C2.3 Representations of semisimple Lie algebras

Mathematical Institute, University of Oxford

Problem Sheet 4

- **1.** Let \mathfrak{g} be a complex semisimple Lie algebra.
 - (i) Let L be a finite dimensional \mathfrak{g} -module. Show that L is simple if and only if the dual module L^* is simple.
 - (ii) Let $L(\lambda)$, $\lambda \in P^+$ be a simple \mathfrak{g} -module with highest weight λ . Show that the dual $L(\lambda)^*$ is isomorphic to $L(-w_0(\lambda))$, where w_0 is the Weyl group element sending Φ^+ (the positive roots) to $-\Phi^+$.
- (iii) What condition should λ satisfy such that 0 is a weight of $L(\lambda)$?

Solution: (i) If L is a finite dimensional module, then $L^* = \{f : L \to \mathbb{C}\}$ as a vector space. The action on L^* is given by

$$(x \cdot f)(l) = -f(x \cdot l), \ x \in \mathfrak{g}, \ l \in L, \ f \in L^*.$$

Define $A^{\perp} \subset L^*$ by $A^{\perp} = \{f \in L^* \mid f(a) = 0, \text{ for all } a \in A\}$, for every submodule $A \subset L$. Then A^{\perp} is a submodule of L^* , and if A is proper, then so is A^* . Hence if L is not simple, then L^* is not simple.

Conversely, if $B \subset L^*$ is a submodule, define $B^{\perp} \subset L$ by $B^{\perp} = \{l \in L \mid f(l) = 0, \text{ for all } f \in B\}$ etc.

(ii) By (i), $L(\lambda)^*$ is a simple finite dimensional \mathfrak{g} -module. It is easy to see that the weights of $L(\lambda)^*$ are precisely the negatives of the weights of $L(\lambda)$. To see this, pick a basis of weight vectors in $L(\lambda)$ and take the dual basis in $L(\lambda)^*$; these are weight vectors of $L(\lambda)^*$. Moreover, we know that

$$\dim L(\lambda)_{\mu} = \dim L(\lambda)_{w(\mu)}$$
, for all $w \in W$, μ a weight.

This means that dim $L(\lambda)_{w(\lambda)} = 1$ for all $w \in W$. In particular, dim $L(\lambda)_{w_0(\lambda)} = 1$ and hence dim $L(\lambda)^*_{-w_0(\lambda)} = 1$.

Notice that $-w_0(\lambda) \in P^+$ iff $\lambda \in P^+$. This is because $-w_0(\alpha) > 0$ for all $\alpha > 0$. Moreover, $-w_0(\lambda)$ is a maximal weight, otherwise there exists μ a weight of $L(\lambda)$ (so $-\mu$ is a weight of $L(\lambda)^*$) such that $-\mu - (-w_0(\lambda)) \in Q^+$. Apply $-w_0$ remembering that $-w_0(Q^+) = Q^+$ and it follows that $w_0(\mu) - \lambda \in Q^+$. But $w_0(\lambda)$ is also a weight of $L(\lambda)$, and this is a contradiction with the maximality of λ .

(iii) We know that if μ is a weight of $L(\lambda)$ then $\lambda - \mu \in Q^+$. This implies that a necessary condition for 0 to be a weight is that $\lambda \in Q^+$. In fact, this is also a sufficient condition, as we prove now.

To simplify the discussion, we call a subset S of P saturated (term due to Humphreys) if for every $\lambda \in S$ and every root $\alpha \in \Phi$ and every integer k between 0 and $\langle \lambda, \alpha \rangle$, the weight $\lambda - k\alpha$ is also in S. We claim that the set of weights $\Psi(L(\lambda))$ is saturated. To see this, fix a root α and regard $L(\lambda)$ as an sl_{α} module. By complete reducibility, this is a direct sum of simple finite dimensional sl_{α} modules and we know from the explicit description of these modules that the condition in the definition of saturated is satisfied.

Now, we prove that the fact that $\Psi(L(\lambda))$ is saturated implies that if $\mu \in P^+$ is such that $\mu < \lambda$, then μ is in $\Psi(L(\lambda))$. In particular, this works for $\mu = 0$ when $\lambda \in Q^+$.

