C2.3 Representations of semisimple Lie algebras

Mathematical Institute, University of Oxford

Problem Sheet 4

1. Let \mathfrak{g} be a complex semisimple Lie algebra.
(i) Let L be a finite dimensional \mathfrak{g}-module. Show that L is simple if and only if the dual module L^{*} is simple.
(ii) Let $L(\lambda), \lambda \in P^{+}$be a simple \mathfrak{g}-module with highest weight λ. Show that the dual $L(\lambda)^{*}$ is isomorphic to $L\left(-w_{0}(\lambda)\right.$), where w_{0} is the Weyl group element sending Φ^{+}(the positive roots) to $-\Phi^{+}$.
(iii) What condition should λ satisfy such that 0 is a weight of $L(\lambda)$?

Solution: (i) If L is a finite dimensional module, then $L^{*}=\{f: L \rightarrow \mathbb{C}\}$ as a vector space. The action on L^{*} is given by

$$
(x \cdot f)(l)=-f(x \cdot l), x \in \mathfrak{g}, l \in L, f \in L^{*}
$$

Define $A^{\perp} \subset L^{*}$ by $A^{\perp}=\left\{f \in L^{*} \mid f(a)=0\right.$, for all $\left.a \in A\right\}$, for every submodule $A \subset L$. Then A^{\perp} is a submodule of L^{*}, and if A is proper, then so is A^{*}. Hence if L is not simple, then L^{*} is not simple.

Conversely, if $B \subset L^{*}$ is a submodule, define $B^{\perp} \subset L$ by $B^{\perp}=\{l \in L \mid f(l)=0$, for all $f \in B\}$ etc.
(ii) By (i), $L(\lambda)^{*}$ is a simple finite dimensional \mathfrak{g}-module. It is easy to see that the weights of $L(\lambda)^{*}$ are precisely the negatives of the weights of $L(\lambda)$. To see this, pick a basis of weight vectors in $L(\lambda)$ and take the dual basis in $L(\lambda)^{*}$; these are weight vectors of $L(\lambda)^{*}$. Moreover, we know that

$$
\operatorname{dim} L(\lambda)_{\mu}=\operatorname{dim} L(\lambda)_{w(\mu)}, \text { for all } w \in W, \mu \text { a weight. }
$$

This means that $\operatorname{dim} L(\lambda)_{w(\lambda)}=1$ for all $w \in W$. In particular, $\operatorname{dim} L(\lambda)_{w_{0}(\lambda)}=1$ and hence $\operatorname{dim} L(\lambda)_{-w_{0}(\lambda)}^{*}=1$.

Notice that $-w_{0}(\lambda) \in P^{+}$iff $\lambda \in P^{+}$. This is because $-w_{0}(\alpha)>0$ for all $\alpha>0$. Moreover, $-w_{0}(\lambda)$ is a maximal weight, otherwise there exists μ a weight of $L(\lambda)$ (so $-\mu$ is a weight of $L(\lambda)^{*}$) such that $-\mu-\left(-w_{0}(\lambda)\right) \in Q^{+}$. Apply $-w_{0}$ remembering that $-w_{0}\left(Q^{+}\right)=Q^{+}$and it follows that $w_{0}(\mu)-\lambda \in Q^{+}$. But $w_{0}(\lambda)$ is also a weight of $L(\lambda)$, and this is a contradiction with the maximality of λ.
(iii) We know that if μ is a weight of $L(\lambda)$ then $\lambda-\mu \in Q^{+}$. This implies that a necessary condition for 0 to be a weight is that $\lambda \in Q^{+}$. In fact, this is also a sufficient condition, as we prove now.

To simplify the discussion, we call a subset S of P saturated (term due to Humphreys) if for every $\lambda \in S$ and every root $\alpha \in \Phi$ and every integer k between 0 and $\langle\lambda, \alpha\rangle$, the weight $\lambda-k \alpha$ is also in S. We claim that the set of weights $\Psi(L(\lambda))$ is saturated. To see this, fix a root α and regard $L(\lambda)$ as an $s l_{\alpha}$ module. By complete reducibility, this is a direct sum of simple finite dimensional $s l_{\alpha}$ modules and we know from the explicit description of these modules that the condition in the definition of saturated is satisfied.

Now, we prove that the fact that $\Psi(L(\lambda))$ is saturated implies that if $\mu \in P^{+}$is such that $\mu<\lambda$, then μ is in $\Psi(L(\lambda))$. In particular, this works for $\mu=0$ when $\lambda \in Q^{+}$.

