xs = yt = z ∈ S.

Lemma A.5. Addition is well-defined.

Proof. Suppose a′, b′, x′, y′ ∈ R and s′, t′, z′ ∈ S are such that

s\a = s′\a′, t\b = t′\b′ and x′s′ = y′t′ = z′ ∈ S.

By the left Ore condition, we can find u, u′ ∈ R such that uz = u′z′ ∈ S. Hence

uxs = u′x′s′ ∈ S and uyt = u′y′t′ ∈ S.

By Lemma A.2(b), since s\a = s′\a′, we have uxa = u′x′a′ and similarly uyb =

u′y′b′. Hence

u(xa+ yb) = u′(x′a′ + y′b′) and uz = u′z′ ∈ S

and hence

z\(xa+ yb) = z′\(x′a′ + y′b′)

So addition is independent of the choices of a, b, s, t, x and y. �

Since any two fractions can be brought to a common left denominator by Lemma

A.2(a), it is easy to verify that addition is commutative and associative, that 1\0
is the zero element and that the additive inverse of s\a is s\(−a).

Definition A.6. The product of two elements s\a and t\b in Q is

(s\a) · (t\b) := (us)\(cb)

for any c ∈ R and u ∈ S such that ua = ct given by the left Ore condition.

Lemma A.7. Multiplication is well-defined.

Proof. First we show that this is independent of the choice of c ∈ R and u ∈ S.

Suppose that c′ ∈ R and u′ ∈ S are such that u′a = c′t. By the left Ore condition,

there exist x, x′ ∈ R with xu = x′u′ ∈ S. Hence xct = xua = x′u′a = x′c′t

so xc = x′c′ as t ∈ S is regular. Hence xcb = x′c′b and xus = x′u′s ∈ S, so

us\cb = u′s\c′b.
Now, suppose that s\a = s′\a′ and t\b = t′\b′; we will find u, u′ ∈ S and c, c′ ∈ R

such that us\cb = u′s′\c′b′. First, we bring t\b and t′\b′ to a common denominator:

there exist w,w′ ∈ R such that wt = w′t′ ∈ S, whence wb = w′b′ by Lemma A.2(b).

By the left Ore condtion, there exist u, u′ ∈ S and d, d′ ∈ R such that ua = dwt

and u′a′ = d′w′t′. Then

(s\a)(t\b) = (s\a)(wt\wb) = us\dwb and similarly (s′\a′)(t′\b′) = u′s′\d′w′b′.
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By Lemma A.2(a) there exist x, x′ ∈ R such that xus = x′u′s′ ∈ S. Since s\a =

s′\a′, we obtain from Lemma A.2(b) that xua = x′u′a′. Hence

xdwt = xua = x′u′a′ = x′d′w′t′,

but wt = w′t′ ∈ S is regular so xd = x′d′. Finally, as wb = w′b′,

xdwb = x′d′w′b′ and xus = x′u′s′ ∈ S, so us\dwb = u′s′\d′w′b′.

Set c := dw and c′ := d′w′; then us\cb = u′s′\c′b′. �

Lemma A.8. Multiplication in Q is associative.

Proof. Let s\a, t\b, u\c ∈ Q. Choose d ∈ R and v ∈ S such that vb = ds using

the left Ore condition; then (t\b)(s\a) = vt\da. Now choose e ∈ R and w ∈ S such

that wc = evt. Now

(u\c)((t\b)(s\a)) = (u\c)(vt\da) = wu\eda, and

((u\c)(t\b))(s\a) = (wu\evb)(s\a) = wu\eda
because t\b = (vt)\(vb) and evb = eds. �

Theorem A.9. Q is a ring.

Proof. It is easy to check that 1\1 is the identity element in Q, so by Lemmas A.5,

A.7 and A.8, it remains to check that the distributive laws hold in Q. Note first

that it follows from Definition A.6 that

(s\a).(1\b) = s\ab and (s\1).(t\b) = ts\b for any s, t ∈ S and a, b ∈ R.

Given α = s\a and β = t\b ∈ Q, choose x, y ∈ R so that xs = yt = z ∈ S. Let

c ∈ R; then

(s\a+ t\b)(1\c) = (z\(xa+ yb))(1\c) = z\(xac+ ybc) = s\ac+ t\bc.

We have shown that for any c ∈ R and α, β ∈ Q we have

(α+ β)(1\c) = α(1\c) + β(1\c).

Now if u ∈ S, we can apply this to obtain

(α(u\1) + β(u\1))(1\u) = α+ β

and right multiplying this equation by u\1 gives

(α+ β)(u\1) = α(u\1) + β(u\1).

Hence we obtain the right distributive law

(α+ β)(u\c) = (α+ β)(u\1)(1\c) = (α(u\1) + β(u\1))(1\c) = α(u\c) + β(u\c).