Suppose μ' is a weight of $\Psi(L(\lambda))$ such that $\mu' > \mu$. ($\mu' = \lambda$ has this property and this is the starting point.) Then $\mu' = \mu + \sum_{\alpha \in \Pi} k_{\alpha} \alpha$, $k_{\alpha} \ge 0$. Suppose $\mu' \neq \mu$, then there exists some $k_{\alpha} > 0$. We want to find $\beta \in \Pi$ with $k_{\beta} > 0$ such that $\langle \mu', \beta \rangle > 0$. We have $\langle \sum k_{\alpha} \alpha, \sum k_{\alpha} \alpha \rangle > 0$ (since \langle , \rangle is positive definite), and therefore there must exist $\beta \in \Pi$ with $k_{\beta} > 0$ such that $\langle \Sigma k_{\alpha} \alpha, \beta \rangle > 0$. But then

$$\langle \mu', \beta \rangle = \langle \mu, \beta \rangle + \langle \sum k_{\alpha} \alpha, \beta \rangle > 0,$$

since $\langle \mu, \beta \rangle \ge 0$ as $\mu \in P^+$.

By the saturated property, $\mu' - \beta$ is also in $\Psi(L(\lambda))$ and moreover $\mu' - \beta \ge \mu$. In this way, we can reduce inductively the k_{α} 's, until we find that $\mu \in \Psi(L(\lambda))$.

Notice that this also proves that a necessary and sufficient condition for $\lambda \in P$ to be a weight of $L(\lambda)$ is that $w(\mu) < \lambda$ for all $w \in W$.

2. Use the Weyl dimensional formula to show that for every natural number k, there exists a simple \mathfrak{g} -module of dimension k^r , where r is the number of positive roots of \mathfrak{g} .

Solution: Weyl's dimension formula says that

$$\dim L(\lambda) = \prod_{\alpha \in \Phi^+} \frac{\langle \lambda + \rho, \alpha \rangle}{\langle \rho, \alpha \rangle}.$$

Take $\lambda = (k-1)\rho \in P^+$. Then $\langle \lambda + \rho, \alpha \rangle = k \langle \rho, \alpha \rangle$, so dim $L((k-1)\rho) = k^{|\Phi^+|}$.

3. Let $\omega_1, \ldots, \omega_n$ be the fundamental weights of the complex semisimple Lie algebra \mathfrak{g} . Show that every finite dimensional simple \mathfrak{g} -representation occurs as a direct summand in a suitable tensor product (repetitions allowed) of the simple modules $L(\omega_1), \ldots, L(\omega_n)$. (We call these simple modules, the fundamental representations of \mathfrak{g} .)

Solution: The fundamental weights are a $\mathbb{Z}_{\geq 0}$ -basis of P^+ , i.e., every $\lambda \in P^+$ can be written uniquely as $\lambda = a_1\omega_1 + \cdots + a_n\omega_n$ for $a_i \in \mathbb{Z}_{\geq 0}$. It is easy to see that the weight vectors of a tensor product $V \otimes U$ are $v \otimes u$ where v, u are weight vectors of V and U, respectively. Moreover, the weights of $V \otimes U$ are $\lambda + \mu$, λ a weight of V, μ a weight of U. Hence if λ , μ are highest weights of V, U, respectively, then $\lambda + \mu$ is a highest weight of $V \otimes U$. From complete reducibility, we have then that $L(\lambda + \mu)$ is a direct summand of $L(\lambda) \otimes L(\mu)$. By induction, it follows that $L(\lambda)$ is a direct summand of

$$L(\omega_1)^{\otimes a_1} \otimes \cdots \otimes L(\omega_n)^{\otimes a_n}$$
.

In fact, one can do better, by replacing $L(\omega_i)^{\otimes a_i}$ with $S^{a_i}(L(\omega_i))$, where S^a is the *a*-symmetric power. \Box

4. Let $\mathfrak{g} = sl(n, \mathbb{C})$.

- (i) Use Weyl's dimension formula to show that $L(\omega_i) = \bigwedge^i V$, $1 \le i \le n-1$, where $V = \mathbb{C}^n$ is the standard representation.
- (ii) Identify the adjoint representation in terms of the highest weight classification. (Why is the adjoint representation irreducible?)