Suppose μ^{\prime} is a weight of $\Psi(L(\lambda))$ such that $\mu^{\prime}>\mu .\left(\mu^{\prime}=\lambda\right.$ has this property and this is the starting point.) Then $\mu^{\prime}=\mu+\sum_{\alpha \in \Pi} k_{\alpha} \alpha, k_{\alpha} \geq 0$. Suppose $\mu^{\prime} \neq \mu$, then there exists some $k_{\alpha}>0$. We want to find $\beta \in \Pi$ with $k_{\beta}>0$ such that $\left\langle\mu^{\prime}, \beta\right\rangle>0$. We have $\left\langle\sum k_{\alpha} \alpha, \sum k_{\alpha} \alpha\right\rangle>0$ (since \langle,$\rangle is positive$ definite), and therefore there must exist $\beta \in \Pi$ with $k_{\beta}>0$ such that $\left\langle\sum k_{\alpha} \alpha, \beta\right\rangle>0$. But then

$$
\left\langle\mu^{\prime}, \beta\right\rangle=\langle\mu, \beta\rangle+\left\langle\sum k_{\alpha} \alpha, \beta\right\rangle>0,
$$

since $\langle\mu, \beta\rangle \geq 0$ as $\mu \in P^{+}$.
By the saturated property, $\mu^{\prime}-\beta$ is also in $\Psi(L(\lambda))$ and moreover $\mu^{\prime}-\beta \geq \mu$. In this way, we can reduce inductively the k_{α} 's, until we find that $\mu \in \Psi(L(\lambda))$.

Notice that this also proves that a necessary and sufficient condition for $\lambda \in P$ to be a weight of $L(\lambda)$ is that $w(\mu)<\lambda$ for all $w \in W$.
2. Use the Weyl dimensional formula to show that for every natural number k, there exists a simple \mathfrak{g}-module of dimension k^{r}, where r is the number of positive roots of \mathfrak{g}.

Solution: Weyl's dimension formula says that

$$
\operatorname{dim} L(\lambda)=\prod_{\alpha \in \Phi^{+}} \frac{\langle\lambda+\rho, \alpha\rangle}{\langle\rho, \alpha\rangle}
$$

Take $\lambda=(k-1) \rho \in P^{+}$. Then $\langle\lambda+\rho, \alpha\rangle=k\langle\rho, \alpha\rangle$, so $\operatorname{dim} L((k-1) \rho)=k^{\left|\Phi^{+}\right|}$.
3. Let $\omega_{1}, \ldots, \omega_{n}$ be the fundamental weights of the complex semisimple Lie algebra \mathfrak{g}. Show that every finite dimensional simple \mathfrak{g}-representation occurs as a direct summand in a suitable tensor product (repetitions allowed) of the simple modules $L\left(\omega_{1}\right), \ldots, L\left(\omega_{n}\right)$. (We call these simple modules, the fundamental representations of \mathfrak{g}.)

Solution: The fundamental weights are a $\mathbb{Z}_{\geq 0}$-basis of P^{+}, i.e., every $\lambda \in P^{+}$can be written uniquely as $\lambda=a_{1} \omega_{1}+\cdots+a_{n} \omega_{n}$ for $a_{i} \in \mathbb{Z}_{>0}$. It is easy to see that the weight vectors of a tensor product $V \otimes U$ are $v \otimes u$ where v, u are weight vectors of V and U, respectively. Moreover, the weights of $V \otimes U$ are $\lambda+\mu, \lambda$ a weight of V, μ a weight of U. Hence if λ, μ are highest weights of V, U, respectively, then $\lambda+\mu$ is a highest weight of $V \otimes U$. From complete reducibility, we have then that $L(\lambda+\mu)$ is a direct summand of $L(\lambda) \otimes L(\mu)$. By induction, it follows that $L(\lambda)$ is a direct summand of

$$
L\left(\omega_{1}\right)^{\otimes a_{1}} \otimes \cdots \otimes L\left(\omega_{n}\right)^{\otimes a_{n}}
$$

In fact, one can do better, by replacing $L\left(\omega_{i}\right)^{\otimes a_{i}}$ with $S^{a_{i}}\left(L\left(\omega_{i}\right)\right)$, where S^{a} is the a-symmetric power.
4. Let $\mathfrak{g}=\operatorname{sl}(n, \mathbb{C})$.
(i) Use Weyl's dimension formula to show that $L\left(\omega_{i}\right)=\bigwedge^{i} V, 1 \leq i \leq n-1$, where $V=\mathbb{C}^{n}$ is the standard representation.
(ii) Identify the adjoint representation in terms of the highest weight classification. (Why is the adjoint representation irreducible?)