The left distributive law

(s\a)(β + γ) = (s\a)(β + γ)

is obtained in a similar manner, by writing s\a as the product (s\1)(1\a) first. �
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Appendix B. Proof of Gabber’s Local Theorem

The proof of Theorem 5.12 is an elaboration on the proof of Theorem 5.13: the

assumption that J admits a central subfield complement in A can in fact fail in

many examples, but Gabber gets around this in a very clever way.

Throughout this Appendix, we assume that:

• A is a left Artinian ring with unique maximal ideal J ,

• τ ∈ A is a central element,

• τ2 = 0 and A := A/τA is commutative.

• M is a finitely generated non-zero A-module.

Write J := J /τA and M := M/τM. Choose a coefficient field K ⊂ A using

Theorem 5.15: K+J = A. Since J is nilpotent, J t+1M = 0 and J tM 6= 0 for some

t ≥ 0. Consider the following chain of K-subspaces of M :

0 < J tM < J t−1M < · · · < JM < M.

Because M and J are finitely generated, each JnM/Jn+1M is finite dimensional

over K, so we can find a K-basis {e1, . . . , es} for M such that the action of every

element x ∈ A on M has upper triangular matrix with respect to this basis:

xej =

s∑

i=1

χ(x)ijei for all j = 1, . . . , s.

In this way we obtain a K-algebra homomorphism χ : A → Ms(K) such χ(x) is

strictly upper triangular whenever x ∈ J : χ(J) ⊆ n+s (K).

Let K be the inverse image of K in A, so that K contains τA as an ideal and

K/τA = K. Choose ǫ1, . . . , ǫs ∈ M such that ei = ǫi := ǫi + τM for each i; then∑s
i=1 Kǫi + τM = M and hence

M =

s∑

i=1

Kǫi + τ

(
s∑

i=1

Kǫi + τM
)

=

s∑

i=1

Kǫi.

Lemma B.1.

(a) For all x ∈ J , there exist χ̃(x) ∈ n+s (K) and F(x) ∈Ms(K) such that if

Φ(x) := χ̃(x) + τF(x) ∈Ms(K)

then

xǫj =

s∑

i=1

Φ(x)ijǫi for all j.

(b) For all x, y ∈ J there exists Γ(x, y) ∈ n+s (K) such that

xyǫj =

s∑

i=1

(Φ(x)Φ(y) + τΓ(x, y))ijǫi for all j.
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(c) For all W ∈ n+s (A) there exists W ′ ∈ n+s (K) such that

s∑

i=1

Wijei =
s∑

i=1

W ′
ijei for all j.

Proof. (a) Since xej ∈
∑

i<j Kei, we can find χ̃(x)ij ∈ K such that

xǫj −
∑

i<j

χ̃(x)ijǫi ∈ τM =

s∑

i=1

τKǫi.

So there is a matrix F(x) ∈Ms(K) such that

xǫj =
∑

i<j

χ̃(x)ijǫi + τ

s∑

i=1

F(x)ijǫi.

Now set χ̃(x)ij := 0 whenever i 6 j. Note that χ(x) = χ̃(x).

(b) By (a), we have xyǫj =
∑s

i=1 xΦ(y)ijǫi =
∑s

i=1([x,Φ(y)ij ]+Φ(y)ijx)ǫi. Now

s∑

i=1

Φ(y)ijxǫi =

s∑

i=1

Φ(y)ij

s∑

k=1

Φ(x)kiǫk =

=
s∑

k=1

(
s∑

i=1

Φ(y)ijΦ(x)ki

)
ǫk =

=

s∑

i=1

(
s∑

k=1

Φ(y)kjΦ(x)ik

)
ǫi.

Therefore

xyǫj =
s∑

i=1

(Φ(x)Φ(y) + E(x, y))ijǫi for all j

where

E(x, y)ij := [x,Φ(y)ij ] +

s∑

k=1

[Φ(y)kj ,Φ(x)ik] ∈ K.

Since Φ(x) = χ̃(x) + τF(x) and [τA,A] ⊆ τ [A,A] ⊆ τ2A = 0, we have

E(x, y)ij = [x, χ̃(y)ij ] +

s∑

k=1

[χ̃(y)kj , χ̃(x)ik].

Since χ̃(x), χ̃(y) ∈ n+s (K), χ̃(y)kj 6= 0 and χ̃(x)ik 6= 0 imply that k < j and i < k.

But then i < j, so E(x, y)ij = 0 whenever i ≥ j. Being a sum of commutators in

A, E(x, y)ij is also an element of τA.

Hence E(x, y) ∈ n+s (K)∩Ms(τA) = τn+s (A). Choose W (x, y) ∈ n+s (A) such that

E(x, y) = τW (x, y); then by part (c) below there is some Γ(x, y) ∈ n+s (K) such that

s∑

i=1

W (x, y)ijǫi −
s∑

i=1

Γ(x, y)ijǫi ∈ τM.

