
C2.3 Representations of semisimple Lie algebras
Mathematical Institute, University of Oxford

Problem Sheet 4

1. Let g be a complex semisimple Lie algebra.

(i) Let L be a finite dimensional g-module. Show that L is simple if and only if the dual module L∗

is simple.

(ii) Let L(λ), λ ∈ P+ be a simple g-module with highest weight λ. Show that the dual L(λ)∗ is
isomorphic to L(−w0(λ)), where w0 is the Weyl group element sending Φ+ (the positive roots) to
−Φ+.

(iii) What condition should λ satisfy such that 0 is a weight of L(λ)?

Solution: (i) If L is a finite dimensional module, then L∗ = {f : L → C} as a vector space. The action
on L∗ is given by

(x · f)(l) = −f(x · l), x ∈ g, l ∈ L, f ∈ L∗.

Define A⊥ ⊂ L∗ by A⊥ = {f ∈ L∗ | f(a) = 0, for all a ∈ A}, for every submodule A ⊂ L. Then A⊥ is
a submodule of L∗, and if A is proper, then so is A∗. Hence if L is not simple, then L∗ is not simple.

Conversely, if B ⊂ L∗ is a submodule, define B⊥ ⊂ L by B⊥ = {l ∈ L | f(l) = 0, for all f ∈ B} etc.
(ii) By (i), L(λ)∗ is a simple finite dimensional g-module. It is easy to see that the weights of L(λ)∗

are precisely the negatives of the weights of L(λ). To see this, pick a basis of weight vectors in L(λ) and
take the dual basis in L(λ)∗; these are weight vectors of L(λ)∗. Moreover, we know that

dimL(λ)µ = dimL(λ)w(µ), for all w ∈ W, µ a weight.

This means that dimL(λ)w(λ) = 1 for all w ∈ W . In particular, dimL(λ)w0(λ) = 1 and hence
dimL(λ)∗−w0(λ)

= 1.

Notice that −w0(λ) ∈ P+ iff λ ∈ P+. This is because −w0(α) > 0 for all α > 0. Moreover, −w0(λ)
is a maximal weight, otherwise there exists µ a weight of L(λ) (so −µ is a weight of L(λ)∗) such that
−µ−(−w0(λ)) ∈ Q+. Apply −w0 remembering that −w0(Q

+) = Q+ and it follows that w0(µ)−λ ∈ Q+.
But w0(λ) is also a weight of L(λ), and this is a contradiction with the maximality of λ.

(iii) We know that if µ is a weight of L(λ) then λ−µ ∈ Q+. This implies that a necessary condition
for 0 to be a weight is that λ ∈ Q+. In fact, this is also a sufficient condition, as we prove now.

To simplify the discussion, we call a subset S of P saturated (term due to Humphreys) if for every
λ ∈ S and every root α ∈ Φ and every integer k between 0 and 〈λ, α〉, the weight λ − kα is also in S.
We claim that the set of weights Ψ(L(λ)) is saturated. To see this, fix a root α and regard L(λ) as an
slα module. By complete reducibility, this is a direct sum of simple finite dimensional slα modules and
we know from the explicit description of these modules that the condition in the definition of saturated
is satisfied.

Now, we prove that the fact that Ψ(L(λ)) is saturated implies that if µ ∈ P+ is such that µ < λ,
then µ is in Ψ(L(λ)). In particular, this works for µ = 0 when λ ∈ Q+.

Suppose µ′ is a weight of Ψ(L(λ)) such that µ′ > µ. (µ′ = λ has this property and this is the starting
point.) Then µ′ = µ +

∑

α∈Π kαα, kα ≥ 0. Suppose µ′ 6= µ, then there exists some kα > 0. We want
to find β ∈ Π with kβ > 0 such that 〈µ′, β〉 > 0. We have 〈

∑

kαα,
∑

kαα〉 > 0 (since 〈 , 〉 is positive
definite), and therefore there must exist β ∈ Π with kβ > 0 such that 〈

∑

kαα, β〉 > 0. But then

〈µ′, β〉 = 〈µ, β〉+ 〈
∑

kαα, β〉 > 0,

since 〈µ, β〉 ≥ 0 as µ ∈ P+.
By the saturated property, µ′ − β is also in Ψ(L(λ)) and moreover µ′ − β ≥ µ. In this way, we can

reduce inductively the kα’s, until we find that µ ∈ Ψ(L(λ)).