Solution: (i) We think of $\mathfrak{h}=\left\{h \in \mathbb{C}^{n} \mid \operatorname{tr} h=0\right\}$ and $\mathfrak{h}^{*}=\mathbb{C}^{n} /\left\langle\epsilon_{1}+\cdots+\epsilon_{n}\right\rangle$. Then $\omega_{i}=\epsilon_{1}+\cdots+\epsilon_{i}$, $1 \leq i \leq n-1$. From a previous problem sheet, or by a direct computation, $e_{1} \wedge \cdots \wedge e_{i}$ is a highest weight vector with weight ω_{i} of $\bigwedge^{i} V$. This means that $L\left(\omega_{i}\right)$ is a summand of $\bigwedge^{i} V$. We compute dimensions to show they are equal (there are many other ways to show equality). On the one hand, $\operatorname{dim} \bigwedge^{i} V=\binom{n}{i}$. We use Weyl's dimension formula to compute $L\left(\omega_{i}\right)$. We have $\rho=(n, n-1, \ldots, 1), \alpha_{i j}=\epsilon_{i}-\epsilon_{j}, i<j$, so $\left\langle\rho, \alpha_{i j}\right\rangle=j-i$, etc.
(ii) The adjoint representation if irreducible if and only if \mathfrak{g} is simple, which is the case for $\operatorname{sl}(n)$. The decomposition of \mathfrak{g} into \mathfrak{h}-weight spaces is the Cartan decomposition, so the highest weight of \mathfrak{g} is the highest root of \mathfrak{g} with respect to $>$. For $\mathfrak{g}=\operatorname{sl}(n)$, this is $\lambda=\epsilon_{1}-\epsilon_{n}$. In terms of the fundamental weights

$$
\epsilon_{1}-\epsilon_{n}=\omega_{1}+\omega_{n-1} \text { in } \mathfrak{h}^{*} .
$$

5. Let $\mathfrak{g}=\operatorname{sl}(3, \mathbb{C})$ and $L\left(\omega_{1}\right), L\left(\omega_{2}\right)$ the two fundamental representations. Verify:
(i) $L\left(\omega_{1}\right)^{*} \cong L\left(\omega_{2}\right)$.
(ii) Konstant's multiplicity formula, and
(iii) Weyl's character formula for these two representations.

Solution: For $\mathfrak{g}=\operatorname{sl}(3), L\left(\omega_{1}\right)=V, L\left(\omega_{2}\right)=\bigwedge^{2} V$, where $V=\mathbb{C}^{3}$.
(i) One can use linear algebra, e.g., $\left(\bigwedge^{n-i} V\right)^{*} \cong \bigwedge^{i} V$ if $\operatorname{dim} V=n$, or the highest weight classification, i.e.:

$$
\omega_{1}=\epsilon_{1}, \quad \omega_{2}=\epsilon_{1}+\epsilon_{2}=-\epsilon_{3} \text { in } \mathfrak{h}^{*},
$$

and $w_{0}=(13)$ for S_{3}, so $-w_{0}\left(\epsilon_{1}\right)=-\epsilon_{3}$; then use Problem 1 (ii). In any case, $L\left(\omega_{1}\right)^{*} \cong L\left(\omega_{2}\right)$.
(ii) The weights of $L\left(\omega_{1}\right)$ are $\epsilon_{1}, \epsilon_{2}, \epsilon_{3}$, with multiplicity 1 . The weights of $L\left(\omega_{2}\right)$ are $\epsilon_{1}+\epsilon_{2}=$ $-\epsilon_{3}, \epsilon_{1}+\epsilon_{3}=-\epsilon_{2}, \epsilon_{2}+\epsilon_{3}=-\epsilon_{1}$, with multiplicity 1 .

To verify Kostant's multiplicity formula for $L\left(\omega_{1}\right)$, write out the table:

w	det	$w \cdot \lambda$	$w \cdot \lambda-\mu, \mu=\epsilon_{1}$	K	$w \cdot \lambda-\mu, \mu=\epsilon_{2}$	K	$w \cdot \lambda-\mu, \mu=\epsilon_{3}$	K
()	1	$(1,0,0)$	$(0,0,0)$	1	$(1,-1,0)$	1	$(1,0,-1)$	2
(12)	-1	$(-1,2,0)$	$(-2,2,0)$	0	$(-1,1,0)$	0	$(-1,2,-1)$	0
(23)	-1	$(1,-1,1)$	$(0,-1,1)$	0	$(1,-2,1)$	0	$(1,-1,0)$	1
(13)	-1	$(-2,0,3)$	$(-3,0,3)$	0	$(-2,-1,3)$	0	$(-2,0,2)$	0
(123)	1	$(-2,2,1)$	$(-3,2,1)$	0	$(-2,1,1)$	0	$(-2,2,0)$	0
(132)	1	$(-1,-1,3)$	$(-2,-1,3)$	0	$(-1,-2,3)$	0	$(-1,-1,2)$	0