Hence
∑s

i=1 E(x, y)ijǫi = τ
∑s

i=1 Γ(x, y)ijǫi and therefore xyǫj =
∑s

i=1(Φ(x)Φ(y)+

τΓ(x, y))ij for all j.



43

(c) Since A = K + J , we may assume that W ∈ n+s (J). Now for any i, j, b,

Wijeb =
s∑

a=1

χ(Wij)abea

and χ(Wij)ab = 0 whenever i ≥ j or a ≥ b. Hence

s∑

i=1

Wijei =

s∑

i=1

s∑

a=1

χ(Wij)aiea =

s∑

a=1

(
s∑

i=1

χ(Wij)ai

)
ea =

s∑

i=1

(
s∑

a=1

χ(Waj)ia

)
ei.

Set W ′
ij :=

∑s
a=1 χ(Waj)ia ∈ K. Now if χ(Waj)ia 6= 0 then i < a and a < j. Hence

χ(Waj)ia = 0 whenever i ≥ j, so W ′ ∈ n+s (K). �

Proposition B.2. For all x, y ∈ J , there exists G(x, y) ∈ n+s (K) such that

[x, y]ǫj = τ

s∑

i=1

([χ̃(x),F(y)]− [χ̃(y),F(x)] + G(x, y))ij ǫi

for all j.

Proof. By parts (a) and (b) of Lemma B.1 we have

(xy − yx)ǫj =

s∑

i=1

([Φ(x),Φ(y)] + τΓ(x, y)− τΓ(y, x))ij ǫi for all j

where Φ(x) = χ̃(x) + τF(x) and Γ(x, y),Γ(y, x) ∈ n+s (K). Because τ2 = 0, we have

[Φ(x),Φ(y)] = [χ̃(x) + τF(x), χ̃(y) + τF(y)] =

= [χ̃(x), χ̃(y)] + τ [χ̃(x),F(y)]− τ [χ̃(y),F(x)].

Now [χ̃(x), χ̃(y)] ∈ n+s (K) since both χ̃(x) and χ̃(y) lie in n+s (K). On the other

hand, the images of these matrices under Ms(K) ։ Ms(K) equal χ(x) and χ(y),

which commute because χ : A → Ms(K) is a ring homomorphism and A is com-

mutative. This implies that [χ̃(x), χ̃(y)] ∈ ker(Ms(K) →Ms(K)) =Ms(τA). Thus

[χ̃(x), χ̃(y)] ∈ n+s (K) ∩Ms(τA) = τn+s (A). So there is W (x, y) ∈ n+s (A) such that

[χ̃(x), χ̃(y)] = τW (x, y).

By Lemma B.1(c), we can further find some W ′(x, y) ∈ n+s (K) such that

s∑

i=1

W (x, y)ijǫi −
s∑

i=1

W ′(x, y)ijǫi ∈ τM.

Therefore

[x, y]ǫj = τ

s∑

i=1

([χ̃(x),F(y)]− [χ̃(y),F(x)] +W ′(x, y) + Γ(x, y)− Γ(y, x))ij ǫi

for all j, and we may take G(x, y) := Γ(x, y)− Γ(y, x) +W ′(x, y) ∈ n+s (K). �

Finally, we can prove Theorem 5.12.
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Theorem B.3. Let A be a left Artinian Q-algebra with unique maximal ideal J
and a central element τ ∈ J such that τ2 = 0 and A/τA is commutative. Suppose

that M is a finitely generated non-zero A-module such that

{m ∈ M : τm = 0} = τM.

Then [J ,J ] ⊆ τJ .

Proof. Let x, y ∈ J and write [x, y] = τz for some z ∈ A. Write z = λ + u with

λ ∈ K and u ∈ J ; we have to show that λ = 0. Now by Proposition B.2, we have

τzǫj = τ

s∑

i=1

Zijǫi for all j

where Z := [χ̃(x),F(y)]− [χ̃(y),F(x)]+G(x, y). By the assumption on our module

M, we can deduce that

zej =

s∑

i=1

Zijei.

Note that χ(x) = χ̃(x) for all x ∈ J , and write F (x) := F(x), G(x, y) := G(x, y).
Because {e1, . . . , es} is a K-basis for M and χ(1) is the identity matrix,

λIs + χ(u) = [χ(x), F (y)]− [χ(y), F (x)] +G(x, y)

inside Ms(K). Now χ(u) and G(x, y) are strictly upper triangular, so they have

trace zero. The trace of every commutator is also zero. Therefore

sλ = tr([χ(x), F (y)]− [χ(y), F (x)] +G(x, y)− χ(u)) = 0.

Because A is a Q-algebra, we can cancel the positive integer s and obtain λ = 0. �
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