Notice that this also proves that a necessary and sufficient condition for λ ∈ P to be a weight of
L(λ) is that w(µ) < λ for all w ∈ W .
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2. Use the Weyl dimensional formula to show that for every natural number k, there exists a simple
g-module of dimension kr, where r is the number of positive roots of g.

Solution: Weyl’s dimension formula says that

dimL(λ) =
∏

α∈Φ+

〈λ+ ρ, α〉

〈ρ, α〉
.

Take λ = (k − 1)ρ ∈ P+. Then 〈λ+ ρ, α〉 = k〈ρ, α〉, so dimL((k − 1)ρ) = k|Φ
+|.

3. Let ω1, . . . , ωn be the fundamental weights of the complex semisimple Lie algebra g. Show that every
finite dimensional simple g-representation occurs as a direct summand in a suitable tensor product (repe-
titions allowed) of the simple modules L(ω1), . . . , L(ωn). (We call these simple modules, the fundamental
representations of g.)

Solution: The fundamental weights are a Z≥0-basis of P
+, i.e., every λ ∈ P+ can be written uniquely

as λ = a1ω1 + · · · + anωn for ai ∈ Z≥0. It is easy to see that the weight vectors of a tensor product
V ⊗U are v⊗u where v, u are weight vectors of V and U , respectively. Moreover, the weights of V ⊗U
are λ + µ, λ a weight of V , µ a weight of U . Hence if λ, µ are highest weights of V , U , respectively,
then λ + µ is a highest weight of V ⊗ U . From complete reducibility, we have then that L(λ + µ) is a
direct summand of L(λ)⊗ L(µ). By induction, it follows that L(λ) is a direct summand of

L(ω1)
⊗a1 ⊗ · · · ⊗ L(ωn)

⊗an .

In fact, one can do better, by replacing L(ωi)
⊗ai with Sai(L(ωi)), where Sa is the a-symmetric power.

4. Let g = sl(n,C).

(i) Use Weyl’s dimension formula to show that L(ωi) =
∧i

V , 1 ≤ i ≤ n − 1, where V = C
n is the

standard representation.

(ii) Identify the adjoint representation in terms of the highest weight classification. (Why is the adjoint
representation irreducible?)

Solution: (i) We think of h = {h ∈ C
n | trh = 0} and h∗ = C

n/〈ǫ1 + · · ·+ ǫn〉. Then ωi = ǫ1 + · · ·+ ǫi,
1 ≤ i ≤ n−1. From a previous problem sheet, or by a direct computation, e1∧· · ·∧ei is a highest weight
vector with weight ωi of

∧i
V . This means that L(ωi) is a summand of

∧i
V . We compute dimensions

to show they are equal (there are many other ways to show equality). On the one hand, dim
∧i

V =
(

n
i

)

.
We use Weyl’s dimension formula to compute L(ωi). We have ρ = (n, n− 1, . . . , 1), αij = ǫi − ǫj , i < j,
so 〈ρ, αij〉 = j − i, etc.

(ii) The adjoint representation if irreducible if and only if g is simple, which is the case for sl(n).
The decomposition of g into h-weight spaces is the Cartan decomposition, so the highest weight of g is
the highest root of g with respect to >. For g = sl(n), this is λ = ǫ1 − ǫn. In terms of the fundamental
weights

ǫ1 − ǫn = ω1 + ωn−1 in h∗.

5. Let g = sl(3,C) and L(ω1), L(ω2) the two fundamental representations. Verify:

(i) L(ω1)
∗ ∼= L(ω2).

(ii) Konstant’s multiplicity formula, and

(iii) Weyl’s character formula for these two representations.

2



Solution: For g = sl(3), L(ω1) = V , L(ω2) =
∧2

V , where V = C
3.

(i) One can use linear algebra, e.g., (
∧n−i

V )∗ ∼=
∧i

V if dimV = n, or the highest weight classific-
ation, i.e.:

ω1 = ǫ1, ω2 = ǫ1 + ǫ2 = −ǫ3 in h∗,

and w0 = (13) for S3, so −w0(ǫ1) = −ǫ3; then use Problem 1(ii). In any case, L(ω1)
∗ ∼= L(ω2).