Then applying the formula we get that the multiplicities are 1,1 and $2-1=1$, respectively. The case $L\left(\omega_{2}\right)$ is similar, in fact, it is just the table before to which we apply $-w_{0}$.
(iii) If we write the coordinates of \mathfrak{h} as $\left(x_{1}, x_{2}, x_{3}\right)$ with $x_{1}+x_{2}+x_{3}=0$, then

$$
\begin{aligned}
c h_{L\left(\omega_{1}\right)}\left(x_{1}, x_{2}, x_{3}\right) & =p\left(x_{1}, x_{2}, x_{3}\right) / q\left(x_{1}, x_{2}, x_{3}\right), \text { where } \\
p\left(x_{1}, x_{2}, x_{3}\right) & =e^{4 x_{1}+2 x_{2}+x_{3}}-e^{2 x_{1}+4 x_{2}+x_{3}}-e^{4 x_{1}+x_{2}+2 x_{3}}-e^{x_{1}+2 x_{2}+4 x_{3}}+e^{x_{1}+4 x_{2}+2 x_{3}}+e^{2 x_{1}+x_{2}+4 x_{3}}, \\
q\left(x_{1}, x_{2}, x_{3}\right) & =e^{3 x_{1}+2 x_{2}+x_{3}}-e^{2 x_{1}+3 x_{2}+x_{3}}-e^{3 x_{1}+x_{2}+2 x_{3}}-e^{x_{1}+2 x_{2}+3 x_{3}}+e^{x_{1}+3 x_{2}+2 x_{3}}+e^{2 x_{1}+x_{2}+3 x_{3}},
\end{aligned}
$$

and indeed, this equals $e^{x_{1}}+e^{x_{2}}+e^{x_{3}}$.
Similarly for $L\left(\omega_{2}\right)$.
6. Let $\mathfrak{g}=\operatorname{sp}(2 n, \mathbb{C})$ realized as the space of matrices $X \in g l(2 n, \mathbb{C})$ such that $X^{t} J+J X=0$, where X^{t} is the transpose matrix, and $J=\left(\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right)$; here I_{n} is the $n \times n$ identity matrix.
(i) Show that every $X \in \mathfrak{g}$ is of the form $X=\left(\begin{array}{cc}A & B \\ C & -A^{t}\end{array}\right)$, where B and C are symmetric $n \times n$ matrices and A is an arbitrary $n \times n$ matrix.
(ii) Let \mathfrak{h} be the subalgebra consisting of diagonal matrices. Determine the set of roots of \mathfrak{h} in \mathfrak{g} and the Cartan decomposition.
(iii) Choose the system of positive roots such that the corresponding root vectors lie in matrices of the form $\left(\begin{array}{cc}A^{\prime} & B \\ 0 & -A^{\prime t}\end{array}\right)$, where A^{\prime} is an upper triangular matrix and B is a symmetric matrix as before.
(iv) Determine the fundamental weights.
(v) Let $V=\mathbb{C}^{2 n}$ be the standard representation of \mathfrak{g} (which acts by matrix multiplication on column vectors). Show that V is an irreducible \mathfrak{g}-representation and it is in fact a fundamental representation.
(vi) Show that $\bigwedge^{2} V$ decomposes as $W \bigoplus \mathbb{C}$, where \mathbb{C} is the trivial representation and W is an irreducible (fundamental) representation.
(vii) For $\operatorname{sp}(4, \mathbb{C})$, describe all the weights of the fundamental representations V and W and verify that the Weyl dimension formula holds.
(viii) In $s p(2 n, \mathbb{C})$, show that the k-th fundamental representation is contained in $\bigwedge^{k} V$ and in fact it is precisely the kernel of the contraction map $\phi_{k}: \bigwedge^{k} V \rightarrow \bigwedge^{k-2} V$ defined by

$$
\phi_{k}\left(v_{1} \wedge \cdots \wedge v_{k}\right)=\sum_{i<j} Q\left(v_{i}, v_{j}\right)(-1)^{i+j-1} v_{1} \wedge \cdots \wedge \hat{v}_{i} \wedge \cdots \wedge \hat{v}_{j} \wedge \cdots \wedge v_{k}
$$

where Q is the skew-symmetric form defining \mathfrak{g}, i.e., $Q(v, u)=v^{t} J u$.
[For this exercise, you may consult Section 16 in Fulton-Harris "Representation Theory", especially for the structural results on roots, Cartan decomposition etc.]