Solution: (i) We think of $\mathfrak{h} = \{h \in \mathbb{C}^n \mid \text{tr} h = 0\}$ and $\mathfrak{h}^* = \mathbb{C}^n / \langle \epsilon_1 + \cdots + \epsilon_n \rangle$. Then $\omega_i = \epsilon_1 + \cdots + \epsilon_i$, $1 \leq i \leq n-1$. From a previous problem sheet, or by a direct computation, $e_1 \wedge \cdots \wedge e_i$ is a highest weight vector with weight ω_i of $\bigwedge^i V$. This means that $L(\omega_i)$ is a summand of $\bigwedge^i V$. We compute dimensions to show they are equal (there are many other ways to show equality). On the one hand, $\dim \bigwedge^i V = \binom{n}{i}$. We use Weyl's dimension formula to compute $L(\omega_i)$. We have $\rho = (n, n-1, \ldots, 1)$, $\alpha_{ij} = \epsilon_i - \epsilon_j$, i < j, so $\langle \rho, \alpha_{ij} \rangle = j - i$, etc.

(ii) The adjoint representation if irreducible if and only if \mathfrak{g} is simple, which is the case for sl(n). The decomposition of \mathfrak{g} into \mathfrak{h} -weight spaces is the Cartan decomposition, so the highest weight of \mathfrak{g} is the highest root of \mathfrak{g} with respect to >. For $\mathfrak{g} = sl(n)$, this is $\lambda = \epsilon_1 - \epsilon_n$. In terms of the fundamental weights

$$\epsilon_1 - \epsilon_n = \omega_1 + \omega_{n-1} \text{ in } \mathfrak{h}^*.$$

- (i) $L(\omega_1)^* \cong L(\omega_2)$.
- (ii) Konstant's multiplicity formula, and
- (iii) Weyl's character formula for these two representations.

Solution: For $\mathfrak{g} = sl(3)$, $L(\omega_1) = V$, $L(\omega_2) = \bigwedge^2 V$, where $V = \mathbb{C}^3$. (i) One can use linear algebra, e.g., $(\bigwedge^{n-i} V)^* \cong \bigwedge^i V$ if dim V = n, or the highest weight classification, i.e.:

$$\omega_1 = \epsilon_1, \quad \omega_2 = \epsilon_1 + \epsilon_2 = -\epsilon_3 \text{ in } \mathfrak{h}^*,$$

and $w_0 = (13)$ for S_3 , so $-w_0(\epsilon_1) = -\epsilon_3$; then use Problem 1(ii). In any case, $L(\omega_1)^* \cong L(\omega_2)$.

(ii) The weights of $L(\omega_1)$ are $\epsilon_1, \epsilon_2, \epsilon_3$, with multiplicity 1. The weights of $L(\omega_2)$ are $\epsilon_1 + \epsilon_2 =$ $-\epsilon_3, \epsilon_1 + \epsilon_3 = -\epsilon_2, \epsilon_2 + \epsilon_3 = -\epsilon_1$, with multiplicity 1.

w	det	$w \cdot \lambda$	$w \cdot \lambda - \mu, \mu = \epsilon_1$	K	$w \cdot \lambda - \mu, \mu = \epsilon_2$	K	$w \cdot \lambda - \mu, \mu = \epsilon_3$	K
()	1	(1, 0, 0)	(0, 0, 0)	1	(1, -1, 0)	1	(1, 0, -1)	2
(12)	-1	(-1,2,0)	(-2, 2, 0)	0	(-1, 1, 0)	0	(-1, 2, -1)	0
(23)	-1	(1, -1, 1)	(0, -1, 1)	0	(1, -2, 1)	0	(1, -1, 0)	1
(13)	-1	(-2, 0, 3)	(-3, 0, 3)	0	(-2, -1, 3)	0	(-2, 0, 2)	0
(123)	1	(-2, 2, 1)	(-3, 2, 1)	0	(-2, 1, 1)	0	(-2, 2, 0)	0
(132)	1	(-1, -1, 3)	(-2, -1, 3)	0	(-1, -2, 3)	0	(-1, -1, 2)	0

To verify Kostant's multiplicity formula for $L(\omega_1)$, write out the table:

Then applying the formula we get that the multiplicities are 1, 1 and 2-1=1, respectively. The case $L(\omega_2)$ is similar, in fact, it is just the table before to which we apply $-w_0$.