(ii) The weights of L(ω1) are ǫ1, ǫ2, ǫ3, with multiplicity 1. The weights of L(ω2) are ǫ1 + ǫ2 =
−ǫ3, ǫ1 + ǫ3 = −ǫ2, ǫ2 + ǫ3 = −ǫ1, with multiplicity 1.

To verify Kostant’s multiplicity formula for L(ω1), write out the table:
w det w · λ w · λ− µ, µ = ǫ1 K w · λ− µ, µ = ǫ2 K w · λ− µ, µ = ǫ3 K
() 1 (1, 0, 0) (0, 0, 0) 1 (1,−1, 0) 1 (1, 0,−1) 2

(12) −1 (−1, 2, 0) (−2, 2, 0) 0 (−1, 1, 0) 0 (−1, 2,−1) 0
(23) −1 (1,−1, 1) (0,−1, 1) 0 (1,−2, 1) 0 (1,−1, 0) 1
(13) −1 (−2, 0, 3) (−3, 0, 3) 0 (−2,−1, 3) 0 (−2, 0, 2) 0
(123) 1 (−2, 2, 1) (−3, 2, 1) 0 (−2, 1, 1) 0 (−2, 2, 0) 0
(132) 1 (−1,−1, 3) (−2,−1, 3) 0 (−1,−2, 3) 0 (−1,−1, 2) 0

Then applying the formula we get that the multiplicities are 1, 1 and 2 − 1 = 1, respectively. The
case L(ω2) is similar, in fact, it is just the table before to which we apply −w0.

(iii) If we write the coordinates of h as (x1, x2, x3) with x1 + x2 + x3 = 0, then

chL(ω1)(x1, x2, x3) = p(x1, x2, x3)/q(x1, x2, x3), where

p(x1, x2, x3) = e4x1+2x2+x3 − e2x1+4x2+x3 − e4x1+x2+2x3 − ex1+2x2+4x3 + ex1+4x2+2x3 + e2x1+x2+4x3 ,

q(x1, x2, x3) = e3x1+2x2+x3 − e2x1+3x2+x3 − e3x1+x2+2x3 − ex1+2x2+3x3 + ex1+3x2+2x3 + e2x1+x2+3x3 ,

and indeed, this equals ex1 + ex2 + ex3 .
Similarly for L(ω2).

6. Let g = sp(2n,C) realized as the space of matrices X ∈ gl(2n,C) such that XtJ + JX = 0, where

Xt is the transpose matrix, and J =

(

0 In
−In 0

)

; here In is the n× n identity matrix.

(i) Show that every X ∈ g is of the form X =

(

A B
C −At

)

, where B and C are symmetric n × n

matrices and A is an arbitrary n× n matrix.

(ii) Let h be the subalgebra consisting of diagonal matrices. Determine the set of roots of h in g and
the Cartan decomposition.

(iii) Choose the system of positive roots such that the corresponding root vectors lie in matrices of the

form

(

A′ B
0 −A′t

)

, where A′ is an upper triangular matrix and B is a symmetric matrix as before.

(iv) Determine the fundamental weights.

(v) Let V = C
2n be the standard representation of g (which acts by matrix multiplication on column

vectors). Show that V is an irreducible g-representation and it is in fact a fundamental represent-
ation.

(vi) Show that
∧2

V decomposes as W
⊕

C, where C is the trivial representation and W is an irredu-
cible (fundamental) representation.

(vii) For sp(4,C), describe all the weights of the fundamental representations V and W and verify that
the Weyl dimension formula holds.

(viii) In sp(2n,C), show that the k-th fundamental representation is contained in
∧k

V and in fact it is

precisely the kernel of the contraction map φk :
∧k

V →
∧k−2

V defined by

φk(v1 ∧ · · · ∧ vk) =
∑

i<j

Q(vi, vj)(−1)i+j−1v1 ∧ · · · ∧ v̂i ∧ · · · ∧ v̂j ∧ · · · ∧ vk,
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where Q is the skew-symmetric form defining g, i.e., Q(v, u) = vtJu.

[For this exercise, you may consult Section 16 in Fulton-Harris “Representation Theory”, especially for

the structural results on roots, Cartan decomposition etc.]
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