(iii) If we write the coordinates of \mathfrak{h} as (x_1, x_2, x_3) with $x_1 + x_2 + x_3 = 0$, then

$$ch_{L(\omega_1)}(x_1, x_2, x_3) = p(x_1, x_2, x_3)/q(x_1, x_2, x_3), \text{ where}$$

$$p(x_1, x_2, x_3) = e^{4x_1 + 2x_2 + x_3} - e^{2x_1 + 4x_2 + x_3} - e^{4x_1 + x_2 + 2x_3} - e^{x_1 + 2x_2 + 4x_3} + e^{x_1 + 4x_2 + 2x_3} + e^{2x_1 + x_2 + 4x_3},$$

$$q(x_1, x_2, x_3) = e^{3x_1 + 2x_2 + x_3} - e^{2x_1 + 3x_2 + x_3} - e^{3x_1 + x_2 + 2x_3} - e^{x_1 + 2x_2 + 3x_3} + e^{x_1 + 3x_2 + 2x_3} + e^{2x_1 + x_2 + 3x_3},$$

and indeed, this equals $e^{x_1} + e^{x_2} + e^{x_3}$. Similarly for $L(\omega_2)$.

6. Let $\mathfrak{g} = sp(2n, \mathbb{C})$ realized as the space of matrices $X \in gl(2n, \mathbb{C})$ such that $X^t J + JX = 0$, where X^t is the transpose matrix, and $J = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$; here I_n is the $n \times n$ identity matrix.

- (i) Show that every $X \in \mathfrak{g}$ is of the form $X = \begin{pmatrix} A & B \\ C & -A^t \end{pmatrix}$, where B and C are symmetric $n \times n$ matrices and A is an arbitrary $n \times n$ matrix.
- (ii) Let \mathfrak{h} be the subalgebra consisting of diagonal matrices. Determine the set of roots of \mathfrak{h} in \mathfrak{g} and the Cartan decomposition.
- (iii) Choose the system of positive roots such that the corresponding root vectors lie in matrices of the form $\begin{pmatrix} A' & B \\ 0 & -A'^t \end{pmatrix}$, where A' is an upper triangular matrix and B is a symmetric matrix as before.
- (iv) Determine the fundamental weights.
- (v) Let $V = \mathbb{C}^{2n}$ be the standard representation of \mathfrak{g} (which acts by matrix multiplication on column vectors). Show that V is an irreducible \mathfrak{g} -representation and it is in fact a fundamental representation.
- (vi) Show that $\bigwedge^2 V$ decomposes as $W \bigoplus \mathbb{C}$, where \mathbb{C} is the trivial representation and W is an irreducible (fundamental) representation.
- (vii) For $sp(4, \mathbb{C})$, describe all the weights of the fundamental representations V and W and verify that the Weyl dimension formula holds.
- (viii) In $sp(2n, \mathbb{C})$, show that the k-th fundamental representation is contained in $\bigwedge^k V$ and in fact it is precisely the kernel of the *contraction* map $\phi_k : \bigwedge^k V \to \bigwedge^{k-2} V$ defined by

$$\phi_k(v_1 \wedge \dots \wedge v_k) = \sum_{i < j} Q(v_i, v_j) (-1)^{i+j-1} v_1 \wedge \dots \wedge \hat{v}_i \wedge \dots \wedge \hat{v}_j \wedge \dots \wedge v_k,$$

where Q is the skew-symmetric form defining $\mathfrak{g},$ i.e., $Q(v,u)=v^tJu.$

[For this exercise, you may consult Section 16 in Fulton-Harris "Representation Theory", especially for the structural results on roots, Cartan decomposition etc.]